欢迎来到学术参考网
当前位置:发表论文>论文发表

人工智能在护理领域的应用论文

发布时间:2023-12-10 01:17

人工智能在护理领域的应用论文

人工智能是近来研究热点。分别在人工智能界别、角色、赋予人以及制度等方面重点探讨其可能的情感约束作用,以期达到人工智能技术在很好的发展的同时,不至于因为“情感泛滥”而引发一些严重地后果的影响。 以下是我整理的人工智能对生活的影响论文的相关资料,欢迎阅读!

摘 要:人工智能是近来研究热点。分别在人工智能界别、角色、赋予人以及制度等方面重点探讨其可能的情感约束作用,以期达到人工智能技术在很好的发展的同时,不至于因为“情感泛滥”而引发一些严重地后果的目的。

关键词:人工智能 情感 约束

中图分类号:TP18 文献标识码:A 文章编号:1007-3973(2013)001-085-03

1引言

人工智能(Artificial Intelligence,AI)自从20世纪50年代产生,经过长期发展,已经有了长足的进步,并且已经深入到社会生活的诸多领域,如语言处理、智能数据检索系统、视觉系统、自动定理证明、智能计算、问题求解、人工智能程序语言以及自动程序设计等。随着科学技术的不断发展,现在的人工智能已经不再是仅仅具有简单的模仿与逻辑思维能力,人们也越来越期待人工智能能够帮助或者替代人类从事各种复杂的工作,加强人的思维功能、行为功能或是感知功能。这就要求人工智能具有更强的情感识别、情感表达以及情感理解能力。通俗的说,为了使得人工智能对外界的变化适应性更强,需要给它们赋予相应的情感从而能够应对这个难以预测的世界。

在赋予人工智能“情感”的过程中,面临着许多的问题,有科技层面上的,也有社会学层面的。本文在这里只讨论其中一个比较基本的社会学问题:“人工智能情感约束问题”,即关注于如何约束赋予给人工智能的情感,不至于使其“情感泛滥”。情感指的是一种特殊的思维方式,人工智能具有了情感后的问题是:人工智能的情感是人类赋予的,人工智能自身并不会创造或者控制自己的情感。如果赋予人工智能的情感种类不合理,或者是赋予的情感程度不恰当,都有可能造成“情感泛滥”并导致一些灾难性的后果。例如,当人工智能具有了情感之后,如果人类自身管理不恰当,有可能导致人工智能反过来伤害人类。尽管目前我们只能在一些科幻作品中看到这种情况发生,但谁也不能保证未来有一天会不会真的出现这种悲剧。

本文第二章对人工智能情感研究进行了概要性回顾,第三章对如何约束人工智能情感进行了尝试性探讨,最后一章对全文进行了总结。

2人工情感发展情况概述

随着科学家对人类大脑及精神系统深入的研究,已经愈来愈肯定情感是智能的一部分。人工情感是以人类自然情感理论为基础,结合人工智能、机器人学等学科,对人类情感过程进行建模,以期获得用单纯理性思维难以达到的智能水平和自主性的一种研究方向。目前,研究者的研究方向主要是人工情感建模、自然情感机器识别与表达、人工情感机理等四个方面的内容。其中,尤以人工情感机理的研究困难最大,研究者也最少。

目前人工情感在很多领域得到了应用和发展,比较典型的是在教育教学、保健护理、家庭助理、服务等行业领域。在教育教学方面比较典型的例子是德国人工智能研究中心发展的三个方案:在虚拟剧场、虚拟市场和对话Agent中引入情感模型和个性特征来帮助开发儿童的想象力及创造力。在保健护理方面比较典型的是家庭保健与护理方向,如Lisetti等人研制的一个用于远程家庭保健的智能情感界面,用多模态情感识别手段来识别病人的情感状态,并输入不同媒体和编码模型进行处理,从而为医生提供关于病人简明而有价值的情感信息以便于进行有效的护理。服务型机器人的典型例子是卡内基梅隆大学发明的一个机器人接待员Valerie。Valerie的面孔形象的出现在一个能够转动方向的移动屏幕上时可以向访问者提供一些天气和方位方面的信息,还可以接电话、解答一些问题;并且Valerie有自己的性格和爱好,情感表达较为丰富。当然这些只是人工情感应用领域中的几个典型的例子,人工智能情感的潜力仍然是巨大的。

尽管关于人工情感的研究已经取得了一定的成果,给我们带来了很多惊喜和利益,但由于情绪表现出的无限纷繁以及它与行为之间的复杂联系,人们对它的运行机理了解的还不成熟,以致使得目前人工情感的研究仍面临着诸如评价标准、情感道德约束等多方面问题。所以必须清楚的认识到我们目前对于人工情感的计算乃至控制机制并没有一个成熟的体系。

3对人工智能的情感约束

正如上文所述,如果放任人工智能“情感泛滥”,很有可能会造成严重的后果。为了使人工智能技术更好的发展,使智能与情感恰到好处的结合起来,我们有必要思考如何对赋予人工智能情感进行引导或者约束。

3.1根据级别赋予情感

可以根据人工智能级别来赋予其情感,如低级别人工智能不赋予情感、高级别人工智能赋予其适当的情感。众所周知,人工智能是一门交叉科学科,要正确认识和掌握人工智能的相关技术的人至少必须同时懂得计算机学、心理学和哲学。首先需要树立这样的一个观点:人工智能的起点不是计算机学而是人的智能本身,也就是说技术不是最重要的,在这之前必须得先解决思想问题。而人工智能由于这方面没有一个严格的或是量度上的控制而容易出现问题。从哲学的角度来说,量变最终会导致质变。现在是科学技术飞速发展的时代,不能排除这个量变导致质变时代的人工智能机器人的到来,而到那个时候后果则不堪设想。因此,在现阶段我们就应该对人工智能的情感赋予程度进行一个约束。

