欢迎来到学术参考网
当前位置:发表论文>论文发表

葡萄酒的评价模型数学建模论文

发布时间:2023-12-08 00:33

葡萄酒的评价模型数学建模论文

数学应用是数学 教育 的重要内容,呼唤数学应用意识,提高数学应用教学质量,已成为广大数学教育工作者的共识。下面是我为大家推荐的数学建模论文,供大家参考。

数学建模论文 范文 一:建模在高等数学教学中的作用及其具体运用

一、高等数学教学的现状

(一) 教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及 逻辑思维 能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

(二) 教学 方法 传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的 想象力 、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体 措施

(一) 在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二) 讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三) 组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

参考文献

[1] 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想[J]. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.

[2] 李薇. 在高等数学教学中融入数学建模思想的探索与实践[J]. 教育实践与改革,2012 ( 04) : 177 -178,189.

[3] 杨四香. 浅析高等数学教学中数学建模思想的渗透 [J].长春教育学院学报,2014 ( 30) : 89,95.

[4] 刘合财. 在高等数学教学中融入数学建模思想 [J]. 贵阳学院学报,2013 ( 03) : 63 -65.

数学建模论文范文二:数学建模教学中数学素养和创新意识的培养

前言

创新人才的培养是新的时代对高等教育提出的新要求.培养高质量、高层次人才不仅需要传统意义上的逻辑思维能力、推理演算能力,更需要具备对所涉及的专业问题建立数学模型,进行数学实验,利用先进的计算工具、数学软件进行数值求解和做出定量分析的能力.

因此,如何培养学生的求知欲,如何培养学生的学习积极性,如何培养学生的创新意识和创新能力已成为高等教育迫切需要解决的问题[1].

在数学教学中,传统的数学教学往往注重知识的传授、公式的推导、定理的证明以及应用能力的培养.尽管这种模式并非一无是处,甚至有时还相当成功,但它不能有效地激发广大学生的求知欲,不能有效地培养学生的学习积极性,不能有效地培养学生的创新意识和创新能力.

而如何培养学生的创新意识和创新能力,既没有现成的模式可循,也没有既定的方法可套用,只能靠广大教师不断探索和实践.

近年来,国内几乎所有大学都相继开设了数学建模和数学实验课,在人才培养和学科竞赛上都取得了显着的成效.数学建模是指对特定的现象,为了某一目的作一些必要的简化和假设,运用适当的数学理论得到的一个数学结构,这个数学结构即为数学模型,建立这个数学模型的过程即为数学建模[2].

所谓数学教学中的数学实验,就是从给定的实际问题出发,借助计算机和数学软件,让学生在数字化的实验中去学习和探索,并通过自己设计和动手,去体验问题解决的教学活动过程.数学实验是数学建模的延伸,是数学学科知识在计算机上的实现,从而使高度抽象的数学理论成为生动具体的可视性过程.

因此,数学实验就是一个以学生为主体,以实际问题为载体,以计算机为媒体,以数学软件为工具,以数学建模为过程,以优化数学模型为目标的数学教学活动过程[3-7].

因此,如何把实际问题与所学的数学知识联系起来;如何根据实际问题提炼数学模型;建模的方法和技巧;数学模型所涉及到的各类算法以及这些算法在相应数学软件平台上的实现等问题就成了我们研究的重点.现结合教学实践,谈谈笔者在数学建模和数学实验课的教学中 总结 的几点看法.

1掌握数学语言独有的特点和表达形式

准确使用数学语言模拟现实模型数学语言是表达数学思想的专门语言,它是自然语言发展到高级状态时的特殊形式,是人类基于思维、认知的特殊需要,按照公有思维、认知法则而制造出来的语言及其体系,给人们提供一套完整的并不断精细、完善、完美的思维和认知程序、规则、方法.

用数学语言进行交流和良好的符号意识是重要的数学素质.数学建模教学是以训练学生的思维为核心,而语言和思维又是密不可分的.能否成功地进行数学交流,不仅涉及一个人的数学能力,而且也涉及到一个人的思路是否开阔,头脑是否开放,是否尊重并且愿意考虑各方面的不同意见,是否乐于接受新的思想感情观念和新的行为方式.数学建模是利用数学语言模拟现实的模型,把现实模型抽象、简化为某种数学结构是数学模型的基本特征.

