欢迎来到学术参考网
当前位置:发表论文>论文发表

五年级数学论文800字左右

发布时间:2023-12-06 21:30

五年级数学论文800字左右

小学数学教学论文--在小学数学教学中培养学生的思维能力 培养学生的思维能力是现代学校教学的一项基本任务。我们要培养社会主义现代化建设所需要的人才,其基本条件之一就是要具有独立思考的能力,勇于创新的精神。小学数学教学从一年级起就担负着培养学生思维能力的重要任务。下面就如何培养学生思维能力谈几点看法。 一 培养学生的逻辑思维能力是小学数学教学中一项重要任务 思维具有很广泛的内容。根据心理学的研究,有各种各样的思维。在小学数学教学中应该培养什么样的思维能力呢?《小学数学教学大纲》中明确规定,要“使学生具有初步的逻辑思维能力。”这一条规定是很正确的。下面试从两方面进行一些分析。首先从数学的特点看。数学本身是由许多判断组成的确定的体系,这些判断是用数学术语和逻辑术语以及相应的符号所表示的数学语句来表达的。并且借助逻辑推理由一些判断形成一些新的判断。而这些判断的总和就组成了数学这门科学。小学数学虽然内容简单,没有严格的推理论证,但却离不开判断推理,这就为培养学生的逻辑思维能力提供了十分有利的条件。再从小学生的思维特点来看。他们正处在从具体形象思维向抽象逻辑思维过渡的阶段。这里所说的抽象逻辑思维,主要是指形式逻辑思维。因此可以说,在小学特别是中、高年级,正是发展学生抽象逻辑思维的有利时期。由此可以看出,《小学数学教学大纲》中把培养初步的逻辑思维能力作为一项数学教学目的,既符合数学的学科特点,又符合小学生的思维特点。 值得注意的是,《大纲》中的规定还没有得到应有的和足够的重视。一个时期内,大家谈创造思维很多,而谈逻辑思维很少。殊不知在一定意义上说,逻辑思维是创造思维的基础,创造思维往往是逻辑思维的简缩。就多数学生说,如果没有良好的逻辑思维训练,很难发展创造思维。因此如何贯彻《小学数学教学大纲》的目的要求,在教学中有计划有步骤地培养学生逻辑思维能力,还是值得重视和认真研究的问题。 《大纲》中强调培养初步的逻辑思维能力,只是表明以它为主,并不意味着排斥其他思维能力的发展。例如,学生虽然在小学阶段正在向抽象逻辑思维过渡,但是形象思维并不因此而消失。在小学高年级,有些数学内容如质数、合数等概念的教学,通过实际操作或教具演示,学生更易于理解和掌握;与此同时学生的形象思维也会继续得到发展。又例如,创造思维能力的培养,虽然不能作为小学数学教学的主要任务,但是在教学与旧知识有密切联系的新知识时,在解一些富有思考性的习题时,如果采用适当的教学方法,可以对激发学生思维的创造性起到促进作用。教学时应该有意识地加以重视。至于辩证思维,从思维科学的理论上说,它属于抽象逻辑思维的高级阶段;从个体的思维发展过程来说,它迟于形式逻辑思维的发展。据初步研究,小学生在10岁左右开始萌发辨证思维。因此在小学不宜过早地把发展辩证思维作为一项教学目的,但是可以结合某些数学内容的教学渗透一些辩证观点的因素,为发展辩证思维积累一些感性材料。例如,通用教材第一册出现,可以使学生初步地直观地知道第二个加数变化了,得数也随着变化了。到中年级课本中还出现一些表格,让学生说一说被乘数(或被除数)变化,积(或商)是怎样跟着变化的。这就为以后认识事物是相互联系、变化的思想积累一些感性材料。 二 培养学生思维能力要贯穿在小学数学教学的全过程 现代教学论认为,教学过程不是单纯的传授和学习知识的过程,而是促进学生全面发展(包括思维能力的发展)的过程。从小学数学教学过程来说,数学知识和技能的掌握与思维能力的发展也是密不可分的。一方面,学生在理解和掌握数学知识的过程中,不断地运用着各种思维方法和形式,如比较、分析、综合、抽象、概括、判断、推理;另一方面,在学习数学知识时,为运用思维方法和形式提供了具体的内容和材料。这样说,绝不能认为教学数学知识、技能的同时,会自然而然地培养了学生的思维能力。数学知识和技能的教学只是为培养学生思维能力提供有利的条件,还需要在教学时有意识地充分利用这些条件,并且根据学生年龄特点有计划地加以培养,才能达到预期的目的。如果不注意这一点,教材没有有意识地加以编排,教法违背激发学生思考的原则,不仅不能促进学生思维能力的发展,相反地还有可能逐步养成学生死记硬背的不良习惯。 怎样体现培养学生思维能力贯穿在小学数学教学的全过程?是否可以从以下几方面加以考虑。 (一)培养学生思维能力要贯穿在小学阶段各个年级的数学教学中。要明确各年级都担负着培养学生思维能力的任务。从一年级一开始就要注意有意识地加以培养。