欢迎来到学术参考网
当前位置:发表论文>论文发表

生物信息学论文参考文献

发布时间:2023-12-08 23:34

生物信息学论文参考文献

生物信息学推荐系统设计
关键词:推荐系统;生物信息学
推荐系统(RecommenderSystem)[1]是个性化信息服务的主要技术之一,它实现的是“信息找人,按需服务”;通过对用户信息需要、兴趣爱好和访问历史等的收集分析,建立用户模型,并将用户模型应用于网上信息的过滤和排序,从而为用户提供感兴趣的资源和信息。生物信息学(Bioinformatics)[2,3]是由生物学、应用数学和计算机科学相互交叉所形成的一门新型学科;其实质是利用信息科学的方法和技术来解决生物学问题。20世纪末生物信息学迅速发展,在信息的数量和质量上都极大地丰富了生物科学的数据资源,而数据资源的急剧膨胀需要寻求一种科学而有力的工具来组织它们,基于生物信息学的二次数据库[4]能比较好地规范生物数据的分类与组织,但是用户无法从大量的生物数据中寻求自己感兴趣的部分(著名的生物信息学网站NCBI(美国国立生物技术信息中心),仅仅是小孢子虫(Microsporidia)的DNA序列就达3399种),因此在生物二次数据库上建立个性化推荐系统,能使用户快速找到自己感兴趣的生物信息。特别是在当前生物信息数据量急剧增长的情况下,生物信息学推荐系统将发挥强大的优势。
1推荐系统的工作流程
应用在不同领域的推荐系统,其体系结构也不完全相同。一般而言,推荐系统的工作流程[5]如图1所示。
(1)信息获取。推荐系统工作的基础是用户信息。用户信息包括用户输入的关键词、项目的有关属性、用户对项目的文本评价或等级评价及用户的行为特征等,所有这些信息均可以作为形成推荐的依据。信息获取有两种类型[6],即显式获取(Explicit)和隐式获取(Implicit),由于用户的很多行为都能暗示用户的喜好,因此隐式获取信息的准确性比显式高一些。
(2)信息处理。信息获取阶段所获得的用户信息,一般根据推荐技术的不同对信息进行相应的处理。用户信息的存储格式中用得最多的是基于数值的矩阵格式,最常用的是用m×n维的用户—项目矩阵R来表示,矩阵中的每个元素Rij=第i个用户对第j个项目的评价,可以当做数值处理,矩阵R被称为用户—项目矩阵。
(3)个性化推荐。根据形成推荐的方法的不同可以分为三种,即基于规则的系统、基于内容过滤的系统和协同过滤系统。基于规则的推荐系统和基于内容过滤的推荐系统均只能为用户推荐过去喜欢的项目和相似的项目,并不能推荐用户潜在感兴趣的项目。而协同过滤系统能推荐出用户近邻所喜欢的项目,通过用户与近邻之间的“交流”,发现用户潜在的兴趣。因此本文所用的算法是基于协同过滤的推荐算法。
(4)推荐结果。显示的任务是把推荐算法生成的推荐显示给用户,完成对用户的推荐。目前最常用的推荐可视化方法是Top-N列表[7],按照从大到小顺序把推荐分值最高的N个事物或者最权威的N条评价以列表的形式显示给用户。
2生物信息学推荐系统的设计
综合各种推荐技术的性能与优缺点,本文构造的生物信息学推荐系统的总体结构如图2所示。
生物信息学推荐系统实现的主要功能是在用户登录生物信息学网站时,所留下的登录信息通过网站传递到推荐算法部分;推荐算法根据该用户的用户名从数据库提取出推荐列表,并返回到网站的用户界面;用户访问的记录返回到数据库,系统定时调用推荐算法,对数据库中用户访问信息的数据进行分析计算,形成推荐列表。