现实问题要通过数学方法获得解决,首先必须将其中的非数学语言数学化,摒弃其中表面的具体叙述,抽象出其中的数学本质,形成数学模型.通过分析现实中的数学现象,对常见的数学现象进行数学语言描述,从而将现实问题转化为数学问题来解决.

2借助数学建模教学使学生学会使用数学语言构建数学模型

根据现阶段普通高校学生年龄特点和知识结构,我们可以通过数学建模对学生加强数学语言能力的培养,让他们熟练掌握数学语言,以期提升学生的形象思维、 抽象思维 、逻辑推理和表达能力,提高学生的数学素质和数学能力.在数学建模教学过程中,教师要力求做到用词准确,叙述精炼,前后连贯,逻辑性强.在问题的重述和分析中揭示数学语言的严谨性;在数学符号说明和模型的建立求解中揭示数学语言的简约性,彰显数学语言的逻辑性、精确性和情境性,突出数学符号语言含义的深刻性;在模型的分析和结果的罗列中,显示图表语言的直观性,展示数学语言的确定意义、语义和语法;在模型的应用和推广中,显示出数学符号语言的推动力的独特魅力.

而在学生的书面作业或论文 报告 中,注意培养学生数学语言表达的规范性.书面表达是数学语言表达能力的一种重要形式.通过教师数学建模教学表述规范的样板和学生严格的书面表达的长期训练来完成.在书面表达上,主要应做到思维清晰、叙述简洁、书写规范.例如在建立模型和求解上,严格要求学生在模型的假设,符号说明、模型的建立和求解,图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.

对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面要及时纠正.

3借助数学实验教学,展示高度抽象

的数学理论成为具体的可视性过程要培养创新人才,上好数学实验课,首先要有创新型的教师,建立起一支"懂实验""会试验""能创新"的教师队伍.由于数学实验课理论联系实际,特点鲜明,内容新颖,方法特别,所以能够上好数学实验课,教师就必须具备扎实的数学理论功底,计算机软件应用操作能力,良好的科研素质与科研能力.

因此,数学与统计学院就需要选取部分教师,主攻数学建模、数学实验、数值分析课程.优先选派数学实验教师定期出去进修深造提高,以便真正形成一支"懂实验""会实验""能创新"的教师队伍.实验课的地位要给予应有的重视.我院现存的一个重要表现就是实验设备不足,实验室开放时间不够.为了确保数学实验有物质条件上的保证,必须建立数学实验与数学建模实验室.

配备足够的高性能计算机,全天候对学生开放,尽快尽早淘汰陈旧的计算机设备.精心设计实验内容,强化典型实验,培养宽厚扎实理论水平;精选实验内容,加强学生之间的互动,培养协作意识和团队精神.在实验教学时数有限的情况下,依据培养目标和教学纲要,对教材中的实验内容进行选择、设计.要最大限度地开发学生的创造性思维,数学实验在项目设计过程中应当遵循适应性、趣味性、灵活性、科学性、渐进性和应用性的基本原则.

选择基础性试验,重点培养宽厚扎实的理论水平,提高对数学理论与方法的深刻理解.熟练各种数学软件的应用与开发,提高计算机应用能力,增强实践应用技能;增加综合性实验和设计性实验,从实际问题出发,培养学生分析问题,解决问题的能力,强化 创新思维 的开发.

教学方法上实行启发参与式教学法:启发-参与-诱导-提高.充分发挥学生主体作用,以学生亲自动脑动手为主.

教师先提出问题,对实验内容,实验目标,进行必要的启发;然后充分发挥学生主体作用,学生动手操作,每个命令、语句学生都要在计算机上操作得到验证;根据学生出现的情况,老师总结学生出现的问题,进行进一步的诱导;再让其理清思路,再次动手实践,从理论与实践的结合上获得能力上提高.数学实验是一门强调实践、强调应用的课程.

数学实验将数学知识、数学建模与计算机应用三者融为一体,可以使学生深入理解数学的基本概念和理论,掌握数值计算方法,培养学生运用所学知识使用计算机解决实际问题的能力,是一门实践性很强的课程.在这一教学活动中,通过数学软件如MAT-LAB、Mathematica、SPSS的教学和综合数学实验,如碎片拼接、罪犯藏匿地点的查找、光伏电池的连接、野外漂流管理、水资源的有效利用、葡萄酒的分类等,通这些实际问题最终的数学化的解决,将高度抽象的数学理论呈现为生动具体的可视性结论,展示数学模型与计算机技术相结合的高度抽象的数学理论成为生动具体的可视性过程.

