欢迎来到学术参考网
当前位置:发表论文>论文发表

牛顿莱布尼茨创立微积分论文

发布时间:2023-12-09 13:44

牛顿莱布尼茨创立微积分论文

莱布尼茨(1646-1716)20岁时写了一本关于推理方法的著作《论组合的艺术》作为他的哲学博士论文并凭此获得教授席位。1670-1671年他写了第一篇力学论文,随后他到巴黎当大使,认识了一些数学家、科学家,其中惠更斯激发了他对数学的兴趣。莱布尼茨自称,他在1672年之前基本不懂数学。1673年他到英国又认识了一些数学家、科学家,一边当外交官一边搞科研。(想起胡适拿了经费去太平洋对面撸了三十几个学位)1716年他悄无声息地去世。

虽然他是法学教授,但是他在逻辑学、力学、光学、数学、流体静学力、气体学、航海学和计算机方面做了重要贡献。他的社交远至锡兰和中国,力图调和旧教与新教的争论,呼吁建立德国科学院。他重视知识应用,批评大学只注意细枝末节的知识而不培养判断。在他看来,手艺人的技术比学者的深奥知识有用,德文比拉丁文易于理解便于思维。

莱布尼茨从1684年起发表微积分论文,不过他的许多智慧结晶在一本从未发表的笔记本里。1714年他写了《微分学的历史和起源》,不过因为隔了太久,且处于洗脱剽窃罪名的目的,文本不够可靠。莱布尼茨的笔记本记录,1673年他看到求曲线切线正问题和反问题的重要性,反方法等价于用求和求面积体积;1675他有了系统性的发展,这与他的博士论文也有一定联系,对于平方的序列0,1,4,9……,他观察到第一阶差1,3,5,……的和是序列最后一项。第二阶差2,2,2,……之后的第三阶差消失。他把次序看成x,序列看成y,前后两项序列差为dy,dy的积分=y,ydy的积分=y^2/2。他又通过几何得到了另一个定理:xdy的积分=xy-ydx的积分。他的困难是要把这个概念从离散的数列扩展到任意函数上。

在1675年的手稿中,他创造了积分符号,来自于sum首字母拉长、可能因为他研究巴罗的著作,所以很早意识到微分和积分是逆运算。在手稿中他认为积分是和,微分是差,尽管巴罗和牛顿也利用反微分求面积,但莱布尼茨第一个断言了这一关系,但他不清楚怎样利用一组矩形得到曲面下面积(因为当时缺少清楚的极限概念)。

1676年的手稿中,他意识到求切线的最好办法是求dy/dx,半年后给出了dx^n=nx^(n-1)dx和对应积分函数。他说这个序列是普遍的,不管x的序列是怎样的。

1677年,莱布尼茨又给出了微分两个函数的和、差、积、商以及幂和方根的法则,但没有证明。他在1684年发表的文章里公开了微分两个函数的和、积、商法则和dx^n=nx^(n-1)dx,并给出求切线、极值、拐点的应用,但因为写得不清晰,伯努利兄弟称“与其说是解释,不如说是迷”。(詹姆斯伯努利和约翰伯努利两兄弟把莱布尼茨未成体系的工作做了许多加工,带来了许多新发展)

1680年,dx成为横坐标的差,dy成为纵坐标的差,并被取为无穷小,把dy称为纵坐标沿x轴移动时y的瞬间的增长。对于弧,他给出dz=dx方和dy方的和开根号(可以认为z是以x、y为直角边的三角形的斜边),对于绕x轴的旋转体体积,V=π(y^2)dx的积分。

1686年,他给出了带积分形式的摆线方程,意图说明他的方法和符号可以把一些曲线表示为方程,包括韦达和笛卡尔认为没有方程的曲线。他给出了对数函数和指数函数的微分,并承认指数函数是一类函数。