根据维纳的反馈理论,人工智能可以被分成高低两个层次。低层次的是智能型的人工智能,主要具备适应环境和自我优化的能力。高层次的是情感型的人工智能,它的输入过程主要是模仿人的感觉方式,输出过程则是模仿人的反应情绪。据此我们可分别将机器人分为一般用途机器人和高级用途机器人两种。一般用途机器人是指不具有情感,只具有一般编程能力和操作功能的机器人。那么对于一般用途的机器人我们完全可以严格的用程序去控制它的行为而没必要去给他赋予情感。而对于高级层面的情感机器人来说,我们就适当的赋予一些情感。但即使是这样一部分高层次的情感机器人,在赋予人工情感仍然需要考虑到可能会带来的某些潜在的危害,要慎之又慎。   3.2根据角色赋予情感

同样也可以根据人工智能机器人角色的不同选择性的赋予其不同类型的情感。人类与机器合作起来比任何一方单独工作都更为强大。正因为如此,人类就要善于与人工智能机器合作,充分发挥人机合作的最大优势。由于计算机硬件、无线网络与蜂窝数据网络的高速发展,目前的这个时代是人工智能发展的极佳时期,使人工智能机器人处理许多以前无法完成的任务,并使一些全新的应用不再禁锢于研究实验室,可以在公共渠道上为所有人服务,人机合作也将成为一种大的趋势,而他们会以不同的角色与我们进行合作。或作为工具、顾问、工人、宠物、伴侣亦或是其他角色。总之,我们应该和这些机器建立一种合作互助的关系,然后共同完任务。这当然是一种很理想的状态,要做到这样,首先需要我们人类转变自身现有的思维模式:这些机器不再是一种工具,而是平等的服务提供人。

举例来说,当机器人照顾老人或是小孩的时候,我们应该赋予它更多的正面情绪,而不要去赋予负面情绪,否则如果机器人的负向情绪被激发了,对于这些老人或者小孩来说危险性是极大的;但是,如果机器人是作为看门的保安,我们对这种角色的机器人就可以适当的赋予一些负向的情绪,那么对于那些不按规则的来访者或是小偷就有一定的威慑力。总之,在我们赋予这些智能机器人情感前必须要周到的考虑这些情感的程度和种类,不要没有顾忌的想当然的去赋予,而是按分工、作用赋予限制性的情感约束,达到安全的目的。

3.3对赋予人进行约束

对人工智能情感赋予者进行约束,提高赋予者的自身素质,并定期考核,并为每一被赋予情感的人工智能制定责任人。

纵观人工智能技术发展史,我们可以发现很多的事故都是因为人为因素导致的。比如,首起机器人杀人案:1978年9月的一天,在日本广岛,一台机器人正在切割钢板,突然电脑系统出现故障,机器人伸出巨臂,把一名工人活生生地送到钢刀下,切成肉片。

另外,某些研究者也许会因为利益的诱惑,而将人工智能运用在不正当领域,或者人工智能技术落入犯罪分子的手中,被他们用来进行反对人类和危害社会的犯罪活动。也就是用于所谓的“智能犯罪”。任何新技术的最大危险莫过于人类对它失去控制,或者是它落入那些企图利用新技术反对人类的人的手中。

因此为了减少这些由于人而导致的悲剧,我们需要对这些研究者本身进行约束。比如通过相应的培训或是定期的思想政治教育、或是理论知识的学习并制定定期的考核制度来保证这些专家自身的素质,又或者加强对人工智能事故的追究机制,发生问题能立即查询到事故方等等,通过这样一系列强有力的硬性指标达到减少由于人为因素导致悲剧的目的。

3.4制定相应的规章制度来管理人工智能情感的发展

目前世界上并未出台任何一项通用的法律来规范人工智能的发展。不过在1939 年,出生在俄国的美籍作家阿西莫夫在他的小说中描绘了工程师们在设计和制造机器人时通过加入保险除恶装置使机器人有效地被主人控制的情景。这就从技术上提出了预防机器人犯罪的思路。几年后, 他又为这种技术装置提出了伦理学准则的道德三律:(1)机器人不得伤害人类,或看到人类受到伤害而袖手旁观;(2)在不违反第一定律的前提下,机器人必须绝对服从人类给与的任何命令;(3)在不违反第一定律和第二定律的前提下,机器人必须尽力保护自己。这一“机器人道德三律”表现了一种在道德忧思的基础上,对如何解决人工智能中有害人类因素所提出的道德原则,虽然得到很多人的指责,但其首创性还是得到公认的。尽管这个定律只是小说家提出来的,但是也代表了很多人的心声,也是值得借鉴的。

那么对于人工智能情感的约束呢?显然,更加没有相应的法律法规来规范。那么,我们就只能在赋予人工智能情感的道理上更加的小心翼翼。比如,我们可以制定一些应急方案来防止可能导致的某些后果,也即出现了问题如何及时的处理之。另外我们在操作和管理上应更加慎重的去对待。也希望随着科学技术的发展,能够在不久的将来出台一部相应的规章制度来规范人工智能情感的管理,使之更加精确化、合理化。

4结束语

人工智能的情感研究目的就是探索利用情感在生物体中所扮演的一些角色、发展技术和方法来增强计算机或机器人的自治性、适应能力和社会交互的能力。但是现阶段对这方面的研究虽然在技术上可能已经很成熟,但是人工智能情感毕竟是模拟人的情感,是个很复杂的过程,本文尝试性的在人工智能发展中可能遇到的问题进行了有益的探讨。但是不可否认仍然有很长的道路要走,但是对于人工智能的发展劲头我们不可否认,将来“百分百情感机器人”的问世也许是迟早的事情。

下一页分享更优秀的>>>人工智能对生活的影响论文

人工智能的毕业论文范文

人工智能是20世纪计算机科学发展的重大成就,在许多领域有着广泛的应用。以下是我整理的人工智能的毕业论文范文的相关资料,欢迎阅读!

