欢迎来到学术参考网
当前位置:发表论文>论文发表

高等数学极限论文摘要

发布时间:2023-12-06 02:16

高等数学极限论文摘要

材料二:极限 在高等数学中,极限是一个重要的概念。
极限可分为数列极限和函数极限,分别定义如下。
首先介绍刘徽的"割圆术",设有一半径为1的圆,在只知道直边形的面积计算方法的情况下,要计算其面积。为此,他先作圆的内接正六边形,其面积记为A1,再作内接正十二边形,其面积记为A2,内接二十四边形的面积记为A3,如此将边数加倍,当n无限增大时,An无限接近于圆面积,他计算到3072=6*2的9次方边形,利用不等式An+1<A<An+2[(An+1)-An](n=1,2,3....)得到圆周率=3927/1250约等于3.1416
数列极限:
设是一数列,如果存在常数a,当n无限增大时,an无限接近(或趋近)于a,则称数列收敛,a称为数列的极限,或称数列收敛于a,记为liman=a。或:an→a,当n→∞。
数列极限的性质:
1.唯一性:若数列的极限存在,则极限值是唯一的;
2.改变数列的有限项,不改变数列的极限。
几个常用数列的极限:
an=c 常数列 极限为c
an=1/n 极限为0
an=x^n 绝对值x小于1 极限为0
函数极限的专业定义:
设函数f(x)在点x。的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(无论它多么小),总存在正数δ ,使得当x满足不等式0<|x-x。|<δ 时,对应的函数值f(x)都满足不等式:
|f(x)-A|<ε
那么常数A就叫做函数f(x)当x→x。时的极限。
函数极限的通俗定义:
1、设函数y=f(x)在(a,+∽)内有定义,如果当x→+∽时,函数f(x)无限接近一个确定的常数A,则称A为当x趋于+∽时函数f(x)的极限。记作lim f(x)=A ,x→+∽。
2、设函数y=f(x)在点a左右近旁都有定义,当x无限趋近a时(记作x→a),函数值无限接近一个确定的常数A,则称A为当x无限趋近a时函数f(x)的极限。记作lim f(x)=A ,x→a。
函数的左右极限:
1:如果当x从点x=x0的左侧(即x〈x0)无限趋近于x0时,函数f(x)无限趋近于常数a,就说a是函数f(x)在点x0处的左极限,记作x→x0-limf(x)=a.
2:如果当x从点x=x0右侧(即x>x0)无限趋近于点x0时,函数f(x)无限趋近于常数a,就说a是函数f(x)在点x0处的右极限,记作x→x0+limf(x)=a.
函数极限的性质:
极限的运算法则(或称有关公式):
lim(f(x)+g(x))=limf(x)+limg(x)
lim(f(x)-g(x))=limf(x)-limg(x)
lim(f(x)*g(x))=limf(x)*limg(x)
lim(f(x)/g(x))=limf(x)/limg(x) ( limg(x)不等于0 )
lim(f(x))^n=(limf(x))^n
以上limf(x) limg(x)都存在时才成立
lim(1+1/x)^x =e
x→∞
lim(1+1/x)^x =e
x→0
无穷大与无穷小:
两个重要极限:
1、lim sin(x)/x =1 ,x→0
2、lim (1 + 1/x)^x =e ,x→0 (e≈2.7182818...,无理数)
========================================================================
举两个例子说明一下
一、0.999999……=1?
谁都知道1/3=0.333333……,而两边同时乘以3就得到1=0.999999……,可就是看着别扭,因为左边是一个“有限”的数,右边是“无限”的数。
二、“无理数”算是什么数?
我们知道,形如根号2这样的数是不可能表示为两个整数比值的样子的,它的每一位都只有在不停计算之后才能确定,且无穷无尽,这种没完没了的数,大大违背人们的思维习惯。
结合上面的一些困难,人们迫切需要一种思想方法,来界定和研究这种“没完没了”的数,这就产生了数列极限的思想。
类似的根源还在物理中(实际上,从科学发展的历程来看,哲学才是真正的发展动力,但物理起到了无比推动作用),比如瞬时速度的问题。我们知道速度可以用位移差与时间差的比值表示,若时间差趋于零,则此比值就是某时刻的瞬时速度,这就产生了一个问题:趋于无限小的时间差与位移差求比值,就是0÷0,这有意义吗(这个意义是指“分析”意义,因为几何意义颇为直观,就是该点切线斜率)?这也迫使人们去为此开发出合乎理性的解释,极限的思想呼之欲出。
真正现代意义上的极限定义,一般认为是由魏尔斯特拉斯给出的,他当时是一位中学数学教师,这对我们今天中学教师界而言,不能不说是意味深长的。
几个常用数列的极限
an=c 常数列 极限为c
an=1/n 极限为0
an=x^n 绝对值x小于1 极限为0

材料一:真正现代意义上的极限定义,一般认为是由魏尔斯特拉斯给出的,他当时是一位中学数学教师.所谓“定义”极限,本质上就是给“无限接近”提供一个合乎逻辑的判定方法,和一个规范的描述格式。这样,我们的各种说法,诸如“我们可以根据需要写出根号2的任一接近程度的近似值”,就有了建立在坚实的逻辑基础之上的意义。

举两个例子说明一下
一、0.999999……=1?

