关于三角函数的论文1000字
关于三角函数的论文1000字
原文链接:
几何中的两个基本量是:线段的长度和角的大小.三角函数的本质就是用线段长度之比来表示角的大小,从而将两个基本量联系在一起,使我们可以借助三角变换或三角计算来解决一些较难的几何问题.三角函数不仅是一门有趣的学问,而且是解决几何问题的有力工具.
1. 角函数的计算和证明问题
在解三角函数问题之前,除了熟知初三教材中的有关知识外,还应该掌握:
(1)三角函数的单调性 当a为锐角时,sina与tga的值随a的值增大而增大;cosa与ctga随a的值增大而减小;当a为钝角时,利用诱导公式转化为锐角三角函数讨论.
注意到sin45°=cos45°=,由(1)可知,当时0<a<45°时,cosa>sina;当45°<a<90°时,cosa<sina.
(2)三角函数的有界性|sina|≤1,|cosa|≤1,tga、ctga可取任意实数值(这一点可直接利用三角函数定义导出).
例1(1986年全国初中数学竞赛备用题)在△ABC中,如果等式sinA+cosA=成立,那么角A是( )
(A)锐角 (B)钝角 (C)直角
分析 对A分类,结合sinA和cosA的单调性用枚举法讨论.
解当A=90°时,sinA和cosA=1;
当45°<A<90°时sinA>,cosA>0,
∴sinA+cosA>
当A=45°时,sinA+cosA=
当0<A<45°时,sinA>0,cosA>
∴sinA+cosA>
∵1, 都大于.
∴淘汰(A)、(C),选(B).
例2(1982年上海初中数学竞赛题)ctg67°30′的值是( )
(A)-1 (B)2- (C)-1
(D) (E)
分析 构造一个有一锐角恰为67°30′的Rt△,再用余切定义求之.
三角函数图像与性质论文
基于网络环境下《三角函数的图像和性质》课堂教学的探讨数学论文
摘 要:互联网的出现,教育模式将有革命性的变化,基于网络环境下的教学已成为当今教学改革的核心,也更能够体现新课程标准精神。基于网络环境下的数学教学,有助于突破难点,真正实现分层教学和因材施教,从而提高教学效益。基于网络环境下的数学教学应处理好网络与学生的和谐关系,网络与教师的关系,教师与学生的关系。
关键词:教学 数学 网络 新课标
传统的教育模式的教学方法、教学手段和教学评价已不能适应社会发展和人们学习的需要,基于网络环境下的学科教学和课堂评价的出现和普及,极大的丰富了教学改革的内容,充分有效的利用了教学资源,基于网络环境下的课堂教学与评价把文本、图像、图形、视频、音频、动画整合在一起,并通过互联网进行处理、控制传播、为学生提供了最理想的学习环境。
一、基于网络环境下的数学教学的含义
基于网络环境下的数学课堂教学,根据新课程标准的教学内容和教学目标需要,继承传统教学的合理成分,打破传统教学模式,全天候,不间断,因材施教的新型教学方法,教学与评价的信息在互联网上传输与反馈,极大的优化了教师群体,极大的丰富了学生的知识能力。
基于网络环境下的教学,可以共享教学资源,传递多媒体信息,适时反馈学生学习情况,刺激学生不同的感官,符合学生的学习认知规律,提高学生的学习兴趣,扩大了信息接受量,增大了课堂教学容量,同时又具有实时性,交互性,直观性的特点大大丰富了课堂教学模式,同时又满足了分层教学,因材施教,远程教学等社会需要,开创了教学的全新局面。
二、基于网络环境下数学教学与评价的应用
基于网络环境下数学教学与评价有两大优点:
1、能做到图文并茂,再现迅速,情境创设,感染力强,能突破时空限制,特别是基于.Net技术的交互式动态网页更能提高学生的多种感官的感知效能,发挥个体的最大潜能和创造力,加快学生对知识的理解、接受和记忆,也最能体现新课标的精神,也极大的满足社会全民教育,终身教育的要求。
2、同时全体老师又能通过网络共享教学资源,适时创新资源,使每一位老师都成为名师,使教学的方法水平永不落后。如在讲授函数这部分内容时,二次函数,幂函数,指数函数,对数函数,三角函数的图像以及图像变换是重点内容,关于函数图像的传统画法,是通过师生列表,描点,连线而得,这些工作烦,静止孤立,间断的点和线。教师要自制每一节的课件难度大,时间又有限,而基于网络环境下的数学教学,就可以充分利用网络版课件,进行网上学习,从而化静为动,化繁为简,减轻教师的体力负担,使教师有更多的时间进行创新研究,同时让学生在交互的动态的网络环境下学习,函数值随自变量变化而同步变化以及对应运动的轨迹,从而得到完整精确的函数图像,通过交互学习让学生充分体会同一函数不同参数与图像特征之间的联系,充分掌握函数的性质和抓住图像的平移、反射、压缩、拉伸和对称变换特征。若有疑问或好的见解,还可以通过网络进行远程的交流互动。通过多媒体,交互反馈,使学生深刻理解,不易遗忘。也培养了学生自我学习和终身学习的能力。网络环境下的数学教学,教师教得轻松,也有更多的时间进行个别指导,学生学得愉快。学得有趣,这样数学教学的效率也提高了。