莱布尼茨精挑细选了一些符号,如dx,dy,logx,d^n。

走近百科全书式天才科学家:牛顿和他的微积分研究

艾萨克·牛顿,英国皇家学会会长,英国著名的物理学家、数学家、天文学家和自然哲学家!高等数学的奠基人,万有引力的发现者,经典力学的开创者。

他的研究涉及物理、化学、天文、地理、哲学、经济和艺术,所学包括飞机制造、船舶设计、火箭导弹、现代建筑等众多领域,是迄今为止人类 历史 上绝无仅有的“百科全书”式天才。著有《自然哲学的数学原理》(现常简称作《原理》)、《光学》。伟大的法国科学家拉普拉斯写到:“《原理》是人类智慧的产物中最卓越的杰作。”

牛顿被誉为人类 历史 上最伟大的科学家之一。他的万有引力定律在人类 历史 上第一次把天上的运动和地上的运动统一起来,为日心说提供了有力的理论支持,使得自然科学的研究最终挣脱了宗教的枷锁。牛顿还发现了太阳光的颜色构成,制作了世界上第一架反射望远镜。拉格朗日经常说:牛顿是有史以来最伟大的天才。

据说小牛顿把风车的机械原理摸透后,自己制造了一架磨坊的模型,他将老鼠绑在一架有轮子的踏车上,然后在轮子的前面放上一粒玉米,刚好那地方是老鼠可望不可及的位置。老鼠想吃玉米,就不断地跑动,于是轮子不停地转动;又一次他放风筝时,在绳子上悬挂着小灯,夜间村人看去惊疑是彗星出现;他还制造了一个小水钟。每天早晨,小水钟会自动滴水到他的脸上,催他起床。他还喜欢绘画、雕刻,尤其喜欢刻日晷,家里墙角、窗台上到处安放着他刻画的日晷,用以验看日影的移动。

12岁左右牛顿被送进离家不远的格兰瑟姆镇的金格斯皇家中学读书。并成为了该校最出色的学生。在国王中学时,他寄宿在当地的药剂师威廉·克拉克家中,在这里,牛顿跟随克拉克接受了化学试验的熏陶。并在19岁前往剑桥大学求学前,与药剂师的继女安妮·斯托勒订婚。之后因为牛顿专注于他的研究而使得爱情冷却,斯托勒小姐嫁给了别人。据说牛顿对这次的恋情保有一段美好的回忆,但此后便再也没有其他的罗曼史,牛顿也终生未娶。

1665年,他发现了广义二项式定理,并开始发展一套新的数学理论,也就是后来为世人所熟知的微积分学。同年,剑桥大学评议会通过了授予牛顿大学学士学位的决定。

牛顿的广义二项式定理适用于任何幂。他发现了牛顿恒等式、牛顿法,分类了立方面曲线(两变量的三次多项式),为有限差理论作出了重大贡献,并首次使用了分式指数和坐标几何学得到丢番图方程的解。他用对数趋近了调和级数的部分和(这是欧拉求和公式的一个先驱),并首次有把握地使用幂级数和反转(revert)幂级数。他还发现了π的一个新公式。

1676年,牛顿首次公布了他发明的二项式展开定理。牛顿还利用它发现了其他无穷级数,并用来计算面积、积分、解方程等等。

在1699年初,皇家学会的其他成员们指控莱布尼茨剽窃了牛顿的成果,争论在1711年全面爆发了。牛顿所在的英国皇家学会宣布,一项调查表明了牛顿才是真正的发现者,而莱布尼茨被斥为骗子。但在后来,发现该调查评论莱布尼茨的结语是由牛顿本人书写,因此该调查遭到了质疑。这导致了激烈的牛顿与莱布尼茨的微积分学论战,并破坏了牛顿与莱布尼茨的生活,直到后者在1716年逝世。这场争论在英国和欧洲大陆的数学家间划出了一道鸿沟,并可能阻碍了英国数学至少一个世纪的发展。

牛顿与莱布尼茨独立发展出了微积分学,并为之创造了各自独特的符号。根据牛顿周围的人所述,牛顿要比莱布尼茨早几年得出他的方法,但在1693年以前他几乎没有发表任何内容,并直至1704年他才给出了其完整的叙述。其间,莱布尼茨已在1684年发表了他的方法的完整叙述。此外,莱布尼茨的符号和“微分法”被欧洲大陆全面地采用,大约在1820年后,英国也采用了该方法。莱布尼茨的笔记本记录了他的思想从初期到成熟的发展过程,而在牛顿已知的记录中只发现了他最终的结果。牛顿声称他一直不愿公布他的微积分学,是因为他怕被人们嘲笑。