谁都知道1/3=0.333333……,而两边同时乘以3就得到1=0.999999……,可就是看着别扭,因为左边是一个“有限”的数,右边是“无限”的数。
二、“无理数”算是什么数?
我们知道,形如根号2这样的数是不可能表示为两个整数比值的样子的,它的每一位都只有在不停计算之后才能确定,且无穷无尽,这种没完没了的数,大大违背人们的思维习惯。

结合上面的一些困难,人们迫切需要一种思想方法,来界定和研究这种“没完没了”的数,这就产生了数列极限的思想。

类似的根源还在物理中(实际上,从科学发展的历程来看,物理可能才是真正的发展动力),比如瞬时速度的问题。我们知道速度可以用位移差与时间差的比值表示,若时间差趋于零,则此比值就是某时刻的瞬时速度,这就产生了一个问题:趋于无限小的时间差与位移差求比值,就是0÷0,这有意义吗(这个意义是指“分析”意义,因为几何意义颇为直观,就是该点斜率)?这也迫使人们去为此开发出合乎理性的解释,极限的思想呼之欲出。

是这个意思吧?你照着编吧

高数极限问题

极限的十四种方法, 1:利用两个准则求极限, 2:利用极限的四则运算性质求极限, 3:利用两个重要极限公式求极限, 4:利用单侧极限求极限,5:利用函数的连续性求极限, 6:利用无穷小量的性质求极限, 7:利用等价无穷小量代换求极限, 8:利用导数的定义求极限, 9:利用中值定理求极限, 10:利用洛必达法则求极限, 11:利用定积分求和式的极限,12:利用级数收敛的必要条件求极限, 13:利用泰勒展开式求极限, 14:利用换元法求极限。
关键词: 夹逼准则, 单调有界准则, 无穷小量的性质, 洛必达法则, 中值定理, 定积分, 泰勒展开式, 级数收敛的必要条件.
极限是数学分析的基础,数学分析中的基本概念来表述,都可以用极限来描述。如函数y=f(x)在处导数的定义,定积分的定义,偏导数的定义,二重积分,三重积分的定义,无穷级数收敛的定义,都是用极限来定义的。极限是研究数学分析的基本公具。极限是贯穿数学分析的一条主线。学好极限是从以下两方面着手。1:是考察所给函数是否存在极限。2:若函数否存在极限,则考虑如何计算此极限。本文主要是对第二个问题即在极限存在的条件下,如何去求极限进行综述。
1:利用两个准则求极限。
(1)夹逼准则:若一正整数 N,当n>N时,有且则有 .
利用夹逼准则求极限关键在于从的表达式中,通常通过放大或缩小的方法找出两个有相同极限值的数列和 ,使得。
例[1]
求的极限
解:因为单调递减,所以存在最大项和最小项

又因为
(2):单调有界准则:单调有界数列必有极限,而且极限唯一。
利用单调有界准则求极限,关键先要证明数列的存在,然后根据数列的通项递推公式求极限。
例:[1] 证明下列数列的极限存在,并求极限。
证明:从这个数列构造来看 显然是单调增加的。用归纳法可证。
又因为
所以得. 因为前面证明是单调增加的。
两端除以 得
因为则, 从而
即 是有界的。根据定理有极限,而且极限唯一。
令 则
则. 因为 解方程得
所以
高等数学中极限问题的解法详析 
2018-06-30
6页
4.46分
用App免费查看
数学分析中极限的求法 
摘要:本文主要归纳了数学分析中求极限的十四种方法, 1:利用两个准则求极限, 2:利用极限的四则运算性质求极限, 3:利用两个重要极限公式求极限, 4:利用单侧极限求极限,5:利用函数的连续性求极限, 6:利用无穷小量的性质求极限, 7:利用等价无穷小量代换求极限, 8:利用导数的定义求极限, 9:利用中值定理求极限, 10:利用洛必达法则求极限, 11:利用定积分求和式的极限,12:利用级数收敛的必要条件求极限, 13:利用泰勒展开式求极限, 14:利用换元法求极限。
关键词: 夹逼准则, 单调有界准则, 无穷小量的性质, 洛必达法则, 中值定理, 定积分, 泰勒展开式, 级数收敛的必要条件.
极限是数学分析的基础,数学分析中的基本概念来表述,都可以用极限来描述。如函数y=f(x)在处导数的定义,定积分的定义,偏导数的定义,二重积分,三重积分的定义,无穷级数收敛的定义,都是用极限来定义的。极限是研究数学分析的基本公具。极限是贯穿数学分析的一条主线。学好极限是从以下两方面着手。1:是考察所给函数是否存在极限。2:若函数否存在极限,则考虑如何计算此极限。本文主要是对第二个问题即在极限存在的条件下,如何去求极限进行综述。
1:利用两个准则求极限。
(1)夹逼准则:若一正整数 N,当n>N时,有且则有  .     
利用夹逼准则求极限关键在于从的表达式中,通常通过放大或缩小的方法找出两个有相同极限值的数列和 ,使得。
例[1]                                 
求的极限
解:因为单调递减,所以存在最大项和最小项