本系统采用基于近邻的协同过滤推荐算法,其结构可以进一步细化为如图3所示。算法分为邻居形成和推荐形成两大部分,两部分可以独立进行。这是该推荐系统有别于其他系统的优势之一。由于信息获取后的用户—项目矩阵维数较大,使得系统的可扩展性降低。本系统采用SVD矩阵降维方法,减少用户—项目矩阵的维数,在计算用户相似度时大大降低了运算的次数,提高了推荐算法的效率。
(1)信息获取。用户对项目的评价是基于用户对某一个项目(为表示简单,以下提及的项目均指网站上的生物物种)的点击次数来衡量的。当一个用户注册并填写好个人情况以后,系统会自动为该用户创建一个“信息矩阵”,该矩阵保存了所有项目的ID号以及相应的用户评价,保存的格式为:S+编号+用户评价,S用于标记项目,每个项目编号及其评价都以“S”相隔开;编号是唯一的,占5位;用户评价是用户点击该项目的次数,规定其范围是0~100,系统设定当增加到100时不再变化。这样做可防止形成矩阵时矩阵评价相差值过大而使推荐结果不准确。(2)信息处理。信息处理是将所有用户的信息矩阵转换为用户—项目矩阵,使用户信息矩阵数值化,假设系统中有M个用户和N个项目,信息处理的目的就是创建一个M×N的矩阵R,R[I][J]代表用户I对项目J的评价。
(3)矩阵处理。协同过滤技术的用户—项目矩阵的数据表述方法所带来的稀疏性严重制约了推荐效果,而且在系统较大的情况下,它既不能精确地产生推荐集,又忽视了数据之间潜在的关系,发现不了用户潜在的兴趣,而且庞大的矩阵增加了计算的复杂度,因此有必要对该矩阵的表述方式做优化,进行矩阵处理。维数简化是一种较好的方法,本文提出的算法应用单值分解(SingularValueDecomposition,SVD)技术[8],对用户—项目矩阵进行维数简化。
(4)相似度计算。得到降维以后的用户矩阵US,就可以寻找每个用户的近邻。近邻的确定是通过两个用户的相似度来度量的。本文采用Pearson相关度因子[9]求相似度。(5)计算用户邻居。该方法有两种[10],即基于中心的邻居(Center-BasedNeighbor)和集合邻居(AggregateNeighbor)。本系统采用了第一种方法,直接找出与用户相似度最高的前N个用户作为邻居,邻居个数N由系统设定,比如规定N=5。
(6)推荐形成。推荐形成的前提是把当前用户的邻居ID号及其与当前用户的相似度保存到数据库中,而在前面的工作中已找出各用户的邻居以及与用户的相似度,推荐形成部分只需要对当前登录用户进行计算。推荐策略是:对当前用户已经访问过的项目不再进行推荐,推荐的范围是用户没有访问的项目,其目的是推荐用户潜在感兴趣的项目;考虑到系统的项目比较多,用户交互项目的数量很大,所以只筛选出推荐度最大的N个项目,形成Top-N推荐集,设定N=5。
3生物信息学推荐系统的实现
生物信息学推荐系统的实现可以用图4来表示。数据库部分主要存储用户信息和项目信息,用SQLServer2000实现。
数据访问层实现了与用户交互必需的存储过程以及触发器,也使用SQLServer2000,主要完成以下功能:初始化新用户信息矩阵;插入新项目时更新所有用户的信息矩阵;用户点击项目时更新该用户对项目的评价;删除项目时更新所有用户的信息矩阵。用户访问层主要涉及网页与用户的交互和调用数据访问层的存储过程,在这里不做详细的介绍。
推荐算法完成整个个性化推荐的任务,用Java实现。(1)数据连接类DataCon。该类完成与SQLServer2000数据库的连接,在连接之前必须要下载三个与SQLServer连接相关的包,即、和。
