细胞科普小论文
细胞科普小论文
人体细胞是人体的结构和功能的基本单位。共约有40万亿-60万亿个,细胞的平均直径在10-20微米之间。除成熟的红血球和血小板外,所有细胞都有至少一个细胞核,是调节细胞生命活动、控制分裂、分化的遗传控制中心。人体细胞中最大的是成熟的卵细胞,直径在200微米左右;最小的是血小板,直径只有约2微米。肠粘膜细胞的寿命为3天,肝细胞寿命为500天,而脑与骨髓里的神经细胞的寿命有几十年,同人体寿命几乎相等。血液中的白细胞有的只能活几小时。在整个人体中,每分钟有1亿个细胞死亡。
关于细胞生物学术论文
细胞生物是指所有具有细胞结构的生物。这是我为大家整理的关于细胞生物学术论文,仅供参考!
细胞因子的生物学活性
关键字: 细胞因子
细胞因子具有非常广泛的生物学活性,包括促进靶细胞的增殖和分化,增强抗感染和细胞杀伤效应,促进或抑制其它细胞因子和膜表面分子的表达,促进炎症过程,影响细胞代谢等。
一、免疫细胞的调节剂
免疫细胞之间存在错综复杂的调节关系,细胞因子是传递这种调节信号必不可少的信息分子。例如在T-B细胞之间,T细胞产生IL-2、4、5、6、10、13,干扰素γ等细胞因子刺激B细胞的分化、增殖和抗体产生;而B细胞又可产生IL-12调节TH1细胞活性和TC细胞活性。在单核巨噬细胞与淋巴细胞之间,前者产生IL-1、6、8、10,干扰素α,TNF-α等细胞因子促进或抑制T、B、NK细胞功能;而淋巴细胞又产生IL-2、6、10,干扰素γ,GM-CSF,巨噬细胞移动抑制因子(MIF)等细胞因子调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节单核巨噬细胞的功能。许多免疫细胞还可通过分泌细胞因子产生自身调节作用。例如T细胞产生的IL-2可刺激T细胞的IL-2受体表达和进一步的IL-2分泌,TH1细胞通过产生干扰素γ抑TH2细胞的细胞因子产生。而TH2细胞又通过IL-10、IL-4和IL-13抑制TH1细胞的细胞因子产生。通过研究细胞因子的免疫 网络调节,可以更好地理解完整的免疫系统调节机制,并且有助于指导细胞因子做为生物应答调节剂(biologicalresponsemodifier’BRM)应用于临床 治疗免疫性疾病。图4-1 细胞因子与TH1、TH2的相互关系(略)
二、免疫效应分子
在免疫细胞针对抗原(特别是细胞性抗原)行使免疫效应功能时,细胞因子是其中重要效应分子之一。例如TNFα和TNFβ可直接造成肿瘤细胞的凋零(apoptosis)’使瘤细胞DNA断裂’细胞萎缩死亡;干扰素α、β、γ可干扰各种病毒在细胞内的复制,从而防止病毒扩散;LIF可直接作用于某些髓性白血病细胞,使其分化为单核细胞,丧失恶性增殖特性。另有一些细胞因子通过激活效应细胞而发挥其功能,如IL-2和IL-12刺激NK细胞与TC细胞的杀肿瘤细胞活性。与抗体和补体等其它免疫效应分子相比,细胞因子的免疫效应功能,因而在抗肿瘤、抗细胞内寄生感染、移植排斥等功能中起重要作用。
三、造血细胞刺激剂
从多能造血干细胞到成熟免疫细胞的分化发育漫长道路中,几乎每一阶段都需要有细胞因子的参与。最初研究造血干细胞是从软琼脂的半固体培养基开始的,在这种培养基中,造血干细胞分化增殖产生的大量子代细胞由于不能扩散而形成细胞簇,称之为集落,而一些刺激造血干细胞的细胞因子可明显刺激这些集落的数量和大小因而命名为集落刺激因子(CSF)。根据它们刺激的造血细胞种类不同有不同的命名,如GM-CSF、G-CSF、M-CSF、multi-CSF(IL-3)等。目前的研究表明,CSF和IL-3是作用于粒细胞系造血细胞,M-CSF作用于单核系造血细胞,此外Epo作用于红系造血细胞,IL-7作用于淋巴系造血细胞,IL-6、IL-11作用于巨核造血细胞等等。由此构成了细胞因子对造血系统的庞大控制 网络。某种细胞因子缺陷就可能导致相应细胞的缺陷,如肾性贫血病人的发病就是肾产生Epo的缺陷所致,正因如此,应用Epo 治疗这一疾病收到非常好的效果。目前多种刺激造血的细胞因子已成功地用于临床血液病,有非常好的 发展前景。