摘要:人工智能是20世纪计算机科学发展的重大成就,在许多领域有着广泛的应用。论述了人工智能的定义,分析了目前在管理、教育、工程、技术、等领域的应用,总结了人工智能研究现状,分析了其发展方向。

关键词:人工智能;计算机科学;发展方向

中图分类号:TP18

文献标识码:A

文章编号:1672-8198(2009)13-0248-02

1 人工智能的定义

人工智能(Artificial Intelligence,AI),是一门综合了计算机科学、生理学、哲学的交叉学科。“人工智能”一词最初是在1956年美国计算机协会组织的达特莫斯(Dartmouth)学会上提出的。自那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。由于智能概念的不确定,人工智能的概念一直没有一个统一的标准。著名的美国斯坦福大学人工智能研究中心尼尔逊教授对人工智能下了这样一个定义“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。”而美国麻省理工学院的温斯顿教授认为“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”童天湘在《从“人机大战”到人机共生》中这样定义人工智能:“虽然现在的机器不能思维也没有“直觉的方程式”,但可以把人处理问题的方式编入智能程序,是不能思维的机器也有智能,使机器能做那些需要人的智能才能做的事,也就是人工智能。”诸如此类的定义基本都反映了人工智能学科的基本思想和基本内容。即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。

2 人工智能的应用领域

2.1 人工智能在管理及教学系统中的应用

人工智能在企业管理中的应用。刘玉然在《谈谈人工智能在企业管理中的应用》一文中提到把人工智能应用于企业管理中,认为要做的工作就是搞清楚人的智能和人工智能的关系,了解人工智能的外延和内涵,搭建人工智能的应用平台,搞好企业智能化软件的开发工作,这样,人工智能就能在企业决策中起到关键的作用。

人工智能在智能教学系统中的应用。焦加麟,徐良贤,戴克昌(2003)在总结国际上相关研究成果的基础上,结合其在开发智能多媒体汉德语言教学系统《二十一世纪汉语》的过程中累积的实践经验,介绍了智能教学系统的历史、结构和主要技术,着重讨论了人工智能技术与方法在其中的应用,并指出了当今这个领域上存在的一些问题。

2.2 人工智能专家系统在工程领域的应用

人工智能专家系统在医学中的应用。国外最早将人工智能应用于医疗诊断的是MYCIN专家系统。1982年,美国Pittsburgh大学Miller发表了著名的作为内科医生咨询的Internist 2I内科计算机辅助诊断系统的研究成果,1977年改进为Internist 2Ⅱ,经过改进后成为现在的CAU-CEUS,1991年美国哈佛医学院Barnett等开发的DEX-PLAIN,包含有2200种疾病和8000种症状。我国研制基于人工智能的专家系统始于上世纪70年代末,但是发展很快。早期的有北京中医学院研制成“关幼波肝炎医疗专家系统”,它是模拟著名老中医关幼波大夫对肝病诊治的程序。上世纪80年代初,福建中医学院与福建计算机中心研制的林如高骨伤计算机诊疗系统。其他如厦门大学、重庆大学、河南医科大学、长春大学等高等院校和其他研究机构开发了基于人工智能的医学计算机专家系统,并成功应用于临床。

人工智能在矿业中的应用。与矿业有关的第一个人工智能专家系统是1978年美国斯坦福国际研究所的矿藏勘探和评价专家系统PROSPECTOR,用于勘探评价、区域资源估值和钻井井位选择等。20世纪80年代以来,美国矿山局匹兹堡研究中心与其它单位合作开发了预防煤矿巷道底臌、瓦斯治理和煤尘控制的专家系统;弗尼吉亚理工学院及州立大学研制了模拟连续开采过程中开采、装载、运输、顶板锚固和设备检查专家系统Consim;阿拉斯加大学编写了地下煤矿采矿方法选择专家系统。

2.3 人工智能在技术研究中的应用

人工智能在超声无损检测中的应用。在超声无损检测(NDT)与无损评价(NDE)领域中,目前主要广泛采用专家系统方法对超声损伤(UT)中缺陷的性质,形状和大小进行判断和归类;专家在传统超声无损检测与智能超声无损检测之间架起了一座桥梁,它能把一般的探伤人员变成技术熟练。经验丰富的专家。所以在实际应用中这种智能超声无损检测有很大的价值。

人工智能在电子技术方面的应用。沈显庆认为可以把人工智能和仿真技术相结合,以单片机硬件电路为专家系统的知识来源,建立单片机硬件配置专家系统,进行故障诊断,以提高纠错能力。人工智能技术也被引入到了计算机网络领域,计算机网络安全管理的常用技术是防火墙技术,而防火墙的核心部分就是入侵检测技术。随着网络的迅速发展,各种入侵手段也在层出不穷,单凭传统的防范手段已远远不能满足现实的需要,把人工智能技术应用到网络安全管理领域,大大提高了它的安全性。马秀荣等在《简述人工智能技术在网络安全管理中的应用》一文中具体介绍了如何把人工智能技术应用于计算机网络安全管理中,起到了很好的安全防范作用。

3 人工智能的发展方向

3.1 人工智能的发展现状

国外发展现状。目前,AI技术在美国、欧洲和日本发展很快。在AI技术领域十分活跃的IBM公司。已经为加州劳伦斯・利佛摩尔国家实验室制造了号称具有人脑的千分之一的智力能力的“ASCII White”电脑,而且正在开发的更为强大的新超级电脑――“蓝色牛仔(blue jean)”,据其研究主任保罗・霍恩称,预计“蓝色牛仔”的智力水平将大致与人脑相当。麻省理工学院的AI实验室进行一个的代号为cog的项目。cog计划意图赋予机器人以人类的行为,该实验的一个项目是让机器人捕捉眼睛的移动和面部表情,另一个项目是让机器人抓住从它眼前经过的东西,还有一个项目则是让机器人学会聆听音乐的节奏并将其在鼓上演奏出来。由于人工智能有着广大的发展前景,巨大的发展市场被各国和各公司所看好。除了IBM等公司继续在AI技术上大量投入,以保证其领先地位外,其他公司在人工智能的分支研究方面,也保持着一定的投入比例。微软公司总裁比尔・盖茨在美国华盛顿召开的AI(人工智能)国际会议上进行了主题演讲,称微软研究院目前正致力于AI的基础技术与应用技术的研究,其对象包括自我决定、表达知识与信息、信息检索、机械学习、数据采集、自然语言、语音笔迹识别等。