牛顿的微积分

1665年,牛顿开始考虑无穷小。他提出的问题是:假定我们知道物体在任意时间t内经过的距离是D(t),如何得到任意时刻的速度?他提出对变速运动而言,任意时刻的瞬时速度是在该时刻的无穷小时间区间内经过的距离与时间区间的比值。引入符号o作为无穷小时间区间,牛顿定义时间t的速度为在时刻t和时刻t+o之间经过的距离与o的比值,即速度[d(t+o)-D(t)]/o。例如,如果D(t)=t

,那么D(t+o)=t+3ro+3to+o。由于o是无穷小,我们可能忽略正比于o和o的项,取D(t+0)=t+3to,于是D(t+0)-D(t)=3ro,由此得出速度是3r。牛顿称之为D(t)的“流数”,但后人称之“导数”,它是现代微积分的基本工具。

然后牛顿研究了曲线所围成图形面积的问题。他的回答是微积分的基本定理:必须找到一个量,其流数是描述曲线的函数。例如,我们已经看到,3x是x的流数,因此抛物线y=3x与x=0之间的面积就是x.牛顿称之为“反流数术”,如今被称为“积分”。

1666年,在担任数学教授之前,牛顿已经开始关于微积分的研究,他受到了沃利斯的《无穷算术》的启发,第一次把代数学扩展到分析学。牛顿真实的研究使用的是静态的无穷小量分析,像费尔马那样把变量看成是无穷小元素的集合。1669年,牛顿完成了第一篇有关微积分的论文《无穷多项方程的分析》。这篇论文当时在他的朋友中间散发、传阅,直到1711年才正式出版。牛顿在论文中不仅给出了求瞬时变化率的一般方法,而且证明了面积可由求变化率的逆过程得到。

接着,牛顿进行微积分研究第二阶段的工作,研究变量流动生成法,认为变量是由点、线或面的连续运动产生的,因此他把变量叫做流量,把变量的变化率叫做流数。牛顿这阶段的工作成果,主要体现在成书于1671年的一本论著《流数法和无穷级数》。书中叙述了微积分的基本定理,并对微积分思想做了广泛而更明确的说明,但这本书直到1736年才出版。在书中,牛顿还明确表述了他的流数法的理论依据:“流数法赖以建立的主要原理乃是取自理论力学中的一个非常简单的原理,即数学量,特别是外延量都可以看成是连续轨迹运动产生的,而且所有不管什么量,都可以认为是在同样方式下产生的。”

他又说:“本人是靠另一个同样清楚的原理来解决这个问题的,这就是假定一个量可以无限分割,或者可以(至少在理论上说)使之连续变小,直到比任何一个指定的量都小。”牛顿这里提出的“连续”思想以及使一个量小到“比任何一个指定的量都小”的思想是极其深刻的。

牛顿进行微积分研究的第三阶段用的是最初比和最后比的方法,否定了之前自己认为的变量是无穷小元素的静止集合,不再强调数学量是由不可分割的最小单元构成,而认为它是由几何元素经过连续运动生成的。他也不再认为流数是两个实无限小量的比,而是初生量的最初比或消失量的最后比,这就从原先的实无限小量观点进入了量的无限分割过程,即潜无限观点上去。这是他对初期微积分研究的修正和完善。

牛顿在流数术中提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法),已知运动的速度求给定时间内经过的路径(积分法)。牛顿认为任何运动存在于空间,依赖于时间,因而他把时间作为自变量,把和时间有关的固定量作为流量。不仅如此,他还把几何图形-线、角、体,都看作力学位移的结果,因而一切变量都是流量。