例如,开始认识大小、长短、多少,就有初步培养学生比较能力的问题。开始教学10以内的数和加、减计算,就有初步培养学生抽象、概括能力的问题。开始教学数的组成就有初步培养学生分析、综合能力的问题。这就需要教师引导学生通过实际操作、观察,逐步进行比较、分析、综合、抽象、概括,形成10以内数的概念,理解加、减法的含义,学会10以内加、减法的计算方法。如果不注意引导学生去思考,从一开始就有可能不自觉地把学生引向死记数的组成,机械地背诵加、减法得数的道路上去。而在一年级养成了死记硬背的习惯,以后就很难纠正。 (二)培养学生思维能力要贯穿在每一节课的各个环节中。不论是开始的复习,教学新知识,组织学生练习,都要注意结合具体的内容有意识地进行培养。例如复习20以内的进位加法时,有经验的教师给出式题以后,不仅让学生说出得数,还要说一说是怎样想的,特别是当学生出现计算错误时,说一说计算过程有助于加深理解“凑十”的计算方法,学会类推,而且有效地消灭错误。经过一段训练后,引导学生简缩思维过程,想一想怎样能很快地算出得数,培养学生思维的敏捷性和灵活性。在教学新知识时,不是简单地告知结论或计算法则,而是引导学生去分析、推理,最后归纳出正确的结论或计算法则。例如,教学两位数乘法,关键是通过直观引导学生把它分解为用一位数乘和用整十数乘,重点要引导学生弄清整十数乘所得的部分积写在什么位置,最后概括出用两位数乘的步骤。学生懂得算理,自己从直观的例子中抽象、概括出计算方法,不仅印象深刻,同时发展了思维能力。在教学中看到,有的老师也注意发展学生思维能力,但不是贯穿在一节课的始终,而是在一节课最后出一两道稍难的题目来作为训练思维的活动,或者专上一节思维训练课。这种把培养思维能力只局限在某一节课内或者一节课的某个环节内,是值得研究的。当然,在教学全过程始终注意培养思维能力的前提下,为了掌握某一特殊内容或特殊方法进行这种特殊的思维训练是可以的,但是不能以此来代替教学全过程发展思维的任务。 (三)培养思维能力要贯穿在各部分内容的教学中。这就是说,在教学数学概念、计算法则、解答应用题或操作技能(如测量、画图等)时,都要注意培养思维能力。任何一个数学概念,都是对客观事物的数量关系或空间形式进行抽象、概括的结果。因此教学每一个概念时,要注意通过多种实物或事例引导学生分析、比较、找出它们的共同点,揭示其本质特征,做出正确的判断,从而形成正确的概念。例如,教学长方形概念时,不宜直接画一个长方形,告诉学生这就叫做长方形。而应先让学生观察具有长方形的各种实物,引导学生找出它们的边和角各有什么共同特点,然后抽象出图形,并对长方形的特征作出概括。教学计算法则和规律性知识更要注意培养学生判断、推理能力。例如,教学加法结合律,不宜简单地举一个例子,就作出结论。最好举两三个例子,每举一个例子,引导学生作出个别判断〔如(2+3)+5=2+(3+5),先把2和3加在一起再同5相加,与先把3和5加在一起再同2相加,结果相同〕。然后引导学生对几个例子进行分析、比较,找出它们的共同点,即等号左端都是先把前两个数相加,再同第三个数相加,而等号右端都是先把后两个数相加,再同第一个数相加,结果不变。最后作出一般的结论。这样不仅使学生对加法结合律理解得更清楚,而且学到不完全归纳推理的方法。然后再把得到的一般结论应用到具体的计算(如57+28+12)中去并能说出根据什么可以使计算简便。这样又学到演绎的推理方法至于解应用题引导学生分析数量关系,这里不再赘述。 三 设计好练习题对于培养学生思维能力起着重要的促进作用 培养学生的思维能力同学习计算方法、掌握解题方法一样,也必须通过练习。而且思维与解题过程是密切联系着的。培养思维能力的最有效办法是通过解题的练习来实现。因此设计好练习题就成为能否促进学生思维能力发展的重要一环。一般地说,课本中都安排了一定数量的有助于发展学生思维能力的练习题。但是不一定都能满足教学的需要,而且由于班级的情况不同,课本中的练习题也很难做到完全适应各种情况的需要。因此教学时往往要根据具体情况做一些调整或补充。为此提出以下几点建议供参考。 (一)设计练习题要有针对性,要根据培养目标来进行设计。例如,为了了解学生对数学概念是否清楚,同时也为了培养学生运用概念进行判断的能力,可以出一些判断对错或选择正确答案的练习题。举个具体例子:“所有的质数都是奇数。( )”如要作出正确判断,学生就要分析偶数里面有没有质数。而要弄清这一点,要明确什么叫做偶数,什么叫做质数,然后应用这两个概念的定义去分析能被2整除的数里面有没有一个数,它的约数只1和它自身。想到了2是偶数又是质数,这样就可以断定上面的判断是错误的。