四、炎症反应的促进剂
炎症是机体对外来刺激产生的一种病理反应过程,症状表现为局部的红肿热痛,病理检查可发现有大量炎症细胞如粒细胞、巨噬细胞的局部浸润和组织坏死,在这一过程中,一些细胞因子起到重要的促进作用,如IL-1、IL-6、IL-8、TNFα等可促进炎症细胞的聚集、活化和炎症介质的释放’可直接刺激发热中枢引起全身发烧’IL-8同时还可趋化中性粒细胞到炎症部位’加重炎症症状.在许多炎症性疾病中都可检测到上述细胞因子的水平升高.用某些细胞因子给动物注射’可直接诱导某些炎症现象’这些实验充分证明细胞因子在炎症过程中的重要作用.基于上述理论研究结果’目前已开始利用细胞因子抑制剂治疗炎症性疾病’例如利用IL-1的受体拮抗剂(IL-1receptor antagonist’IL-lra)和抗TNFα抗体治疗败血性休克、类风湿关节炎等,已收到初步疗效。
五、其它
许多细胞因子除参与免疫系统的调节效应功能外,还参与非免疫系统的一些功能。例如IL-8具有促进新生血管形成的作用;M-CSF可降低血胆固醇IL-1刺激破骨细胞、软骨细胞的生长;IL-6促进肝细胞产生急性期蛋白等。这些作用为免疫系统与其它系统之间的相互调节提供了新的证据。
细胞衰老的分子生物学机制
摘要:细胞衰老(cellular aging)是细胞在其生命过程中发育到成熟后,随着时间的增加所发生的在形态结果和功能方面出现的一系列慢性进行性、退化性的变化。细胞衰老是基因与环境共同作用的结果,是细胞生命活动过程的客观规律。为研究细胞衰老分子生物学机制,本文就此展开研究。
关键词:细胞衰老;分子生物学;机制研究
细胞的衰老和死亡与个体的衰老和死亡是两个不同的概念,个体的衰老并不等于所有细胞的衰老,但是细胞的衰老又是同个体的衰老紧密相关的。细胞衰老是个体衰老的基础,个体衰老是细胞普遍衰老的过程和结果。
细胞衰老是正常环境条件下发生的功能减退,逐渐趋向死亡的现象。衰老是生界的普遍规律,细胞作为生物有机体的基本单位,也在不断地新生和衰老死亡。生物体内的绝大多数细胞,都要经过增殖、分化、衰老、死亡等几个阶段。可见细胞的衰老和死亡也是一种正常的生命现象。我们知道,生物体内每时每刻都有细胞在衰老、死亡,同时又有新增殖的细胞来代替它们。
衰老是一个过程,这一过程的长短即细胞的寿命,它随组织种类而不同,同时也受环境条件的影响。高等动物体细胞都有最大增殖能力(分裂)次数,细胞分裂一旦达到这一次数就要死亡。各种动物的细胞最大裂次数各不相同,人体细胞为50~60次。一般说来,细胞最大分裂次数与动物的平均寿命成正比。通过细胞衰老的研究可了解衰老的某些规律,对认识衰老和最终找到延缓或推迟衰老的方法都有重要意义。细胞衰老问题不仅是一个重大的生物学问题,而且是一个重大的社会问题。随着科学发展而不断阐明衰老过程,人类的平均寿命也将不断延长。但也会出现相应的社会老龄化问题以及呼吸系统疾病、心血管系统疾病、脑血管病、癌症、关节炎等老年性疾病发病率上升的问题。因此衰老问题的研究是今后生命科学研究中的一个重要课题。
1 细胞衰老的特征
科学研究表明,衰老细胞的细胞核、细胞质和细胞膜等均有明显的变化:①细胞内水分减少,体积变小,新陈代谢速度减慢;②细胞内酶的活性降低;③细胞内的色素会积累;④细胞内呼吸速度减慢,细胞核体积增大,核膜内折,染色质收缩,颜色加深。线粒体数量减少,体积增大;⑤细胞膜通透性功能改变,使物质运输功能降低。形态变化总体来说老化细胞的各种结构呈退行性变化。
衰老细胞的形态变化表现有:①核:增大、染色深、核内有包含物;②染色质:凝聚、固缩、碎裂、溶解;③质膜:粘度增加、流动性降低;④细胞质:色素积聚、空泡形成;⑤线粒体:数目减少、体积增大;⑥高尔基体:碎裂;⑦尼氏体:消失;⑧包含物:糖原减少、脂肪积聚;⑨核膜:内陷。
2 分子水平的变化