我国人工智能的研究现状。很长一段时间以来,机械

和自动控制专家们都把研制具有人的行为特征的类人性机器人作为奋斗目标。中国国际科技大学在国家863计划和自然科学基金支持下,一直从事两足步行机器人、类人性机器人的研究开发,在1990年成功研制出我国第一台两足步行机器人的基础上,经过科研10年攻关,于2000年11月,又成功研制成我国第一台类人性机器人。它有人一样的身躯、四肢、头颈、眼睛,并具备了一定的语言功能。它的行走频率从过去的每六秒一步,加快到每秒两步;从只能平静地静态不行,到能快速自如的动态步行;从只能在已知的环境中步行,到可在小偏差、不确定环境中行走,取得了机器人神经网络系统、生理视觉系统、双手协调系统、手指控制系统等多项重大研究成果。

3.2 人工智能发展方向

在信息检索中的应用。人工智能在网络信息检索中的应用,主要表现在:①如何利用计算机软硬件系统模仿、延伸与扩展人类智能的理论、方法和技术,包括机器感知、机器思维、机器行为,即知识获取、知识处理、知识利用的过程。②由于网络知识信息既包括规律性的知识,如一般原理概念,也包括大量的经验知识,这些知识不可避免地带有模糊性、随机性、不可靠性等不确定性因素,对其进行推理,需要利用人工智能的研究成果。

基于专家系统的入侵检测方法。入侵检测中的专家系统是网络安全专家对可疑行为的分析后得到的一套推理规则。一个基于规则的专家系统能够在专家的指导下,随着经验的积累而利用自学习能力进行规则的扩充和修正,专家系统对历史记录的依赖性相对于统计方法较小,因此适应性较强,可以较灵活地适应广普的安全策略和检测要求。这是人工智能发展的一个主要方向。

人工智能在机器人中的应用。机器人足球系统是目前进行人工智能体系统研究的热点,其即高科技和娱乐性于一体的特点吸引了国内外大批学者的兴趣。决策系统主要解决机器人足球比赛过程中机器人之间的协作和机器人运动规划问题,在机器人足球系统设计中需要将人工智能中的决策树、神经网络、遗传学的等算法综合运用,随着人工智能理论的进一步发展,将使机器人足球有长足的发展。

4 结语

由上述的讨论我们可以看到,目前人工智能的应用领域相当广泛。无论是学术界还是应用领域对人工智能都高度重视。人工智能良好的发展和应用前景,要求我们必须加大研究和投入力度,以使人工智能的发展能为人类服务。

下一页分享更优秀的<<<人工智能的毕业论文范文

综述 | 人工智能在胃肠疾病和肝病中的应用

Catherine Le Berre 等 摘要 :自2010年以来,人工智能(A I)在医学上的应用取得了实质性进展。人工智能在胃肠病学中的应用包括内镜下病变分析,癌症检测,分析无线胶囊内镜检查中的炎性病变或消化道出血。人工智能还被用于评估肝纤维化,区分胰腺癌患者与胰腺炎患者。人工智能也可以根据多组学数据确定病人的预后或预测他们对治疗的反应。本文综述了人工智能帮助医生做出诊断或确定预后的方法,并讨论其局限性,了解在卫生当局批准人工智能技术之前需要进一步的随机对照研究。 关键词 :深度学习;机器学习;神经网络;消化系统

人工智能没有一个单一的定义,人工智能的概念包含了执行与我们人类智能相关联的功能的程序,比如学习和探索解决问题[1,2]。人工智能、机器学习和深度学习是概念上相互交叉的学科(见图1)。机器学习是一个包括了计算机科学和统计学的广阔学科,机器学习程序重复迭代以应对提高特定任务的性能,产生了分析数据和学习描述和预测模型的算法。供训练的数据大多以表格形式组织,其中对象或个人为行,而变量,无论是数值型还是分类型都是列。机器学习大致可分为监督方法和无监督方法,无监督学习的目的是在不掌握群体的数量或特性的先验知识的前提下,根据数据的共性识别群体。有监督学习在训练数据包含每一个对象的输入—输出对的表征的使用。输入包含个体的特征描述,输出包含要预测的感兴趣的结果,要么是分类任务的类,要么是回归任务的数值。有监督的机器学习算法学习这种输入和输出对的映射关系,在新的输出出现时,自动预测它对应的输出[3]。

人工神经网络(ANN)是受大脑神经解剖学启发的监督ML模型。每个神经元都是一个计算单元,所有神经元相互连接,建立整个网络。信号从第一层(输入)传到至最后一层(输出),可能经过了多个隐含层(见图2)。训练神经网络的过程包括将数据划分为一个训练集,该训练集有助于定义网络的体系结构,并找出节点之间的各种权重,然后是一个测试集,用于评估神经网络预测所需输出的能力。在训练过程中,神经网络内部神经元之间的连接权重被不断优化。对更好性能的不断追求导致了复杂的深度神经网络的诞生[4]。

大多数研究使用1个数据集训练机器学习过程,另一个独立数据集测试其性能。一些研究使用常见的验证方法,例如留一法交叉验证[8]。为增加训练数据,一些研究采用了随即裁剪、调整大小、平移、沿任一轴翻转的数据增强方法。数据集包括了阴性和阳性图像的结果。