数学论文作文

在学习、工作中,大家肯定对论文都不陌生吧,论文写作的过程是人们获得直接经验的过程。那么,怎么去写论文呢?下面是我精心整理的数学论文作文5篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

我家到观前街大约3500米。周末我们开车出行大约需要30分钟左右,也就是说,平均每分钟大约开120米左右。另外,还要再加上找停车埸的时间,而且还需要付停车费。但有一次奶奶带我骑电瓶车去,只用了20分钟。也就是说,平均每分钟大约骑了175米。这么一比较,骑车的速度是开车速度的1。5倍左右。于是,我跟妈妈说:“如果我们骑车出行,不但能节省时间还可以别让马路上太挤,更可以省了停车费和油费。”妈妈笑着夸我会动脑筋。

这次无意间的计算让我明白了,为什么要提倡绿色出行了!真的省时又省钱。

生活中的数学无处不在。只要肯动脑筋,就会发现很多省时又节约的方法。我喜欢数学,一定要认真学,要把学到的知识用到实际生活中去。

今天,姑妈给我出了一道数学题目,是关于年龄问题的,别看就一道题,它可是奥数题,我可要好好的动一下脑子。题目是;女儿今年3岁,妈妈今年33岁,几年后,妈妈的年龄是女儿的7倍?

我想了想便说;他们的年龄的差要先算出来;33—3=30(岁)她们的年龄差永远都不会变。几年后妈妈的年龄是女儿的3倍?要把女儿的年龄看作是一份,妈妈的年龄看做7份,可以画线段图来做做。就是相差6份,就是‘7—1=6(份)6份就是30岁,所以几年后女儿的年龄是30除以6=5(岁)也就是说;5—3=2(年)后妈妈的年龄是女儿的7倍。

姑妈听了,不时在向我投来赞赏的目光!

星期天,我到隔壁邻居家串门,正巧,他正为一道奥数题目发愁呢,我向他手中的纸一看:小明有1元,2元和5元的.人民币共60张,总面值为200元,已知1元比2元的人民币多4张,问这三种面值的人民币各有多少张?