①从总体上DNA复制与转录在细胞衰老时均受抑制,但也有个别基因会异常激活,端粒DNA丢失,线粒体DNA特异性缺失,DNA氧化、断裂、缺失和交联,甲基化程度降低;②mRNA和tRNA含量降低;③蛋白质含成下降,细胞内蛋白质发生糖基化、氨甲酰化、脱氨基等修饰反应,导致蛋白质稳定性、抗原性,可消化性下降,自由基使蛋白质肽断裂,交联而变性。氨基酸由左旋变为右旋;④酶分子活性中心被氧化,金属离子Ca2+、Zn2+、Mg2+、Fe2+等丢失,酶分子的二级结构,溶解度,等电点发生改变,总的效应是酶失活;⑤不饱和脂肪酸被氧化,引起膜脂之间或与脂蛋白之间交联,膜的流动性降低。
3 细胞衰老原因
迄今为止,细胞衰老的本质尚未完全阐明,难以给明确的定义,只能根据现有的认识,从不同的角度概括细胞衰老的内涵。细胞衰老是各种细胞成分在受到内外环境的损伤作用后,因缺乏完善的修复,使“差错”积累,导致细胞衰老。根据对导致“差错”的主要因子和主导因子的认识不同,可分为不同的学说,这些学说各有其理论基础和实验证据[1]。
3.1差错学派 有以下七种学说,有代谢废物积累学说、大分子交联学说、自由基学说、体细胞突变学说、DNA损伤修复学说、端粒学说、生物分子自然交联说等。其中最主要的自由基学说和端粒学说。
3.1.1自由基学说 自由基是一类瞬时形成的含不成对电子的原子或功能基团,普遍存在于生物系统。其种类多、数量大,是活性极高的过渡态中间产物。正常细胞内存在清除自由基的防御系统,包括酶系统和非酶系统。前者如:超氧化物歧化酶(SOD),过氧化氢酶(CAT),谷胱甘肽过氧化物酶(GSH-PX),非酶系统有维生素E,醌类物质等电子受体。机体通过生物氧化反应为组织细胞生命活动提供能量,同时在此过程中也会产生大量活性自由基。自由基的化学性质活泼,可攻击生物体内的DNA、蛋白质和脂类等大分子物质,造成损伤,如DNA的断裂、交联、碱基羟基化。实验表明DNA中OH8dG(8-羟基-2‘-脱氧鸟苷)随着年龄的增加而增加。OH8dG完全失去碱基配对特异性,不仅OH8dG被错读,与之相邻的胞嘧啶也被错误复制。大量实验证明实,超氧化物岐化酶与抗氧化酶的活性升高能延缓机体的衰老。Sohal等(1994、1995),将超氧化物岐化酶与过氧化氢酶基因导入果蝇,使转基因株比野生型这两种酶基因多一个拷贝,结果转基因株中酶活性显著升高,平均年龄和最高寿限有所延长。
英国学者提出的自由基理论认为自由基攻击生命大分子造成组织细胞损伤,是引起机体衰老的根本原因,也是诱发肿瘤等恶性疾病的重要起因。自由基就是一些具有不配对电子的氧分子,它们在机体内漫游,损伤任何于其接触的细胞和组织,直到遇到如维生素C、维生素E、β-胡萝卜素、OPC(原花青素)之类的生物黄酮等抗氧化剂将其中和掉或被机体产生的一些酶(如SOD)将其捕获。自由基可破坏胶原蛋白及其它结缔组织,干扰重要的生理过程,引起细胞的DNA突变。此外还可引起器官组织细胞的破坏与减少[2]。例如神经元细胞数量的明显减少,是引起老年人感觉与记忆力下降、动作迟钝及智力障碍的又一重要原因。器官组织细胞破坏或减少主要是由于自由基因突变改变了遗传信息的传递,导致蛋白质与酶的合成错误以及酶活性的降低。这些的积累,造成了器官组织细胞的老化与死亡。
生物膜上的不饱和脂肪酸易受自由基的侵袭发生过氧化反应,氧化作用对衰老有重要的影响,自由基通过对脂质的侵袭加速了细胞的衰老进程[3]。 自由基作用于免疫系统,或作用于淋巴细胞使其受损,引起老年人细胞免疫与体液免疫功能减弱,并使免疫识别力下降出现自身免疫性疾病。
3.1.2端粒学说 染色体两端有端粒,细胞分裂次数多,端粒向内延伸,正常DNA受损。
3.2遗传学派 认为衰老是遗传决定的自然演进过程,一切细胞均有内在的预定程序决定其寿命,而细胞寿命又决定种属寿命的差异,而外部因素只能使细胞寿命在限定范围内变动。
参考文献:
[1]郭齐,李玉森,陈强,等.脱氧核苷酸钠抗人肾脏细胞衰老的分子机制[J].中国老年学杂志,2013,33(15):3688-3690.