(2)数据操作类DataControl。该类负责推荐算法与数据库的数据交换,静态成员Con调用()获得数据库连接,然后对数据库进行各种操作。把所有方法编写成静态,便于推荐算法中不创建对象就可以直接调用。
(3)RecmmendSource与CurrentUserNeighbor。这两个类作为FCRecommand类的内部类,RecmmendSource用于保存当前用户的推荐列表,包括推荐项目号和推荐度;CurrentUserNeighbor用于保存邻居信息,包括邻居ID号、相似度及其访问信息。
(4)协同过滤推荐算法FCRecommand。该类实现了整个推荐算法,主要分为邻居形成方法FCArithmetic和推荐形成方法GenerateRecommend。
下面给出方法FCArithmetic的关键代码:
Matrixuser_item=_Item_Arry();//获取用户—项目矩阵
user_item=_Calculate(user_item);//调用SVD降维方法
Vectorc_uservector=newVector();//当前用户向量
Vectoro_uservector=newVector();//其他用户向量
Vectorc_user_correlate_vector=newVector();
//当前用户与其他用户之间相似度向量
for(inti=0;ifor(intj=0;ment((i,j));
//1.获得当前用户向量
for(intk=0;();
for(intl=0;ment((k,l));
//2.获得其他用户的向量
//3.计算当前用户与其他用户的相似度
usercorrelativity=ativity(c_uservector,o_uservector);
ment(usercorrelativity);
}
//4.根据当前用户与其他用户的相似度,计算其邻居
erNeighbor(i,c_user_correlate_vector);
}
根据邻居形成方法FCArithmetic,可以得到每个用户的邻居。作为测试用例,图6显示用户Jack与系统中一部分用户的相似度,可以看出它与自己的相似度必定最高;并且它与用户Sugx访问了相同的项目,它们之间的相似度也为1,具有极高的相似度。
4结束语
在传统推荐系统的基础上,结合当前生物信息学网站的特点,提出一个基于生物信息平台的推荐系统,解决了传统生物信息网站平台信息迷茫的缺点,为用户推荐其感兴趣物种的DNA或蛋白质序列。
优点在于协同过滤的推荐算法能发现用户潜在的兴趣,能促进生物学家之间的交流;推荐算法的邻居形成与推荐形成两部分可以单独运行,减少了系统的开销。进一步的工作是分析生物数据的特点及生物数据之间的关系,增加用户和项目数量,更好地发挥推荐系统的优势。
参考文献:
[1]PAULR,endersystems[J].CommunicationsoftheACM,1997,40(3):56-58.
[2]陈新.生物信息学简介[EB/OL].(2001)..
[3]林毅申,林丕源.基于WebServices的生物信息解决方案[J].计算机应用研究,2005,22(6):157-158,164.[4]邢仲璟,林丕源,林毅申.基于Bioperl的生物二次数据库建立及应用[J].计算机系统应用,2004(11):58-60.