4突出学生的主体作用,循序渐进培养学生学习、实践到创新

实践教学的目的是要提高学生应用所学知识分析、解决实际问题的综合能力.

在教学中,搭建数学建模与数学实验这个平台,提示学生用计算机解决经过简化的问题,或自己提出实验问题,设计实验步骤,观察实验结果,尤其是将庞大繁杂的数学计算交给计算机完成,摆脱过去害怕数学计算、画函数图像、解方程等任务,避免学生一见到庞大的数学计算公式就会产生畏惧心理,从而丧失信心,让学生体会到在数学面前自己由弱者变成了强者,由失败者变成了胜利者、成功者.

再设计让学生自己动手去解决的各类实际问题,使学生通过对实际问题的仔细分析、作出合理假设、建立模型、求解模型及对结果进行分析、检验、总结等,解决实际问题,逐步培养学生熟练使用计算机和数学软件的能力以及运用数学知识解决实际问题的意识和能力.

同时,给学生提供大量的上机实践的机会,提高学生应用数学软件的能力.一个实际问题构成一个实验内容,通过实践环节加大训练力度,并要求学生通过计算机编程求解、编写实验报告等形式,达到提高学生解决实际问题综合能力的目标.数学建模与数学实验课程通过实际问题---方法与分析---范例---软件---实验---综合练习的教学过程,以实际问题为载体,以大学基本数学知识为基础,采用自学、讲解、讨论、试验、文献阅读等方式,在教师的逐步指导下,学习基本的建模与计算方法.

通过学习查阅文献资料、用所学的数学知识和计算机技术,借助适当的数学软件,学会用数学知识去解决实际问题的一些基本技巧与方法.通过实验过程的学习,加深学生对数学的了解,使同学们应用数学方法的能力和发散性思维的能力得到进一步的培养.实践已证明,数学建模与数学实验课这门课深受学生欢迎,它的教学无论对培养创新型人才还是应用型人才都能发挥其他课程无法替代的作用.

5具体的教学策略和途径

数学建模课程和数学实验课程同时开设,在课程教学中,要尽可能做到如下几个方面:

1)注重背景的阐述

让学生了解问题背景,才能知道解决实际问题需要哪些知识,才能做出贴近实际的假设,而这恰恰是建立一个能够解决实际问题的数学模型的前提.再者,问题背景越是清晰,越能够体现问题的重要性,这样才能激发学生解决实际问题的兴趣.

2)注重模型建立与求解过程中的数学语言的使用

在做好实际问题的简化后,使用精炼的数学符号表示现实含义是数学语言使用的彰显.基于必要的背景知识,建立符合现实的数学模型,通过多个方面对模型进行修正,向学生展示不同的条件相对应的数学模型对于现实问题的解决.在模型的求解上,严格要求学生在模型的假设,符号说明、图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面及时纠正.

3)注重经典算法的数学软件的实现和改进

由于实际问题的特殊性导致数学模型没有固定的模式,这就要求既要熟练掌握一般数学软件和算法的实现,又要善于改进和总结,使得现有的算法和程序能够通过修正来解决实际问题,这对于学生能力的培养不可或缺.只有不断的学习和总结,才有数学素养的培养和创新能力的提高.

参考文献:

[1]叶其孝.把数学建模、数学实验的思想和方法融人高等数学课的教学中去[J].工程数学学报,2003,(8):1-11.

[2]颜荣芳,张贵仓,李永祥.现代信息技术支持的数学建模创新教育[J].电化教育研究,2009,(3)。

[3]郑毓信.数学方法论的理论与实践[M].广西教育出版社,2009.

[4]姜启源.数学实验与数学建模[J].数学的实践与认识,2001,(5):613-617.

[5]姜启源,谢金星,叶俊.数学建模[M].第3版.北京:高等教育出版社,2002.

[6]周家全,陈功平.论数学建模教学活动与数学素质的培养[J].中山大学学报,2002,(4):79-80.