他说,只要我能把这道题做出来,就和我一起出去玩,我一看这题目,就想到了我这学期新学的知识:替换,我便爽快的答应了。

先假设1元人民币减少4张,那么这三种人民币总共就是60-4=56张,总面值就是200-4=196元,这样1元和2元人民币的张数就变得同样多。再假设这56张人民币全是5元的,那么这些人民币的总面值就是5x56=280元,比前面假设的情形多了280-196=84元

这是由于把1元和2元的都假设成了5元的,这样的话就多算了5x2-1-2=7元,84÷7=12,由此可知有12张1元和12张2元的被假设成5元的了,因此,原来2元面值的人民币有12张,1元的有12+4=16张,5元面值的人民币有60-12-16=32张。

做完后,我在仔仔细细地检查了一遍,答案是正确的,我立刻把我的计算过程讲给了他听,他直夸我解题能力强,我心里比吃了蜜还甜,我们便一起高高兴兴地出去了。

我认为在生活中发现数学,理解运用它并且与朋友分享,这才是最大的快乐!

同学们,我这里有一道题目,你们也haveatry吧!

一辆汽车上午行了3小时,下午行了2小时,上午和下午一共行了340千米。如果上午每小时比下午每小时多行5千米,上午每小时行多少千米?下午呢?

有一天,我在玩一个游戏,碰上一道挑战题,只要题目做对了就能得到相应的奖励,题目是这样的:从1+2+3+……100=?我心想这样要加到什么时候啊。我赶紧请教爸爸,爸爸教了我一个好办法:例如从1加到6,可以组成1+6=7、2+5=7、3+4=7,再将三个7相加或者是3×7,得数就是21。计算方法是将第一个数1和最后一个数6相加得7,再和最后一个数的一半相乘,即和6÷2= 3相乘,3×7 = 21,这样就方便多了。我试着算了一下,从1加到10就是1+10 = 11,10÷2 = 5,11×5= 55;那么从1加到100就是1+100= 101,100÷2= 50,101×50= 5050。

哈哈,加法变乘法,算起来又快又准,数学真奇妙,数学无止境,数学真是快乐的天堂!

生活中,处处有数学,只要你善于观察,就一定能发现它蕴含的无穷奥秘。

我很喜欢数学,平常很爱探究,数学是我生活中的一部分,也是我唯一的爱好。我梦想就是成为一名数学家,成为一名伟大的数学家。

在四年级时,数学老师周老师教了我们商不变的规律,刚学习这个规律的我感到很好奇,有一些不相信。

商不变的规律就是:在除法中,被除数和除数同时扩大若干倍或缩小若干倍,商不会变,但余数会变。

我围绕着这个规律展开了实验。我用40和6两个数进行了实验。40除以6等于6,余数是4,。我将40和6同时扩大相同的倍数100,变成4000除以600,我计算了一下,商是6,余数是400,它的商没有变,余数扩大了相同的倍数100,变成了400。我吃了一惊,商居然真的没有变,还是6,而余数却变了。

我还是有一些不相信,又用50和4试验了一下。50除以4等于12,商是2。这次我将50和4同时扩大到原来的2倍,变成100和8,100除以8,商是12,余数是4。商还是没有变,但余数扩大了相同的倍数2倍,变成了4。我彻彻底底的震惊了,再一次体会到了数学的神奇。

五年级时,我又接触到了方程,方程其实就是含有未知数的等式。在学习商不变的规律后,我再次对方程产生了浓厚的兴趣。我找了许多方程来做,并学会从中发现规律。

3x?2=302计算方法是:先将302减去2,变成3x=302-2,那么3x=300,再将300除以3,变成x=300÷3,结果变成x=100。没想到只需几步就可以将这个方程解开,得到答案。

我又找了一个方程来计算。5x-6÷3=38,先将6÷3算出变成5x-2=38,再将38?2等于40,式子就变成了5x=40,最后将40除以5等于8,结果就是x=8。

数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧。这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的,站在峰脚的人是望不到峰顶的。只有在生活中发现数学,感受数学,才能让自己的视野更加开阔!

让我们一起来探索数学的奥秘吧!