生物技术应用大专毕业论文怎么写

分子生物技术在微生物降解环境 污染物中的应用 [摘要〕介绍了与环境微生物关键降解酶基因的筛选、克隆及应用相关的分r生物技术,包括聚合酶链式反应技 术、基因重组技术、荧光原位杂交技术和生物信息学等技术,并对这些技术在污染物降解基因检测、筛选和克隆方 面的应用进行了阐述与探讨、 [关键词]分子生物技术;微生物;基因;环境污染物;降解 随着现代j:\地技术的发展,多环芳烃、含氯有 机物和硝基苯类化合物等人工合成井难以降解的 污染物大量排放,造成世界范围内的环境污染和生 态破坏,严重地威胁人类和其他生物的正常生存和 发展。利用微生物修复技术对受污染的水体及土 壤进行处理,凸显了其重要的意义和可行性。研究 人员发现并筛选到一些微生物,它们不仅对环境有 较高的适应性、对污染物有较高的耐受性,而且对 污染物有较强的降解效率和专一性。然而环境中 存在的大量微生物中仅有少于1%可通过传统的培 养方法进行培养、分离和纯化,绝大多数细菌需要 非常严格的营养条件川。因此,为了对修复环境有 所贡献却难以培养的微生物进行更全面了解,也为 了筛选到更多有利于降解环境污染物的微生物菌 种及其关键酶基因,分子生物技术和手段逐渐被广 泛应用到环境可降解污染物及降解机理方面的研 究中。 本文对近年来发展起来的聚合酶链式反应 (PCR)技术、基因重组技术、荧光原位杂交(FISH) 技术和生物信息学等多种分子生物技术进行了介 绍,并总结了它们在污染物降解基因检测、筛选和 克隆方面的应用。 1与环境污染物降解相关的分子生 物技术 1.1PCR及其相关技术 PCR是一种利用脱氧核糖核酸(DNA)半保留 复制原理,在体外扩增位于两段已知序列之间的 DNA区段从而得到大量拷贝的分子生物技术。根 据其模板、引物来源或扩增条件的不同,PcR技术 可分为以下几种:(l)反转录pCR(RT一PeR)技 术,将mRNA反转录为cDNA后再对其进行PCR 扩增,可用来构建cDNA文库,分析不同生长时期 的mRNA表达状况和相关性以及mRNA的定量测 定等;(2)巢式PCR技术,在扩增大片段目的DNA 时,先用非特意性引物扩增再用特意性引物对第一 次扩增产物进行第二次扩增,以获得可供分析的 DNA;(3)竞争PCR技术,是一种定量PCR,向PCR 反应体系中加人人工构建的带有突变的竞争模板, 通过控制竞争模板的浓度来确定目的模板的浓度, 对目的模板作定量研究;(4)实时荧光定量PCR技 术,在PCR反应体系中加人荧光基团,利用荧光信 号积累实时监测整个PCR进程,最后通过标准曲线 对未知模板进行定量分析,该法已广泛用于基因表 达研究、转基因研究等方面;(5)扩增的rDNA限制 酶切分析技术,根据原核生物rDNA序列的保守性, 将扩增的rDNA片段进行酶切,通过酶切图谱来分 析菌间的多样性;(6)RNA随机引导PCR技术,基 于任意寡核昔酸引物与RNA之间可能的配对,在 低严谨度条件下经聚合酶催化使链延伸,将细胞总 RNA或InRNA作为反转录反应的模板,此技术结 合单链构象多态性,用非变性胶分辨大小相同而构 象不同的片段,可用于诊断遗传突变及分析污染条 件下序列的多态性;(7)随机扩增多态DNA (RAPD)技术,是一种基于PCR检测PCR引物结合 位点序列改变的方法,通常以10bp的寡核昔酸序 列为引物,对基因组DNA随机扩增,电泳分离染色 扩‘增产物,再分析多态性。 1.2FISH技术 FISH技术利用荧光标记的探针在细胞内与特 异的互补核酸序列杂交,通过激发杂交探针的荧光 来检测信号。荧光探针比放射性探针更安全,具有 较好的分辨力,不需要额外的检测步骤。近年来, 由于FISH技术具有灵敏、便捷等优点,迅速发展完 善成为研究环境微生物的有力工具。此外,可用不 同激发和散射波长的荧光染料标记探针,在一步反 应中同时检测几个靶序列。该技术主要包括试样 固定、预处理、预杂交、探针和试样变性、杂交、漂洗 去除未结合的探针、检测杂交信号等步骤。由于 165rRNA具有遗传稳定性,因此成为FISH技术检 测最常用的靶序列。 