[7]付桐林.数学建模教学与创新能力培养[J].教育导刊,2010,(08):89-90.

今年数学建模中的葡萄评价模型的结果还可以向哪些领域延伸?

医药成分分析,病人尿液鉴定等等领域

数学建模的建模题目

1992年(A) 施肥效果分析问题(北京理工大学:叶其孝)(B) 实验数据分解问题(华东理工大学:俞文此; 复旦大学:谭永基)1993年(A) 非线性交调的频率设计问题(北京大学:谢衷洁)(B) 足球排名次问题(清华大学:蔡大用)1994年(A) 逢山开路问题(西安电子科技大学:何大可)(B) 锁具装箱问题(复旦大学:谭永基,华东理工大学:俞文此)1995年(A) 飞行管理问题(复旦大学:谭永基,华东理工大学:俞文此)(B) 天车与冶炼炉的作业调度问题(浙江大学:刘祥官,李吉鸾)1996年(A) 最优捕鱼策略问题(北京师范大学:刘来福)(B) 节水洗衣机问题(重庆大学:付鹂)1997年(A) 零件参数设计问题(清华大学:姜启源)(B) 截断切割问题(复旦大学:谭永基,华东理工大学:俞文此)1998年(A) 投资的收益和风险问题(浙江大学:陈淑平)(B) 灾情巡视路线问题(上海海运学院:丁颂康) 1999年(A) 自动化车床管理问题(北京大学:孙山泽)(B) 钻井布局问题(郑州大学:林诒勋)(C) 煤矸石堆积问题(太原理工大学:贾晓峰)(D) 钻井布局问题(郑州大学:林诒勋)2000年(A) DNA序列分类问题(北京工业大学:孟大志)(B) 钢管订购和运输问题(武汉大学:费甫生)(C) 飞越北极问题(复旦大学:谭永基)(D) 空洞探测问题(东北电力学院:关信)2001年(A) 血管的三维重建问题(浙江大学:汪国昭)(B) 公交车调度问题(清华大学:谭泽光)(C) 基金使用计划问题(东南大学:陈恩水)(D) 公交车调度问题(清华大学:谭泽光)2002年(A) 车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此)(B) 彩票中的数学问题(解放军信息工程大学:韩中庚)(C) 车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此)(D) 赛程安排问题(清华大学:姜启源)2003年(A) SARS的传播问题(组委会)(B) 露天矿生产的车辆安排问题(吉林大学:方沛辰)(C) SARS的传播问题(组委会)(D) 抢渡长江问题(华中农业大学:殷建肃)2004年(A) 奥运会临时超市网点设计问题(北京工业大学:孟大志)(B) 电力市场的输电阻塞管理问题(浙江大学:刘康生)(C) 酒后开车问题(清华大学:姜启源)(D) 招聘公务员问题(解放军信息工程大学:韩中庚)2005年(A) 长江水质的评价和预测问题(解放军信息工程大学:韩中庚)(B) DVD在线租赁问题(清华大学:谢金星等)(C) 雨量预报方法的评价问题(复旦大学:谭永基)(D) DVD在线租赁问题(清华大学:谢金星等)2006年(A) 出版社的资源配置问题(北京工业大学:孟大志)(B) 艾滋病疗法的评价及疗效的预测问题(天津大学:边馥萍)(C) 易拉罐的优化设计问题(北京理工大学:叶其孝)(D) 煤矿瓦斯和煤尘的监测与控制问题(解放军信息工程大学:韩中庚)2007年(A) 中国人口增长预测(B) 乘公交,看奥运(C) 手机“套餐”优惠几何(D) 体能测试时间安排2008年(A)数码相机定位,(B)高等教育学费标准探讨,(C)地面搜索,(D)NBA赛程的分析与评价2009年(A)制动器试验台的控制方法分析(B)眼科病床的合理安排(C)卫星和飞船的跟踪测控(D)会议筹备2010年(A)储油罐的变位识别与罐容表标定(B)2010年上海世博会影响力的定量评估(C)输油管的布置(D)对学生宿舍设计方案的评价2011年(A)城市表层土壤重金属污染分析(B)交巡警服务平台的设置与调度(C)企业退休职工养老金制度的改革(D)天然肠衣搭配问题2012年(A)葡萄酒的评价(B)太阳能小屋的设计(C)脑卒中发病环境因素分析及干预(D)机器人避障问题2013年(A)车道被占用对城市道路通行能力的影响(B)碎纸片的拼接复原(C)古塔的变型(D)公共自行车服务系统2014年(A)嫦娥三号软着陆轨道设计与控制策略(B)创意平板折叠桌(C)生猪养殖场的经营管理(D)储药柜的设计2015年(A)太阳影子定位(B)“互联网+”时代的出租车资源配置(C)月上柳梢头(D)众筹筑屋规划方案设计建模好处1. 培养创新意识和创造能力2.训练快速获取信息和资料的能力3.锻炼快速了解和掌握新知识的技能4.培养团队合作意识和团队合作精神5.增强写作技能和排版技术6.荣获国家级奖励有利于保送研究生7.荣获国际级奖励有利于申请出国留学8.更重要的是训练人的逻辑思维和开放性思考方式