目前已经有53项研究使用了AI来检测恶性和癌前肠道病变(表1)。从方法学上看,其中大部分(48项)集中在内镜上,3项研究使用了提取自电子病历的临床和生物学数据(主要包括人口统计数据、心血管疾病、用药情况、消化症状和血液计数情况),1项研究基于血清肿瘤标志物,1项使用肠道微生物群数据。从部位上看,其中,27项研究致力于提高结直肠息肉或癌症的诊断准确性[12-38].19项研究聚焦于诊断上消化道癌前或恶性病变[39-57]。只有4项研究局限于小肠研究[58-61]。3项研究关注了整个消化道[62-64]。从验证方法上看,其中,24项研究采用特殊的验证方法,主要是K折交叉验证。对于以内镜为重点的研究,训练和测试数据集的大小在不同的研究中差异很大。各项研究的性能表现也是差异巨大的(个人认为主要取决于数据集),但大多数算法的精度达到80%以上。 两项已发表的随机对照实验比较了智能与非智能内镜的性能。第一项研究测试了一种实时深度学习系统(WISENSE)的性能,监测食管胃十二指肠镜检查(EGD)中的盲点。一共324名患者被随机分配到有或者没有WISENSE系统的EGD中。在WISENSE组中,准确度达到了90.4%,其盲点率明显比对照组低(5.9% vs 22.5%)[65]。第二项研究探讨了基于DL的自动息肉检测系统在结肠镜检查中的作用,一共1058名患者被随机分配到有或者没有智能辅助系统的诊断性结肠镜检查中。人工智能系统将腺瘤检出率从20.3%显著提高到29.1%,平均每个病人检出的腺瘤数目从0.31增加到0.53[66]。这些结果表明,人工智能系统可用于提高内镜对胃肠道癌前病变的诊断价值。 除了提高诊断准确性外,人工智能还可以帮助医生确定消化道肿瘤患者的预后。一个基于1219例结直肠癌患者的数据集建立的神经网络与传统的COX回归模型相比,提供了更精确的生存时间和影响因素的确定[67],并可用于确定患者远处转移的风险[68]。采用人工神经网络模型对452例胃癌患者进行评估,并以大约90%的准确率确定生存时间[69]。在一项对117例II A期结肠癌根治术后患者的研究中,一种基于神经网络的评分系统,根据肿瘤的分子特征,将肿瘤术后患者分为高、中、低危三组,三组患者十年总体生存率和无病生存率差异显著[70]。深度学习预测局部晚期直肠癌患者对新辅助化疗有完全反应的准确率达80%,这项技术可能被用来识别最有可能从保守治疗或根治性切除中受益的患者[71]。另外,一个基于DL的模型可以根据临床、病理数据及治疗方案,预测1190例胃癌患者5年的生存期。该系统的AUC值为0.92,并确定了肿瘤的分子特征与最佳辅助治疗之间的关系[72]。

AI已经被用于识别炎症性肠病(IBDs)(N=6)[73-78],溃疡(N=6)[79-84],脂泻病(N=5)[85-89],淋巴管扩张(N=1)[90],和钩虫病(N=1)[91],两项研究评估了炎性病变患者的内镜检查结果[92,93]。两项研究使用电子病历来确定患者患腹腔疾病的风险,1项研究使用遗传因素来确定患者患IBD的风险。三分之二(21项中的14项)的研究使用K折交叉验证,以避免数据的过度拟合,这21项中有12项研究的患者的患者准确率约为90%。 许多研究已经验证了AI预测IBD患者治疗反应的能力。Waljee等人利用年龄和实验室数据研发了一种机器学习方法,这种方法的成本较低,且比6-硫鸟嘌呤核苷酸(6-TGN)代谢物测定更准确地预测患者对噻嘌呤的临床反应(AUC 0.86 vs 0.60)[94]。然后,他们根据生物标志物、影像学数据和内镜检查结果,改进了之前的ML模型,以预测接受硫嘌呤治疗的患者的客观缓解。该ML模型优于6-TGN水平的测量(AUC 0.79 vs 0.49)[95]。一种ML模型分析了韦多利单抗治疗溃疡性结肠炎患者的三期临床试验数据,与第6周AUC为0.71的粪便钙保护水平相比。AI能够预测哪些患者将在第52周时在无皮质类固醇的前提下实现内镜下缓解,预测性能的AUC值为0.73。因此,韦多利单抗在前6周的益处不明显时,该算法可用于选择患者继续使用韦多利单抗[96]。另外,还有一种人工智能算法,它将微生物群的数据与临床数据结合起来,确定了IBD患者的临床反应,其预测患者抗整合治疗的AUC为0.78[97]。一种神经网络鉴定溃疡性结肠炎患者在细胞置换治疗后,需要进一步手术的敏感性和特异性分别达到了0.96和0.87[98]。 预测IBD发病或进展的人工智能系统也正在研发中。一种分析克罗恩病患者早期活检图像的神经网络在识别疾病进展的准确性达到了83.3%,预测患者需要手术的准确度达到了86.0%[99]。Waljee等人建立一种ML方法分析电子病历数据,预测6个月内IBD相关的住院和门诊病人使用类固醇的AUC值达到了0.87[100]。人工神经网络预测IBD患者临床复发的频率,具有较高的准确性[101]。

十二项研究已经被用于验证AI在无限胶囊内镜图像中检测小肠出血的能力(表3)[55,102-112]。12项中的8项研究采用特殊的验证技术,主要是K折交叉验证。在这些研究中,9项研究识别小肠出血的准确率超过了90%。 对于急性上消化道出血或下消化道出血的患者,可通过内镜检查轻松确定出血原因,然而,很大一部分病人有反复出血的情况,这需要重复内镜检查和治疗。因此,ML模型被开发以确定有复发性出血风险的患者和最有可能需要治疗的患者,并估计死亡率。这些模型使用临床和/或生物数据,并以大约90%的准确率识别这些患者[113-117]。一种建立在22854名胃溃疡患者的回顾性分析和1265名用于验证的患者基础上的ML模型,能够根据患者的年龄、血红蛋白水平、胃溃疡、胃肠道疾病、恶性肿瘤和感染来确定复发性溃疡出血的患者。模型确定1年内复发性溃疡出血的患者,AUC为0.78,准确率为84.3%。