所谓“流量”就是随时间而变化的自变量,如x、y、s、u等,“流数”就是流量的改变速度,即变化率。牛顿所说的“差率”、“变率”就是微分。与此同时,他还在1767年首次公布了自己发明的二项式展开定理。牛顿利用它还发现了其他无穷级数,并用来计算面积、积分、解方程等。

牛顿指出,“流数术”基本包括三类问题:

第一类问题:已知流量之间的关系,求它们的流数的关系,这相当于微分学;

第二类问题:已知表示流数之间关系的方程,求相应的流量间的关系,这相当于积分学。牛顿意义下的积分学不仅包括求原函数,还包括解微分方程;

第三类问题:“流数术”的应用范围包括计算曲线的极大值、极小值,求曲线的切线和曲率,求曲线长度及计算曲边形面积等。

牛顿已完全清楚上述第一与第二两类问题中的运算是互逆的运算,于是建立起微分学和积分学之间的联系。牛顿在1665年5月20日的一份手稿中提到了“流数术”,因而有人把这一天作为微积分诞生的标志。

关于莱布尼茨的微积分,在另一边文章中将作介绍~

牛顿莱布尼兹公式

牛顿-莱布尼茨公式(Newton-Leibniz formula),通常也被称为微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分之间的联系。

牛顿-莱布尼茨公式的内容是一个连续函数在区间 [ a,b ] 上的定积分等于它的任意一个原函数在区间[ a,b ]上的增量。牛顿在1666年写的《流数简论》中利用运动学描述了这一公式, 1677年,莱布尼茨在一篇手稿中正式提出了这一公式。   因为二者最早发现了这一公式,于是命名为牛顿-莱布尼茨公式。

牛顿-莱布尼茨公式给定积分提供了一个有效而简便的计算方法,大大简化了定积分的计算过程。

发展简史

1670年,英国数学家伊萨克·巴罗在他的著作《几何学讲义》中以几何形式表达了切线问题是面积问题的逆命题,这实际是牛顿-莱布尼茨公式的几何表述。

1666年10月,牛顿在它的第一篇微积分论文《流数简论》中解决了如何根据物体的速度求解物体的位移这一问题,并讨论了如何根据这种运算求解曲线围成的面积,首次提出了微积分基本定理。 [2]

德国数学家莱布尼茨在研究微分三角形时发现曲线的面积依赖于无限小区间上的纵坐标值和,1677年,莱布尼茨在一篇手稿中明确陈述了微积分基本定理:给定一个曲线,其纵坐标为y,如果存在一条曲线z,使得dz/dx=y,则曲线y下的面积∫ydx=∫dz=z。

微积分是莱布尼茨发明的还是牛顿发明的

在创立微积分方面,莱布尼茨与牛顿功绩相当。就发明时间而言,牛顿早于莱布尼茨;就发表时间而言,莱布尼茨则先于牛顿。公认:牛顿和莱布尼茨都是微积分的发明人,他们的微积分各有特色。牛顿和莱布尼茨从不同的角度工作,各自独立地发现微积分基本定理,并建立了一套有效的微分和积分算法,他们都把微积分从几何形式中解脱出来,采用了代数方法和记号,从面扩展了它的应用范围,都把面积、体积及以前作为和来处理的问题归结到积分(反微分)。这样,速度、切线、极值、求和的问题全都归结为微分和积分。
牛顿对微积分的研究是从力学或运动学的角度,从速度概念开始,考虑了速度的问题。牛顿把自己的发现称为“流数术”,他把连续变化的量称为流动量或流量;把无限小的时间间隔叫做瞬;而流量的速度,也就是流量在无限小时间内的变化率,则称为流动率或流数。因此牛顿的“流数法”就是以流量、流数和瞬为基本概念的微积分学。莱布尼茨则更多地从几何学的角度,从求切线问题开始,突出了切线的概念。他研究了求曲线的切线问题和求曲线下的面积问题的相互联系,明确指出了微分和积分是互逆的两个运算过程。
由于莱布尼茨的微分符号和积分符号都简明易懂、方便好用,一直被人们沿用至今。

上一篇:旅游专业毕业论文开题报告模板

下一篇:写论文的文献综述是什么意思