2012高教社杯全国大学生数学建模竞赛题目 A题 葡萄酒 分析附件1中两组评酒员的评价结果有无显著性差异

没有

MATLAB建模方法有哪些

首先,Matlab是一个工具,它不是一个方法。

其次,我给你推荐一本书
《MATLAB 在数学建模中的应用(第2版)》

然后它的目录可以回答你的问题:
第1章 数学建模常规方法及其MATLAB实现
1.1 MATLAB与数据文件的交互
1.1.1 MATLAB与Excel的交互
1.1.2 MATLAB与TXT交互
1.1.3 MATLAB界面导入数据的方法
1.2 数据拟合方法
1.2.1 多项式拟合
1.2.2 指定函数拟合
1.2.3 曲线拟合工具箱
1.3 数据拟合应用实例
1.3.1 人口预测模型
1.3.2 薄膜渗透率的测定
1.4 数据的可视化
1.4.1 地形地貌图形的绘制
1.4.2 车灯光源投影区域的绘制(CUMCM2002A)
1.5 层次分析法(AHP)
1.5.1 层次分析法的应用场景
1.5.2 AHPMATLAB程序设计

第2章 规划问题的MATLAB求解
2.1 线性规划
2.1.1 线性规划的实例与定义
2.1.2 线性规划的MATLAB标准形式
2.1.3 线性规划问题解的概念
2.1.4 求解线性规划的MATLAB解法
2.2 非线性规划
2.2.1 非线性规划的实例与定义
2.2.2 非线性规划的MATLAB解法
2.2.3 二次规划
2.3 整数规划
2.3.1 整数规划的定义
2.3.2 01整数规划
2.3.3 随机取样计算法

第3章 数据建模及MATLAB实现
3.1 云模型
3.1.1 云模型基础知识
3.1.2 云模型的MATLAB程序设计
3.2 Logistic回归
3.2.1 Logistic模型
3.2.2 Logistic回归MATLAB程序设计
3.3 主成分分析
3.3.1 PCA基本思想
3.3.2 PCA步骤
3.3.3 主成分分析MATLAB程序设计
3.4 支持向量机(SVM)
3.4.1 SVM基本思想
3.4.2 理论基础
3.4.3 支持向量机MATLAB程序设计
3.5 K均值(KMeans)
3.5.1 KMeans原理、步骤和特点
3.5.2 KMeans聚类MATLAB程序设计
3.6 朴素贝叶斯判别法
3.6.1 朴素贝叶斯判别模型
3.6.2 朴素贝叶斯判别法MATLAB设计
3.7 数据建模综合应用
参考文献

第4章 灰色预测及其MATLAB实现
4.1 灰色系统基本理论
4.1.1 灰色关联度矩阵
4.1.2 经典灰色模型GM(1,1)
4.1.3 灰色Verhulst模型
4.2 灰色系统的程序设计
4.2.1 灰色关联度矩阵的程序设计
4.2.2 GM(1,1)的程序设计
4.2.3 灰色Verhulst模型的程序设计
4.3 灰色预测的MATLAB程序
4.3.1 典型程序结构
4.3.2 灰色预测程序说明
4.4 灰色预测应用实例
4.4.1 实例一长江水质的预测(CUMCM2005A)
4.4.2 实例二预测与会代表人数(CUMCM2009D)
4.5 小结
参考文献