又因为
(2):单调有界准则:单调有界数列必有极限,而且极限唯一。
利用单调有界准则求极限,关键先要证明数列的存在,然后根据数列的通项递推公式求极限。
例:[1]  证明下列数列的极限存在,并求极限。       证明:从这个数列构造来看  显然是单调增加的。用归纳法可证。 
又因为
所以得. 因为前面证明是单调增加的。
两端除以 得 
因为则, 从而 

要大一的高数学习论文3000字左右的

论文为了做到层次分明、脉络清晰,常常将正文部分分成几个大的段落。这些段落即所谓逻辑段,一个逻辑段可包含几个小逻辑段,一个小逻辑段可包含一个或几个自然段,使正文形成若干层次。论文的层次不宜过多,一般不超过五级,具体如下:

高等数学是大学工科里的一门基础学科。在我学的自动化专业中更显得格外重要。经历了快一个学期的高等数学学习对这门课程有一定认识的同时,在学习的过程中遇到了各式各样的难题与困惑,因此,特对在学习中的遇到困难与将来如何更好的努力,不断提高学习这门课的能力进行了总结,希望在以后的时间里可以有所进步。

高中学习数学我经历过两个数学老师。先说说第一个数学老师吧,这是一个年轻的小伙老师,他以前是教初中的后来通过考试,升就教了高中,我们是他教的第一届的高中学生。

对于这个我第一个高中数学老师我认为他和第二个老师最大的区别就是他上课从来不用ppt,他喜欢写板书,所以每节课后我们都记下满满几页的笔记。这样的教学方式单单就我来说我是不能适应的,因为我喜欢上课跟

着老师教学的思路去学习,但是他要我们上课记下他在黑板上学习的板书,这样就导致我们光顾着去做笔记,却没有跟着他上课的思路去思考问题,不能去理解他讲的是什么,课下对着笔记我们又不记得他上课是怎么讲的。所以高中前部分我的数学一直都不好。

后来因为一些原因我们换了一个数学老师,这是一个我估计快要退休的了老师,这个老师因为教书了很多年很有教书经验,也是他后来拯救了我的高中数学。他给我们上课的第一天就要求我们一定要课前预习和课后复习。

其实之前很多老师也这么要求过我们,但是我都没有很好的去要求自己。我的这个老师虽然年龄有点大,但是一点没有影响他上课的激情,他上课很有感染力,我每节课都跟着他的思路后面去分析问题,解决问题。

课上简单的记一下笔记,但是不能影响我跟着他的节奏去听课,也是后来在他的帮助下高中数学成绩有了突飞猛进。对于高中的数学就做这么多的概述,接下来谈谈大学学习高等数学的心得体会。

我对高数进行了系统性的学习,不仅在知识反方面得到了充实,在思想方面也得到了提高,就我个人而言,我认为高等数学有以下几个显著特点:识记的知识相对减少,理解的知识点相对增加;不仅要求会运用所学的知识解题,还要明白其来龙去脉;联系实际多,对专业学习帮助大;教师授课速度快,课下复习与预习必不可少。

扩展资料

论文要求:

1、题名规范

题名应简明、具体、确切,能概括论文的特定内容,有助于选定关键词,符合编制题录、索引和检索的有关原则。

2、作者署名的规范

作者署名置于题名下方,团体作者的执笔人,也可标注于篇首页地脚位置。有时,作者姓名亦可标注于正文末尾。

上一篇:早检测免费论文检测系统

下一篇:公共管理论文1000字