数学论文作文

在日常学习、工作生活中,大家都接触过论文吧,通过论文写作可以培养我们的科学研究能力。还是对论文一筹莫展吗?以下是我为大家整理的数学论文作文4篇,希望对大家有所帮助。

一天,数学老师提出了一个问题:1+2+3+4+5+6……一直加到100的得数是多少?那么,一直加到1000和10000呢?用简便方法计算。

算式:1+2+3+4+5+6+7……+100=5050 5050×10=50500 50500×10=505000

答:1一直加到100的得数是5050,一直加到1000和10000各是50500和505000.

简便算法:或许有些同学会觉得这个算是太长,需要计算器!no,那就错了。只要仔细看看就可以发现1和99可以凑成100,2和98可以凑成100,3和97也可以凑成100,4和96,5和95,6和94 ,7和93,8和92,9和91,10和90,11和89……一直这样凑成100,结果可以得到能凑成50个100,就是5000,但是还剩下一个50单独一个数字,就可以拿5000 + 50 =5050,得出1一直加到100的得数。但有人会问了,1一直加到1000和10000为什么不着要算呢?因为100和1000的进率是10倍,1000和10000的进率也是10倍,所以可以拿1一直加到100的得数5050乘10倍等于50500,再拿50500乘10倍等于5050000。行对应的,1一直加到100000、1000000、10000000......以此类推,都可以这样算,当然,你也可以更深的理解这道题的规律哦!

今天是中秋节,我们一家人可高兴了。爸爸妈妈说:“今天是个好日子,我们来玩一个抓纸的游戏怎么样?”我点了点头,爸爸拿了4个形状相等,大小相同的纸,分别把2张红纸和2张蓝纸放进这个袋子里说:“这个不是透明袋子,里有2张红和2张蓝纸,如果你摸到2张都是红纸或2张都是蓝纸的话,我就给你5块钱,否则你给我5块钱,好不好?”我说:“那我可不干。

”爸爸问:“这是为什么呀?你不是也有机会挣钱吗?”我有说:“虽然我也能挣钱,可是机会并没有你多呀!你想,一共有4张纸,如果我第一张摸到的是红色,袋子里还剩下2张蓝色纸和一张红色纸,那么再摸到红色的机会只有1/3,而摸到蓝色的机会却是2/3;如果我第一张摸到的是蓝色,那么再摸到蓝色的机会只有1/3,而摸到过红色的机会却是2/3,所以你当然比我更容易挣钱喽。”爸爸说:“不错吗,小子,看你也挺聪明的嘛,这样也迷不到你,好吧,看你今天表现得还不错,奖励你五块钱吧!”我高兴极了,今天真是个好日子。

今天,妈妈要去买灯泡。到了超市,发现超市里有两种灯泡:一种是节能灯泡,一种是普通灯泡。节能灯泡虽然开200小时只需要用一度电,比普通灯泡一度电多用170个小时,但是它一个要5元,;普通灯泡一个只要1元,比节能灯泡便宜4元,但是它30个小时就要用一度电。

妈妈问我:“考考你,如果我要买一个灯泡回家,买哪种的灯泡最划算?”

我思索了一会儿,不慌不忙地说:“可以这样算:

5/1=5

30*5=150(小时)200小时>150小时

还可以这样算:

5/1=5

200/5=40(小时)30小时<40小时

由这几步可得出结论,节能灯泡省钱。”

妈妈又问我:“很好。再想想看,还有没有别的办法来算?”

我又想了一会儿,一个字一个字地说:“可以用我这学期才学的?百分数?来算。也可以这样算:

5/200*100=0.025*100=2.5

1/30*100≈0.033*100=3.3

3.3>2.5

或者这样算:

200/5*100=40*100=4000

30/1*100=30*100=3000

4000>3000

因此,也是节能灯泡便宜。。”