1.3基因重组技术 基因重组技术是从供体生物的基因组中通过 酶切扩增等手段获取目的基因,与载体连接形成重 组DNA分子,再导入到受体细胞中,让外源基因得 以表达。在已经分离出的许多菌株中,与降解能力 有关的基因多在质粒体上。由于质粒很容易在细 菌的繁殖过程中遗失,对细菌降解能力的长期稳定 非常不利,可将其与污染物降解有关的酶基因重组 到大肠杆菌等微生物中进行表达,以此构建的各种 生物降解特性增强的重组菌可用于污染环境的治 理修复或发酵某些废弃物。 1.4生物信息学 20世纪后期,生物学的迅猛发展,从数量上和 质量上极大地丰富了基因组数据库、蛋白质数据 库、酶数据库和文献数据库等许多生物科学的数据 资源。已有多个国家和国际科研组织建立了生物 信息数据库,如欧洲分子生物学实验室(Eur叩ean MolecularBiologyLaboratory)核酸序列数据库和美 国国家生物技术情报中心(Nationaleente:fo:Bio- technologyInformation,NCBI)基因序列数据库等。 科学家利用计算机及生物信息分析软件分析这些 数据资源,确定大分子序列、结构、表达模式和生化 途径与生物数据之间的关系,区分生物个体间遗传 差异,揭示DNA多样性。例如,基本局部比对搜索 工具(BasieLoealAlignmentSearehTool,BLAST), 是一套在蛋白质数据库或DNA数据库中进行相似 性比较的分析工具。它基于Altschul等的方法「2〕, 在序列数据库中对查询序列进行同源性比对工作。 BLAST程序可对一条或多条、任何数量、任何形式的 序列在一个或多个核酸或蛋白序列库中进行比对,甚 至将有缺口的比对序列也考虑在内,利用比较结果中 的得分对序列进行相似性说明。基因的序列分析可 揭示出生物物种之间的关系,在污染治理研究中可用 于生物基因组特殊区域或特异基因的测序。 2分子生物技术在环境污染物降解 中的应用 2.1土壤试样总DNA的提取 用适当方法直接从土壤中提取DNA并纯化, 是从分子生物学角度对土壤微生物进行研究的前 提条件,而后可进行酶切、PCR扩增、核酸分子杂交 等分子生物学技术操作。从土壤中提取微生物 DNA主要分为汽接法和间接法}’{。直接法是在 ogram等的方法基础卜发展起来的,其主要包括2 个步骤:(l)原位细胞裂解;(2)DNA提取和纯化。 直接法提取的DNA超过细菌总DNA的60%且省 力,但提取的DNA常常有折断、腐殖酸污染、甚至 提取物中还夹杂有未知的胞外DNA和真核生物的 DNA。最先报道间接法的是Faegri等[‘〕,其主要包 括4个步骤:(l)分散土壤;(2)分离细胞与土壤; (3)细胞裂解;(4)DNA纯化。间接法提取DNA 产量低且费力,但纯度较高、DNA损伤小,提取的 大片段DNA可用来构建cos而d和细菌人工染色体 文库等。 2.2采用PCR及相关技术扩增分析DNA片段 可降解污染物的微生物必然能产生分解代谢 该污染物的酶。selvaratnam等L’l用编码苯酚单加 氧酶dmpN摹因的RT一PCR技术来检测序列间歇 式活性污泥反应器‘{一,降解酚的假单胞菌。检测结 果表明,RT一PCR技术不仅能检测微生物降解酚的 能力,还能测量dmpN基因的转录水平,从而确定假 单胞菌特殊的分解活性,发现了在转录水平下,酚 浓度与通气时间之问存在正相关关系。 将PCR技术和变性梯度凝胶电泳(DGGE)结 合起来,在变性条件适当的情况下能分辨一个碱基 对,分辨率较高。染色后的凝胶用成像系统进行分 析,可在一定程度l几反应试样的复杂性。条带的多 少能反应试样「 一 }1微生物组成的差异,条带的亮度能 反应试样中微生物的多少。基于以上优点,日前该 技术在微生物群落结构的分析和动态研究方面得 到了厂‘泛应用。DGGE可通过分析PCR扩增的基 因点突变来探索微生物的复杂性。徐玉泉等[“〕从 某废水中分离出一株能以苯酚为惟一碳源的菌株 PHEA一2,使用PCR一DGGE技术对该菌165 rDNA进行分析,发现该菌与醋酸钙不动杆菌同源。 M盯sh等r了)利用PcR一DGGE技术获得了活性污泥 中真核微生物的种群变化情况。