第5章 遗传算法及其MATLAB实现
5.1 遗传算法基本原理
5.1.1 人工智能算法概述
5.1.2 遗传算法生物学基础
5.1.3 遗传算法的实现步骤
5.1.4 遗传算法的拓展
5.2 遗传算法的MATLAB程序设计
5.2.1 程序设计流程及参数选取
5.2.2 MATLAB遗传算法工具箱
5.3 遗传算法应用案例
5.3.1 案例一:无约束目标函数最大值遗传算法求解策略
5.3.2 案例二:CUMCM中多约束非线性规划问题的求解
5.3.3 案例三:BEATbx遗传算法工具箱的应用——电子商务中转化率影响因素研究
参考文献

第6章 模拟退火算法及其MATLAB实现
6.1 算法的基本理论
6.1.1 算法概述
6.1.2 基本思想
6.1.3 其他一些参数的说明
6.1.4 算法基本步骤
6.1.5 几点说明
6.2 算法的MATLAB实现
6.2.1 算法设计步骤
6.2.2 典型程序结构
6.3 应用实例:背包问题的求解
6.3.1 问题的描述
6.3.2 问题的求解
6.4 模拟退火程序包ASA简介
6.4.1 ASA的优化实例
6.4.2 ASA的编译
6.4.3 MATLAB版ASA的安装与使用
6.5 小结
6.6 延伸阅读
参考文献

第7章 人工神经网络及其MATLAB实现
7.1 人工神经网络基本理论
7.1.1 人工神经网络模型拓扑结构
7.1.2 常用激励函数
7.1.3 常见神经网络理论
7.2 BP神经网络的结构设计
7.2.1 鲨鱼嗅闻血腥味与BP神经网络训练
7.2.2 透视神经网络的学习步骤
7.2.3 BP神经网络的动态拟合过程
7.3 RBF神经网络的结构设计
7.3.1 梯度训练法RBF神经网络的结构设计
7.3.2 RBF神经网络的性能
7.4 应用实例
7.4.1 基于MATLAB源程序公路运量预测
7.4.2 基于MATLAB工具箱公路运量预测
7.4.3 艾滋病治疗最佳停药时间的确定(CUMCM2006B)
7.4.4 RBF神经网络预测新客户流失概率
7.5 延伸阅读
7.5.1 从金融分析中的小数定理谈神经网络的训练样本遴选规则
7.5.2 小议BP神经网络的衍生机理
参考文献

第8章粒子群算法及其MATLAB实现
8.1 PSO算法相关知识
8.1.1 初识PSO算法
8.1.2 PSO算法的基本理论
8.1.3 PSO算法的约束优化
8.1.4 PSO算法的优缺点
8.2 PSO算法程序设计
8.2.1 程序设计流程
8.2.2 PSO算法的参数选取
8.2.3 PSO算法MATLAB源程序范例
8.3 应用案例:基于PSO算法和BP算法训练神经网络
8.3.1 如何评价网络的性能
8.3.2 BP算法能够搜索到极值的原理
8.3.3 PSOBP神经网络的设计指导原则
8.3.4 PSO算法优化神经网络结构
8.3.5 PSOBP神经网络的实现
参考文献

第9章 蚁群算法及其MATLAB实现
9.1 蚁群算法原理
9.1.1 蚁群算法基本思想
9.1.2 蚁群算法数学模型
9.1.3 蚁群算法流程
9.2 蚁群算法的MATLAB实现
9.2.1 实例背景
9.2.2 算法设计步骤
9.2.3 MATLAB程序实现
9.2.4 程序执行结果与分析
9.3 算法关键参数的设定
9.3.1 参数设定的准则
9.3.2 蚂蚁数量
9.3.3 信息素因子
9.3.4 启发函数因子
9.3.5 信息素挥发因子
9.3.6 信息素常数
9.3.7 最大迭代次数
9.3.8 组合参数设计策略
9.4 应用实例:最佳旅游方案(苏北赛2011B)
9.4.1 问题描述
9.4.2 问题的求解和结果
9.5 本章小结
参考文献

第10章 小波分析及其MATLAB实现
10.1 小波分析基本理论
10.1.1 傅里叶变换的局限性
10.1.2 伸缩平移和小波变换
10.1.3 小波变换入门和多尺度分析
10.1.4 小波窗函数自适应分析
10.2 小波分析MATLAB程序设计
10.2.1 小波分析工具箱函数指令
10.2.2 小波分析程序设计综合案例
10.3 小波分析应用案例
10.3.1 案例一:融合拓扑结构的小波神经网络
10.3.2 案例二:血管重建引出的图像数字水印
参考文献