22项研究测试了AI在辅助胰腺疾病或肝脏疾病诊疗中的能力(表4)。其中关于胰腺癌的AI系统有6项,其中5项研究基于内镜超声[118-122]、1项基于血清标记物[123]。这些研究识别胰腺癌患者的AUC约为90%。16项关于肝脏的研究中7项研究旨在检测与病毒性肝炎相关的纤维化[124-130],6项开发了人工智能策略检测非酒精性脂肪肝[131-136]。2项研究识别食管静脉曲张[137,138]。1项评估患者不明原因的慢性肝病[139]。其中,13项研究使用电子病历和、或生物特征的数据建立算法,3项研究使用弹性成像数据。除2项外,所有研究都使用了特定的验证技术 ,主要是k-折叠交叉验证。这些模型的精度约为80%。 除了提高诊断准确性外,还需要确定病人预后和预测疾病进展的AI方法。Pearce等人建立了一个ML模型,根据APACHE II评分和C反应蛋白水平来预测急性胰腺炎患者的严重程度。他们模型的AUC值达到了0.82,敏感度87%,特异度71%[140]。Hong等人根据急性胰腺炎患者的年龄、红细胞压积、血清葡萄糖和钙水平以及尿素氮水平,创建了一个ANN来评估患者的持续性器官衰竭,准确率达96.2%[141]。Jovanovic等人开发了一种ANN模型,根据临床、实验室和经皮超声检查结果,识别胆总管结石病患者进行治疗性内镜逆行胰胆管造影术的需求,其AUC为0.88[142]。 Banerjee等人开发了一种基于临床和实验室数据的人工神经网络,以90%的准确性确定肝硬化患者将在1年内死亡的可能性,该模型可用于确定肝移植的最佳候选者[143]。Konerman等人基于临床、实验室和病理组织学数据建立了一个机器学习模型,识别慢性丙型病毒感染肝炎患者疾病进展的最高风险,以及肝脏相关性结果(肝相关死亡、肝失代偿、肝细胞癌、肝移植或Child-Pugh评分增加到7分),该模型在1007名患者的验证集中AUC值达到了0.708。Khosravi等人建立了一种神经网络来预测1168名肝移植患者的生存期。该模型可估计1-5年的生存概率,AUC为86.4%,而Cox比例风险回归模型为80.7%[146]。研究人员还利用人工神经网络将肝脏捐献者与接受者配对,从而提供强有力的决策技术[147]。此外,ML模型可以帮助预测对治疗的反应。Takayama等人建立了一种ANN预测慢性丙型病毒感染肝炎患者对聚乙二醇化干扰素a-2b联合利巴韦林治疗的反应,预测的敏感度达到了82%,特异度达到了88%。

人工智能将成为胃肠病和肝病学家诊断患者、选择治疗手段和预测预后的重要手段。许多方法都是在这些目标下发展起来的,并展示出不同的性能水准。由于性能指标的差异,很难比较这些研究的结果。人工智能似乎在内镜下特别有价值,它可以增加对恶性和癌前病变、炎症病变、小肠出血和胰胆紊乱的检测。在肝脏学中,人工智能技术可以用来确定患者肝纤维化的风险,并允许一些患者避免肝活检。 我们的综述只涵盖了PubMed中列出的文章,并且可能错过了计算机科学和医学图像分析期刊上的一些出版物。尽管如此,在过去的20年里,人工智能已经成为胃肠病学和肝脏学研究的重要组成部分。尽管本文的综述的重点是辅助诊断和预后,但是其他研究方向的人工智能也正在被探索,例如基于机器学习的内镜质控评估(盲肠标志,机器学习评估检测结肠镜的后续建议),AI在胃肠道领域的应用也在不断被扩大。 值得注意的是,目前的AI技术受的高质量数据集的缺乏所限制。大多数用于开发ML算法的证据来自临床前研究,目前在临床实践中没有应用。此外,DL算法被认为是黑箱模型,黑箱模型很难理解决策过程,阻止医生发现潜在的混杂因素。考虑道德挑战也很重要,人工智能不知道病人的偏好或法律责任。如果发生内镜误诊,谁有责任-内镜医生、程序员或制造商?此外,在确定与病毒性肝炎有关的肝脏纤维化风险时,种族歧视等固有偏置容易被纳入人工智能算法,特别是在肝脏学领域。在开发人工智能模型时,重要的是要考虑这些因素,并在一系列人群中验证模型。医学总是有内在的不确定性,因此完美的预测是不可能的,一些与人工智能相关的研究空白在胃肠学和肝脏学领域仍有待研究(表5)。 在胃肠病学和肝病学方面,人工智能的发展是没有回头路可走的,未来的影响是巨大的。使用人工智能可以增加在发展中地区的人们获得护理的机会,特别是在评估患者患病毒性肝炎或肠道寄生虫病的风险方面。智能手机可以使用人工智能技术远程监测患者的健康,IBD患者居家测量粪便钙保护素的方法已经被建立[149]。人工智能还可以通过从大型患者数据集中集成分子、遗传和临床数据来识别新的治疗靶点。然而,人工智能不会完全取代医生,人工智能仍将辅助医生工作。虽然机器可以做出准确的预测,但最终,医护人员必须根据病人的喜好、环境和道德为他们的病人做出决定。

科技人工智能论文

人工智能是一项前瞻性科学研究,已经成为ICT产业发展的突破口。以下是我整理的科技人工智能论文的相关 文章 ,欢迎阅读!