我和妈妈买了比较划算的节能灯泡回去了。

经过这件事,我明白了:“生活处处有数学”这个道理。

生活中,处处有数学,只要你善于观察,就一定能发现它蕴含的无穷奥秘。

我很喜欢数学,平常很爱探究,数学是我生活中的'一部分,也是我唯一的爱好。我梦想就是成为一名数学家,成为一名伟大的数学家。

在四年级时,数学老师周老师教了我们商不变的规律,刚学习这个规律的我感到很好奇,有一些不相信。

商不变的规律就是:在除法中,被除数和除数同时扩大若干倍或缩小若干倍,商不会变,但余数会变。

我围绕着这个规律展开了实验。我用40和6两个数进行了实验。40除以6等于6,余数是4,。我将40和6同时扩大相同的倍数100,变成4000除以600,我计算了一下,商是6,余数是400,它的商没有变,余数扩大了相同的倍数100,变成了400。我吃了一惊,商居然真的没有变,还是6,而余数却变了。

我还是有一些不相信,又用50和4试验了一下。50除以4等于12,商是2。这次我将50和4同时扩大到原来的2倍,变成100和8,100除以8,商是12,余数是4。商还是没有变,但余数扩大了相同的倍数2倍,变成了4。我彻彻底底的震惊了,再一次体会到了数学的神奇。

五年级时,我又接触到了方程,方程其实就是含有未知数的等式。在学习商不变的规律后,我再次对方程产生了浓厚的兴趣。我找了许多方程来做,并学会从中发现规律。

3x?2=302计算方法是:先将302减去2,变成3x=302-2,那么3x=300,再将300除以3,变成x=300÷3,结果变成x=100。没想到只需几步就可以将这个方程解开,得到答案。

我又找了一个方程来计算。5x-6÷3=38,先将6÷3算出变成5x-2=38,再将38?2等于40,式子就变成了5x=40,最后将40除以5等于8,结果就是x=8。

数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧。这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的,站在峰脚的人是望不到峰顶的。只有在生活中发现数学,感受数学,才能让自己的视野更加开阔!

让我们一起来探索数学的奥秘吧!

五年级上学期第五单元数学小论文800字

五年级数学小论文玩24点 国庆节中的一天我和爸爸吃完午饭玩24。从开始到结束一直是我赢爸爸说“你有什么技巧”我说 “巧算24点”是一种数学游戏游戏方式简单易学能健脑益智是一项极为有益的活动巧算24点的游戏内容如下一副牌中抽去大小王剩下52张如果初练也可只用110这40张牌任意抽取4张牌称牌组用加、减、乘、除可加括号把牌面上的数算成24每张牌必须用一次且只能用一次如抽出的牌是3、8、8、9那么算式为9—8×8×3或3×89—8或9—8÷8×3等 “算24点”作为一种扑克牌智力游戏还应注意计算中的技巧问题计算时我们不可能把牌面上的4个数的不同组合形式——去试更不能瞎碰乱凑给你介绍几种常用的、便于学习掌握的方法 1利用3×824、4×624求解 把牌面上的四个数想办法凑成3和8、4和6再相乘求解如3、3、6、10可组成10—6÷3×324等又如2、3、3、7可组成73—2×324等实践证明这种方法是利用率最大、命中率最高的一种方法 2利用0、11的运算特性求解 如3、4、4、8可组成3×84—424等又如4、5、J、K可组成11×5—41324等 3在有解的牌组中用得最为广泛的是以下六种解法我们用a、b、c、d表示牌面上的四个数 ①(a—b×cd 如10—4×2224等 ②ab÷c×d 如102÷2×424等 ③ab÷c×d 如3—2÷2×1224等 ④abc×d 如95—2×224等 ⑤a×bc—d 如11×3l—1024等 ⑥ab×cd 如4—l×6624等 游戏时同学们不妨按照上述方法试一试需要说明的是经计算机准确计算一副牌52张中任意抽取4张可有1820种不同组合其中有458个牌组算不出24点如A、A、A、5 不难看出“巧算24点”能极大限度地调动眼、脑、手、口、耳多种感官的协调活动对于培养我们快捷的心算能力和反应能力很有帮助” 爸爸说“真棒我送你一个航模。” 看来生活真离不开数学!
望采纳~

上一篇:建筑给排水论文3000字

下一篇:建筑排水系统论文6000