王峰等下8〕采用 PCR一DGGE技术对城市污水化学生物絮凝处理中 活性污泥和生物膜微生物种群结构进行了分析,结 果表明活性污泥培养前后微生物种群结构发生r 很大改变。 RAPD技术也是一种应用比较广泛的以多态性 引物来扩增某些片段的技术。RAPD技术可用于检 测含有混合微生物种群的各种微生物反应器中微 生物的多样性。用RAPD技术分析检测实验室规 模的油脂淤泥培养料中的细菌菌群发现,用油脂淤 泥改良过的培养料比未改良的更适于不同的微生 物种群生长[9j。vainio等t’。〕从516种孤立的菌落 中提取出165rDNA,经PCR扩增后进行测序,检测 活性污泥中微生物种群的结构。这些组合技术的 应用显著增强r对微生物的检测和鉴定能力,为理 论研究工艺优化及提高生物处理效率提供了条件。 2.3基因重组 基因工程技术应用于环境保护起始于20世纪 80年代。其基本原理是通过基因分离和重组技术, 将目的基因片段,比如可编码降解某种污染物的 酶,转移到受体生物细胞中并表达,使受体生物具 有该目的基因表达显现的特殊性状,从而达到治理 污染的目的。找到特定污染的抗性基因,利用基因 重组技术转基因后也可获得其他抗性植株以及筛 选到可转化污染物的植物,还可开发超量积累植物 进行污染土壤的生物修复。 罗如新等L”〕用放射性同位素标记tfdc基因片 段作探针,Southemblot杂交定位Ll菌株的邻苯二 酚1,2一双加氧酶基因位于Pstl的I片段和BamH I的M、N片段,回收并将其直接克隆至表达载体 pKT230卜,获得的重组子能转化不具开环酶活性 的甲胺磷降解菌P2,得到高于天然宿主21倍的邻 苯二酚1,2一双加氧酶。stingley等{”〕通过构建基 因文库和重组质粒等基因工程方法证实了NidAB 双加氧酶是降解菲的关键酶类,并首次鉴定出此基 因通过磷苯二甲酸实现降解功能。chae等‘”}发现 不能降解苯酚的su如lobusso扣taricu、98/2菌株中 的儿茶酚2,3一双加氧酶基因与能降解苯酚的 sulfolo右u,,o如taricu、咫有[6J源区,分析得知它们 是山共同祖先进化而来。把儿茶酚2,3一双加氧酶 基因克隆到大肠杆菌中表达,可获得有较高降解活 性的双加氧酶。 重金属污染是环境污染的重要方面之一。随 着分子生物学技术的发展,越来越多的修复性蛋白 基因正被从植物、微生物和动物中陆续分离出来, 如汞离子还原酶基因、有机汞裂解酶基因、汞转运 蛋自基因、金属硫蛋白基因、植物络合素合成酶基 因、铁离子还原酶基因和锌转运蛋白基因L’‘〕。这些 基因通过基因工程的改造,重组到合适的受休细胞 中表达相应的蛋白质和酶,达到治理难以降解的有 毒有害污染物的目的。sorsa等〔”〕把MTS插人 LamB序列的153位点,在中表达MTs,解决 r细胞内MTs对金属离子有限的吸附能力。综L 所述,基因重组技术具有快速、高效的特性,已逐渐 成为环境生物技术的研究热点。 2.4FISH技术 FISH技术利用核糖体内长度适中(约1500bp)、 高度保守的165:RNA序列作为理想的基因分类靶 序列,其中使用的165:RNA寡核普酸探针一般是 进行了荧光标记的20bp左右特异性核昔酸片段, 利用该报告分子(如生物素、地高辛)与荧光素标记 的特异亲和素之间的免疫化学反应,经荧光检测系 统对待测DNA进行定性、定量或相对定位分析。 FISH技术能提供处理过程中微生物的数量、空间分 布和原位生理学等信息。 硝化细菌是一类生理上非常特殊的化能自氧 菌,传统的研究方法要经过富集、分离、分类和鉴定 步骤,耗时长。HSH技术的引人解决了上述困难。 FlsH技术还被广泛用于活性污泥系统、硝化流化床 反应器和膜生物反应器等废水处理系统}’61。 基因工程微生物越来越多地被用于农业害虫 控制和环境污染的生物修复,对人类健康和环境的 影响引起广泛关注。1994年出现了一种新的标记 系统:绿色荧光蛋白(GFP),由于GFP基因表达产 物对细胞没有毒害作用,且由GFP产生的荧光标记 检测卜分方便、简单。在某些被污染的环境中可分 离出降解该污染物的细菌,通过基因重组等手段使 用GFP分子标记,可更容易的分离检测被标记的 细胞叫。 Bastes等[’8]进行了苯酚降解菌染色体GFP基 因标记实验。