人工智能技术推动我国ICT产业发展模式探讨

【摘 要】人工智能是一项前瞻性科学研究,已经成为ICT产业发展的突破口。通过比较国内外ICT产业中人工智能技术研发现状, 总结 我国相关技术和产业的优劣势,有针对性的从国家政策层面和企业层面探讨人工智能技术在促进我国ICT产业发展的对策和建议。

【关键词】人工智能;政策引导;发展模式

0 引言

工信部在2010年工作会议上重点部署了战略性新兴产业的发展,信息和通信技术(Information and Communication Technology, ICT)产业排在首位。当前以智慧城市、智能家居、车联网等构成的物联网、移动互联网等应用为代表的新一代ICT产业不断创新,正在全球范围内掀起新一轮科技革命和产业变革,相关产业布局如图1所示。2013年前后欧美等国家和地区相继启动的人脑研究计划,促进人工智能、神经形态计算和机器人系统的发展。而人工智能就是机器模拟人脑的具体表现形式,以云计算、深度学习、智能搜索等一系列新技术在大规模联网上的应用,已经成为ICT产业进一步发展的重要方向[1-2]。面对人工智能在ICT产业上的迅猛发展,急需对我国在此方面的发展模式进行梳理。

1 国内外人工智能技术在ICT产业的发展现状

从发展脉络看,人工智能研究始终位于技术创新的高地,近年来成果斐然,在智能搜索、人工交互、可穿戴设备等领域得到了前所未有的重视,成为产业界力夺的前沿领域。目前国际ICT产业在人工智能技术上的发展重心涉及以下几个方面。

1.1 搜索引擎方向的发展

信息搜索是互联网流量的关键入口,也是实现信息资源与用户需求匹配的关键手段,人工智能的引入打开了搜索引擎发展的新空间。融合了深度学习技术的搜索引擎正大幅度提升图像搜索的准确率,同时吸纳了自然语言处理和云操作处理技术的搜索引擎,可将语音指令转化为实时搜索结果,另外人工智能搜索引擎可能添加意识情感元素,发展出真正意义上的神经心理学搜索引擎[3]。

从搜索引擎的发展上来看,国内企业起步稍晚,搜索领域较窄,但也有新浪、搜狐、百度、阿里巴巴、腾讯等公司等纷纷运用独特的技术与 商业模式 进行中国式的创新与超越,以及科大讯飞等企事业研究单位在部分方向已经具有了一定的基础,发展态势较好。

1.2 人脑科学助推人工智能技术发展

人工智能技术都是通过机器来模拟人脑进行复杂、高级运算的人脑研究活动。目前基于信息通信技术建立的研究平台,使用计算机模拟法来绘制详细的人脑模型,推动了人工智能、机器人和神经形态计算系统的发展,预计将引发人工智能由低级人脑模拟向高级人脑模拟的飞跃。

谷歌公司早就通过自主研发以及收购等方式来获取人工智能的必要技术,包括使用一万六千个处理器建立的模拟人脑神经系统的、具备学习功能的谷歌大脑。国内该方面的研究发展起步偏重于医学单位,在中华人类脑计划和神经信息学方面具有一定的科研成果,在某些领域达到了国际先进水平,但在新一轮全球人工智能竞赛中,中国至今处于观望和模仿阶段。直至2013年初,百度成立深度学习研究院,提出百度大脑计划,如图2所示,拥有了超越天河二号的超级计算能力,组建起世界上最大的拥有200亿个参数的深度神经网络。作为国内技术最领先的互联网公司,百度此次争得人工智能领域最顶尖的科学家,在硅谷布局人工智能研究,被视为与美国科技巨头直接展开了技术和人才竞争。

1.3 智能终端和可穿戴设备引起产业变革

移动终端通过嵌入人工智能技术破除了时空限制,促进了人机高频互动,穿戴式智能联网设备正在引领信息技术产品和信息化应用发展的新方向。

我国在智能终端和可穿戴设备芯片的研发方面,还处于探索的阶段,特别是大型芯片企业未进行有力的支持。目前只有君正发布了可穿戴的芯片,制造工艺与国际上还有一定的差距。应该说国内芯片现在还是处于刚刚起步阶段,相比市场对可穿戴设备概念的热捧,用户真正能体验到的可穿戴设备屈指可数,大多停留在概念阶段。

1.4 物联网部分领域发展

全球物联网应用在各国战略引领和市场推动下正在加速发展,所产生的新型信息化正在与传统领域深入融合。总的来看,在公共市场方面发展较快,其中智能电网、车联网、机器与机器通信(Machine-To-Machine, M2M)是近年来发展较为突出的应用领域[4]。

物联网涉及领域众多,各国均上升至国家战略层次积极推动物联网技术研发,我国也在主动推进物联网共性基础能力研究和建立自主技术标准。在射频识别(Radio Frequency Identification, RFID)、M2M、工业控制、标识解析等领域已经获得部分知识产权,其中中高频RFID技术接近国际先进水平,在超高频(800/900MHz)和微波(2.45GHz)RFID空中接口物理层和MAC层均有重要技术突破。在标准方面,已建立传感网标准体系的初步框架,其中多项标准提案已被国际标准化组织采纳。作为国际传感网标准化四大主导国(美国、德国、韩国、中国)之一,我国在制定国际标准时已享有重要话语权。

2 我国ICT产业的政策引导

目前ICT产业的应用范围在不断的延伸,政策的制定必须考虑跨行业的需要,加速产业链的分工、合作和成熟。我国ICT企业正紧跟变革、激励创新、发掘内需,再通过突破瓶颈的ICT政策必将迎来新的机遇和发展。

2.1 国家政策方面的引导

世界发达国家纷纷制定ICT产业发展计划,并将其作为战略性新兴产业的重要组成部分。我国急需在国家政策方面进行引导,试图抢占下一程竞争制高点。政策应呈现如下趋势,破除行业间壁垒,加快制定ICT跨行业标准和产业相关政策。

2.1.1 加强政策顶层设计

成立国家级ICT产业发展机构,尽快确立国家ICT中长期发展战略,落实国家级监管机制、产业协同等各方面的工作,促进ICT产业及相关行业的发展。   2.1.2 加强自主创新能力

将战略性新兴产业作为发展重点,围绕其需求部署创新链,掌握核心关键技术,突破技术瓶颈。加强技术集成和商业模式的创新,加快新产品、新技术、新工艺研发应用。

2.1.3 深化科技体制改革

将企业主体地位予以强化,建立以企业为主、以市场为导向、产学研一体化的创新体系。新体系要确保企业为产业技术研发、技术创新决策、成果转化的主导地位,要促进人才、资源、技术等创新要素向企业流动,要主动与产学研机构开展深度合作,要扶植和壮大创新型企业。