二、基于网络环境下数学教学突破教学难点
高中数学中有一些知识需要通过抽象思维来解决问题,而这也正是高中数学的难点之一,基于网络环境下的教学可以化抽象为直观,有利于突破难点。
如“二次函数即:y=ax2+bx+c(a≠0)在[m,n]上的最值的探讨,学生对二次函数的开口,对称轴移而区间不动或图像不动而区间变化时函数的最值”不易理解,在网络环境下,学生通过对网络课件的阅读和对a,b,c,m,n的动态控制,能深刻理解数学知识的要点,加上在网上的即时测试和评价,更能有效的掌握它,不再感到难以理解。
三、基于网络环境下的数学教学与评价形式多样化,即时化。
传统的教学形式是教师讲,学生听,这样教学方式课堂容量有限,反馈方式单调,信息交流少,所有的学生步伐相同不利于因材施教,不利于培养学生现代的终身的学习能力,同时不能解放教师,让教师从事更有意义的教育工作。而网络环境下的教学可以同时满足不同用户不同要求,培养活学活用的能力,真正实现教学以学生为中心,教学面向全体通过互联交流互联互动进行分层教学、个别教学实现因材施教,体现新课标的要求,
四、基于网络环境下数学教学应处理好的关系
(1)网络与学生的关系
和谐是教学成功的关键。实践中发现基于网络环境下的学科教学,应加强对互联网海量信息的搜索,筛选,加工,创新。在选好教育资源后,教师要努力探索适时、适用问题,创设学习情境,营造和谐的环境。加上学生对网络应用知识基本掌握,达到网络与人的和谐统一。
(2)网络与教师的关系
基于网络环境下的学科教学优势空前,实践中发现,只有网络环境下的教学与教师灵活生动的讲解和创新的适时评价互相配合,相互促进,协调传递信息,最大限度地发挥网络和教师的优势。
(3)教师与学生的关系
教为主导,学为主体,这是在任何教学模式中都应遵循的原则,要体现学生的主体发展与教师的主导相互作用的关系。专题教学网站和网络教学资源库的形成,即将教师从繁杂的重复劳动中解放出来了,但教师的主导作用不是减弱了而是加强了,网络环境下的教学,对教师提出了更高的要求,教师必须挤出大量的时间学习Windows,Authorwear,3Dmax,Flash等方面的知识,还要学会搜索,筛选,创新信息的能力,甚至包括各种电教媒体的操作技能和技巧,只有这样,才能使自己在网络环境下的学科教学中获得自由,掌握主动,充分发挥网络教学的优势,提高我国的教育教学质量。
关于三角函数的应用的论文
你要求的字数太多了,我可以给你一个思路物理上用于求合力,受力分析的时候很常用,还有示波器的图像,研究单摆的等时性数学上三角函数是一个学科项目,对于研究三次方程,高等数学还有几何的解题都有用生活中比如利用影长测量高度也是三角函数的应用
对初中数学锐角三角函数教学的几点思考论文
对初中数学锐角三角函数教学的几点思考论文
锐角三角函数作为初中数学中重点教学内容,掌握好该知识点不但有助于学生取得良好成绩,同时更重要的是能够为其今后更高层次几何学习奠定坚实基础,为此这就要求广大教师必须做好该方面教学。然而结合笔者实践来看,由于受到诸多因素所影响,当前锐角三角函数教学效果普遍不佳,如此一来不但严重地影响教学质量,同时更会对后续三角函数教学任务有效开展造成极大的阻碍,对此教师必须认清该知识点的重难点,紧抓学生常见认识误区和思维障碍,采取有效策略进行教学。
一、锐角三角函数与学生常见认识误区和思维障碍分析