通过PCR和Southemblot分析,证明 GFP基因已成功整合到宿主细胞的染色体中。对 标记菌与野生型的降解能力比较结果证明,GFP分 子标记的插人并不影响细胞的苯酚降解能力。 用G即标记Pseudomonasputida,研究活性淤 泥中细菌存活情况{’9飞。Pseudomonasputida被转到 活性淤泥2min后,观察到细胞在淤泥絮凝物间自 由游动;培养3d后,发现荧光细胞减少,大部分已 被合并到淤泥絮凝物中,以防止细菌被原生动物捕 食。用oFP标记石.eozi和Serraliamarceseern,考 察菌株附到絮凝物卜的过程{’()j。使用表面荧光显 微镜能将带有GFP标记的细胞从活性污泥中区分 开,井进行观察和记数。而聚焦激光扫描显微镜 (cLsM)可使GFP标记细菌产生三维轮廓,结合表 面荧光显微镜和CLSM观察GFP标记细胞,结果表 明,细胞表面疏水性在细菌附到絮凝物的过程中起 重要作用,两种细菌附在絮凝物上的模式有很大不 同,通过这种方法可更好地理解细菌赫附机理,有 助于提高废水处理效果。 3结语 分子生物技术的应用使研究人员可从微观的 角度更细致深人地了解微生物对污染物降解的具 体生理生化机制,在分子水平 _ _ [揭示生物体吸收、 迁移、积累有害物质最终被毒害,及适应、抗性等生 态问题,从而筛选到更多有利用价值的微生物。随 着越来越多微生物全部基因序列的解码,对各种细 菌体内可降解基因的分布和表达会有更深人的了 解,有关技术的发展和成熟必将对污染物的降解过 程有一个整体的、生态水平上的认识。 参考文献 l李凤,刘世贵 . 分子生物学技术在环境微生物研究中的 应用 . 世界科技研究与发展,2003,25(4):88一92 2AltsehulSF,GishW,MillerW,oealalign- mentsearehtool . JMolBiol,1990,215(3):403一410 3魏志琴,曾秀敏,宋培勇 . 土壤微生物DNA提取方法研 究进展 . 遵义师范学院学报,2006,8(4):53一56 4FaegriA,TorsvikVL,ia]andfunga] aetivitiesin5011:seParationofbacteriaandfungibyaraPid fraetionatedeentrifugationteehnique5011BiolBioehem, 1977,9(2):105一112 5SelvaratnamS,SehoedelBA,MeFarlandBL,etal APPlieationofreversetranseriPtasePCRformonitoring exPressionoftheeataboliedmPNgeneinaPhenol- degradingsequencingbatehreaetor . APPIEnviron Microbiol,1995,61(11):3981一3985 6徐玉泉,张维,陈明等 . 一株苯酚降解菌的分离和鉴 定 . 环境科学学报,2000,20(4):450一455 7MarshTL,LiuWT,ForneyLJ . Beginningamoleeular analysisoftheeukiU洲aleollllllunityinaetivatedsludge. WaterSeiTechnol,1998,37(4一5):455一460 8王峰,傅以钢,夏四清等.PCR一DGGE技术在城市污 水化学生物絮凝处理中的特点 . 环境科学,2004,25 (6):74一79 9涂书新,韦朝阳 . 我国生物修复技术的现状与展望 . 地 理科学进展,2004,23(6):20一31 10VainioEJ,MoilanenA,KoivulaTT,etal . ComParison ofpartial165rRNAgenesequeneesobtainedfromactiva- tedsludgebaeteria . APPIMierobiolBioteehnol,1997,48 (l):73一79 11罗如新,张素琴,李顺鹏 . 邻苯二酚1,2一双加氧酶