第11章 计算机虚拟及其MATLAB实现
11.1 计算机虚拟基本知识
11.1.1 从3G移动互联网协议WCDMA谈MATLAB虚拟
11.1.2 计算机虚拟与数学建模
11.1.3 数值模拟与经济效益博弈
11.2 数值模拟MATLAB程序设计
11.2.1 微分方程组模拟
11.2.2 服从概率分布的随机模拟
11.2.3 蒙特卡罗模拟
11.3 动态仿真MATLAB程序设计
11.3.1 MATLAB音频处理
11.3.2 MATLAB常规动画实现
11.4 应用案例:四维水质模型
11.4.1 问题的提出
11.4.2 问题的分析
11.4.3 四维水质模型准备
11.4.4 条件假设与符号约定
11.4.5 四维水质模型的组建
11.4.6 模型求解
11.4.7 计算机模拟情境
参考文献

下篇 真题演习
第12章 彩票中的数学(CUMCM2002B)
12.1 问题的提出
12.2 模型的建立
12.2.1 模型假设与符号说明
12.2.2 模型的准备
12.2.3 模型的建立
12.3 模型的求解
12.3.1 求解的思路
12.3.2 MATLAB程序
12.3.3 程序结果
12.4 技巧点评
参考文献

第13章 露天矿卡车调度问题(CUMCM2003B)
13.1 问题的提出
13.2 基本假设与符号说明
13.2.1 基本假设
13.2.2 符号说明
13.3 问题分析及模型准备
13.4 原则①:数学模型(模型1)的建立与求解
13.4.1 模型的建立
13.4.2 模型求解
13.5 原则②:数学模型(模型2)的建立与求解
13.6 技巧点评
参考文献

第14章 奥运会商圈规划问题(CUMCM2004A)
14.1 问题的描述
14.2 基本假设、名词约定及符号说明
14.2.1 基本假设
14.2.2 符号说明
14.2.3 名词约定
14.3 问题分析与模型准备
14.3.1 基本思路
14.3.2 基本数学表达式的构建
14.4 设置MS网点数学模型的建立与求解
14.4.1 模型建立
14.4.2 模型求解
14.5 设置MS网点理论体系的建立
14.6 商区布局规划的数学模型
14.6.1 模型建立
14.6.2 模型求解
14.7 模型的评价及使用说明
14.7.1 模型的优点
14.7.2 模型的缺点
14.8 技巧点评
参考文献

第15章 交巡警服务平台的设置与调度(CUMCM2011B)
15.1 问题的提出
15.2 问题的分析
15.3 基本假设
15.4 问题1模型的建立与求解
15.4.1 交巡警服务平台管辖范围分配
15.4.2 交巡警的调度
15.4.3 最佳新增服务平台设置
15.5 问题2模型的建立和求解
15.5.1 全市服务平台的合理性分析问题的模型与求解
15.5.2 搜捕嫌疑犯实例的模型与求解
15.6 模型的评价与改进
15.6.1 模型优点
15.6.2 模型缺点
15.7 技巧点评
参考文献

第16章 葡萄酒的评价(CUMCM2012A)
16.1 问题的提出
16.2 基本假设
16.3 问题①模型的建立和求解
16.3.1 问题①的分析
16.3.2 模型的建立和求解
16.4 问题②模型的建立和求解
16.4.1 问题②的基本假设和分析
16.4.2 模型的建立和求解
16.5 问题③模型的建立和求解
16.5.1 问题③的分析
16.5.2 模型的建立和求解
16.6 问题④模型的建立和求解
16.6.1 问题④的分析
16.6.2 模型的建立和求解
16.7 论文点评
参考文献
附件数学建模参赛经验
一、如何准备数学建模竞赛
二、数学建模队员应该如何学习MATLAB
三、如何在数学建模竞赛中取得好成绩
四、数学建模竞赛中的项目管理和时间管理
五、一种非常实用的数学建模方法——目标建模法

上一篇:血管机器人的订购数学建模论文

下一篇:大学论文查重率要低于多少才可以