锐角三角函数是中学阶段几何学基础知识,是在学生学习了相似三角形和勾股定理之后进一步学习,通过对其开展研究能够使得学生可以后续其他知识学习奠定基础,该知识点呈现正弦函数概念上遵循“从特殊到一般,从实践探索到证明”的方式,让学生体会实验、观察、归纳、猜想、证明的求知过程,有利于学生角度与数值之间对应关系的建立,深化函数思想;在解决实际问题时,强调数学模型的构建,凸现数学建模的思想;重视分析图形特点,强化数形结合思想。对于锐角三角函数知识,学生常见的认知误区和思维障碍主要有以下几方面:(1)不能准确理解锐角三角函数的概念;(2)容易混淆正弦函数、余弦函数和正切函数;(3)过分依赖计算器,对于常用的30°、45°、60°等函数值不能熟记;(4)解直角三角形,特别在解圆中的直角三角形时,易把直角边当做斜边;(5)在解决实际问题中,学生很难通过身体建模来解决问题;(6)容易把坡度与正弦函数混淆。
二、初中数学锐角三角函数教学策略思考与探讨
1.揭示三角函数相关概念产生的思维过程
在传统的教学模式下,许多教师对于三角函数的教学都是采用平铺直叙、照本宣科的方式进行教授,通过让学生反复朗读、书写的方式对概念进行记忆,而很少运用实践操作或探究活动等形式让学生理解相关概念。这种教学方式虽然也能让学生牢牢地记住三角函数的概念,但是这种方式是呆板的,非常影响学生创新思维的发展,因此,教师在教学过程中应该采用通过向学生揭示三角函数概念产生的思维过程的方式加深学生对概念内涵的理解与掌握。
2.重视对直角三角形的讲解
学生掌握好直角三角形的边角关系对于锐角三角函数的学习和掌握有很大促进作用,因而这就要求广大教师必须重视并做好对其教学。直角三角形除直角外的5个元素之间关系:
(1)三边之间的关系:a2+b2=c2(勾股定理);
(2)两锐角之间的关系:∠A+∠B=90°。
利用这些关系,首先要理解好对边与角的关系,这5个元素中,如果知道2个(其中至少有一个是边),就可以求出其余3个。即“在直角三角形中,角定边的比值也确定了,反之,边的比值确定了,角的大小也确定”,并通过在解题过程中不断强调,对学生进行强化理解。数形结合思想对于锐角三角函数的学习与运用也非常的重要,在理解概念、推理论证、计算化简的过程中,通过画图分析,可以让学生在具体、直观中理解直角三角形边与角之间的关系。
3.结合实际生活,促进学生对三角函数相关知识的`理解与掌握
在教学中,教师应尽量选用贴近学生生活的素材来加深学生对三角函数的理解与掌握。结合生活实际不仅可以让学生体会锐角三角函数和解三角形的理论来源于实际,是实际的需要,还可以让学生看到它们在解决实际问题中所起的作用,感受由实际问题抽象出数学问题,通过解决数学问题得到答案,再将数学问题的答案回归到实际问题的这种“实践-理论-再实践”的认识过程。这过程符合人的认知规律,又利于调动学生学习数学的积极性,丰富有趣的实际问题也能激发学生的学习兴趣。直角三角形的学习为学生学习锐角三角函数做好了充分的准备。教师在讲解直角三角形的过程中,就可以利用确定台阶的倾斜程度问题引出正切函数,也可以例举学生熟悉的跷跷板问题等等。
4.对锐角范围内同角或等角的三角函数值相等的内涵和外延进行明晰
明晰锐角范围内同角或等角的三角函数值相等对于学生理解和灵活运用三角函数解决问题显得尤为重要。但是在实际教学过程中,部分教师对此重视不够,在求解某个锐角的相应三角函数值时,该锐角往往置于直角三角形中,学生易形成惯性思维,当需求三角函数值的锐角置于一般三角形时,部分学生缺乏对锐角范围内同角或等角的三角函数值相等的理解。
例如图1所示,点E(0,4),O(0,0),C(6,0)在⊙A上,BE是⊙A中的一条弦,则tan∠OBE=。
许多学生遇到这类题时,很容易出错或者无从下手,教师经过与学生交流、了解做错的原因,就会发现其实很多学生在解答过程中已经意识到要先连接EC(如图2所示),然后由同弧所对的圆周角相等推知∠OBE=∠OCE,但到这一步,学生就陷入了困惑,因为△EOC是直角三角形,而△OBE不是直角三角形。由此可见,学生对于这类题型无法解答或出错的根本原因就在于对同角或等角的三角函数值相等内涵的实质的理解不够透彻。
5.引导学生形成规范的解题过程
引导学生形成规范解题过程有利于他们理清思路,从而达到有效提升其能力与成绩之目的。数学学科一个突出的特点就是逻辑性比较强,对逻辑思维的要求也较高。因此,在解决锐角三角函数问题时,学生通过规范解题过程,按照步骤来进行解题就更加能够便利地找到相应的解题思路,从而掌握相应的数学知识。同时,对于解题思路的梳理很重要,首先要明确具体的问题是什么;其次,针对问题寻找解题突破点,并作出解答的计划;最后,按照计划一步步进行解题,并整理回顾。总之,解题过程规范了,步骤明确了,解题思路也就清晰了。
上一篇:音乐学专业导论论文3000字
下一篇:论文写作学习哪些内容