NCBI网上电子数据库参考文献格式怎么写?

电子文献载体类型标识:

DB/OL—联机网上数据库 DB/MT—磁带数据库 M/CD—光盘图书

CP/DK—磁盘软件 J/OL—网上期刊 EB/OL—网上电子广告

电子文献的著录格式:

[序号]主要责任者.电子文献题名[电子文献类型标识/载体类型标识].电子文献的出处或可获得的地址,发表或更新日期/引用日期(任选)。

NCBI (National Center for Biotechnology Information[1]  )是指美国国立生物技术信息中心。理解自然无声但精妙的关于生命细胞的语言是现代分子生物学的要求。通过只有四个字母来代表DNA化学亚基的字母表,出现了生命过程的语法,其最复杂形式就是人类。阐明和使用这些字母来组成新的“单词和短语”是分子生物学领域的中心焦点。数目巨大的分子数据和这些数据的隐秘而精细的模式使得计算机化的数据库和分析方法成为绝对的必须。挑战在于发现新的手段去处理这些数据的容量和复杂性,并且为研究人员提供更好的便利来获得分析和计算的工具,以便推动对我们遗传之物和其在健康和疾病中角色的理解。

后来的参议员Claude Pepper意识到信息计算机化过程方法对指导生物医学研究的重要性,发起了在1988年11月4日建立国立生物技术信息中心(NCBI)的立法。NCBI是在NIH的国立医学图书馆(NLM)的一个分支。NLM是因为它在创立和维护生物信息学数据库方面的经验被选择的,而且这可以建立一个内部的关于计算分子生物学的研究计划。NCBI的任务是发展新的信息学技术来帮助对那些控制健康和疾病的基本分子和遗传过程的理解。

NCBI有一个多学科的研究小组包括计算机科学家,分子生物学家,数学家,生物化学家,实验物理学家,和结构生物学家,集中于计算分子生物学的基本的和应用的研究。这些研究者不仅仅在基础科学上做出重要贡献,而且往往成为应用研究活动产生新方法的源泉。他们一起用数学和计算的方法研究在分子水平上的基本的生物医学问题。这些问题包括基因的组织,序列的分析,和结构的预测。目前研究计划的一些代表是:检测和分析基因组织,重复序列形式,蛋白domain和结构单元,建立人类基因组的基因图谱,HIV感染的动力学数学模型,数据库搜索中的序列错误影响的分析,开发新的数据库搜索和多重序列对齐算法,建立非冗余序列数据库,序列相似性的统计显著性评估的数学模型和文本检索的矢量模型。另外,NCBI研究者还坚持推动与NIH内部其他研究所及许多科学院和政府的研究实验室的合作。

上一篇:小学教育毕业论文如何选题

下一篇:生物信息学论文数据毕业