2.2 知识产权方面的引导

2.2.1 专利方面

国际专利纠纷在一定程度上提高了国内企业的专利危机意识,但是由于在国内专利长期并未得到重视及专利技术研发周期长,企业对是否有能力实现布局认识不清[5]。初具国际竞争实力的国内企业应该紧抓全球重大的专利收购机遇,快速提升整体竞争力。针对新技术涉及专利问题应加快系统研究,重视前瞻性专利布局。积极探索统一专利池的构建,增强全产业专利授权及谈判能力,探索构建国内企业面临知识产权危机时的商业保护伞机制。一方面强化自身研发投入,另一方面仍需加强产学研结合、实现高校和科研院所的专利对企业转移。

2.2.2 著作权方面

目前版权产业已经成为国民经济新的增长点和经济发展中的支柱产业。世界知识产权组织在与我国国家版权局的合作调研时发现,2013年我国著作权作品登记共845064件,其中软件著作权登记164349件,同比增长超过18%。物联网、云计算、大数据等 热点 领域软件均呈现出了加速增长态势,如物联网软件著作权共4388件,同比增长70.54%,云计算软件著作权共3017件,同比增长55.04%,明显高于软件登记整体增速。虽然我国软件技术正处在一个高速增长期,但存在着低水平重复、起点较低的问题,仍需坚持不懈的进行引导、创新和保护。

3 ICT相关企业实现方式探讨

经过多年的努力积累,在人工智能究领域我国在不再仅是国外技术的跟随者,已经能够独立自主地进行重大问题的创新性研究,并取得了丰硕的成果。今后我国相关企业应进一步拓展人工智能在ICT产业的应用,并加快构建ICT产业生态系统。我国ICT相关企业在整个产业上应该逐步完成以下几个方面。

3.1 政、学、研、产、用全面推进

政府与科研院所建立合作机制。我国已经在制定多个促进产学研合作的计划,目的是将基础研究、应用研究,以及国家工业未来的发展紧密联系起来。大力资助具有应用前景的科研项目,促进大学与产业界联合申请项目,同时对由企业参与投资开发的项目实行重点关注。企业参与高校的科研项目。鼓励实力雄厚的公司通过向高校提供资金、转让科研设备等形式建立合作关系。高校积极参加企业研发项目。提供多种形式的合作方式,如高校教师充当企业顾问、举办学术讲座或参加企业课题研究,公司科研人员到高校进修并取得学位等。随着高校与政府、企业、研发机构合作的不断深入,努力消除校企之间的空间和物理层面的隔阂。探索建立学校、地方、企业、研发机构四位一体的科技创新体系,尽快形成具有特色优势和规模效益的高新技术产业群。

3.2 加强合作、推进新技术的产业化与商用

通信设备企业可与电信运营商、互联网企业加强合作,共同搭建新型试验网络,验证基于融合技术的网络架构在各场景的运行状况,排查可能出现的问题,推进相关技术、设备以及解决方案的成熟与商用化。加大与科研院所、专利中介、行业协会组织的合作,充分利用各方资源优势。企业应着重关注和影响科研院所的研究方向,协助其加强研发的实用性,提高研发质量。可以采取与校企合作开发、企业牵头申报课题,高校参与、企业设立课题由高校认领、建立联合实验室等方式。合作培育应用生态。企业在推进网络控制平台面向标准化的过程中,应充分考虑和吸纳包括电信运营商、互联网企业及其他各类企业的网络应用创新需求,为网络应用生态体系的形成与繁荣创建良好的技术基础与商业环境。

3.3 全力抢占大数据

我国政府已经认识到大数据在改善公共服务、推动经济发展以及保障国家安全等方面的重大意义。2014年《政府 工作 报告 》明确提出,“以创新支撑和引领经济结构优化升级;设立新兴产业创业创新平台”,在新一代移动通信、集成电路、大数据等方面赶超先进,引领未来产业发展。ICT企业在发展大数据的总体思路应该是:首先,明确国家关于大数据发展的战略目标,促进电信、互联网、金融等拥有海量数据的企业与其他行业进行大数据融合,扩展大数据应用领域;其次,在技术方面需要提高研发的前瞻性和系统性,近期重点发展实时大数据处理、深度学习、海量数据存储管理、交互式数据可视化和应用相关的分析技术等[6];第三,集合产学研用各方力量,统筹规划大数据应用,避免盲目发展;最后,解决个人信息的数据安全性需求。

3.4 重点发展云计算

2014年3月,工信部软件服务业司司长陈伟透露我国云计算综合标准化技术体系草案已形成。在政府建立标准化的同时,ICT企业应以企业的角度积极参与到云计算领域研究中,服务国家云产业发展战略。建议向用户充分开放企业平台资源,推进社会云产业发展;加强技术应用深度,将云计算技术着重应用于信息搜索、数据挖掘等领域,逐渐形成社会资源利用方面高效可行的 方法 技术;广泛展开与社会各界合作,推动社会各类数据资源与企业云计算技术的整合应用。云计算企业拥有丰富的软硬件资源、技术资源以及人力资源,并且服务政府信息化建设意愿强烈。应通过与政府社会资源应用需求相结合,充分发挥企业云计算资源在服务政府信息化建设、社会资源应用方面的潜力。

4 小结

发达国家对人工智能技术在ICT产业应用的研究开展较早,为促进人工智能技术的发展和ICT产业相关技术的发展已经提出并实施了一些行之有效的策略,积累了一定的 经验 。本文通过对比国内外在人工智能技术重点方向发展现状,借鉴他国政策与经验,根据我国的国情及产业发展所处的阶段,提出符合我国目前产业发展现状,适合我国的可借鉴的策略,以期为促进我国人工智能技术在ICT产业发展提供参考。

下一页分享更优秀的>>>科技人工智能论文

上一篇:礼赞爱情论文2000字

下一篇:硕士毕业论文盲审多久出结果