[2]胡玉萍,吴建平.细胞衰老与相关基因的关系[J].中外健康文摘,2012,09(14):35-37.
[3]孔德松,魏东华,张峰,等.肝纤维化进程中细胞衰老的作用及相关机制的研究进展[J].中国药理学与毒理学杂志,2012,26(05):688-691.
科学小论文 <细胞是怎样繁殖的
细胞繁殖
人体内每时每刻都有许多细胞繁殖新生,更换衰老死亡的细胞,以维持机体的生长、发育、生殖、及损伤后的修补。细胞的繁殖是通过细胞的分裂来实现的。连续分裂的细胞从一次分裂完成时开始到下一次分裂完成时为止为一个细胞周期。
分裂的方式可分为三种
一、间接分裂(有丝分裂)
从细胞在一次分裂结束后到下一次分裂之前是分裂间期,细胞周期的大部分时间处于分裂间期,大约占细胞的90%~95%,分裂间期中,细胞完成DNA分子的复制和有关蛋白质的合成。
在分裂渐起结束之后,就进入分裂期。分裂期是一个连续的过程,人们为了研究方便,把分列期分为四个时期:前期、中期、后期、末期。
1、前期; 是细胞分裂的开始。细胞外形一般变圆,中心体的中心粒分离,并向细胞的两极移动。四周出现发射状细丝。核膨大、脱氧核糖酸增多, 核染色加深,不规则的染色质形成丝状染色体,并缩短变粗。核仁及核膜消失,核质与细胞质混合。
2、中期; 两个中心体接近两极,它们之间有丝相连,呈纺锤形,叫纺锤体。染色体移到细胞中央赤道部,呈星芒状排列;后来染色体纵裂为二。
3、后期;已经纵裂的染色体分为两组,由赤道部向两极的中心体方向移动,细胞器亦随之均等分配。趋向两极,细胞体在赤道部开始收缩变窄。
4、末期;染色体移动到两极的中心体附近,重新聚到一起,转变为染色质丝,核膜、核仁、又重新出现。细胞体在赤道部愈益狭窄
植物细胞的有丝分裂与动物细胞类似。但是高等植物细胞中没有中心体,纺锤丝由细胞两级发出。分裂末期不是由细胞膜向内凹陷将两个细胞分开,而是在细胞中央赤道处形成细胞板。
二、直接分裂(无丝分裂)
直接分裂是最早发现的一种细胞分裂方式,早在1841年就在鸡胚的血细胞中看到了。因为这种分裂方式是细胞核和细胞质的直接分裂,所以叫做直接分裂。又因为分裂时没有纺锤丝出现,所以叫做无丝分裂 。只有部分动物的部分细胞可以进行无丝分裂,比如蛙的红细胞。
直接分裂的早期,球形的细胞核和核仁都伸长。然后细胞核进一步伸长呈哑铃形,中央部分狭细。最后,细胞核分裂,这时细胞质也随着分裂,并且在滑面型内质网的参与下形成细胞膜。在直接分裂中,核膜和核仁都不消失,没有染色体的出现,当然也就看不到染色体复制的规律性变化。但是,这并不说明染色质没有发生深刻的变化,实际上染色质也要进行复制,并且细胞要增大。当细胞核体积增大一倍时,细胞核就发生分裂,核中的遗传物质就分配到子细胞中去。至于核中的遗传物质DNA是如何分配的,还有待进一步的研究。
关于直接分裂的问题,长期以来就有不同的看法。有些人认为直接分裂不是正常细胞的增殖方式,而是一种异常分裂现象;另一些人则主张直接分裂是正常细胞的增殖方式之一,主要见于高度分化的细胞,如肝细胞、肾小管上皮细胞、肾上腺皮质细胞等。
一篇关于细胞结构的小论文
细胞结构解读
绝大多数的真核生物细胞都有核、质、膜三个部
分,膜是生命系统的边界,是控制物质交换的门户;质
是新陈代谢的主要中心,质中的细胞器在系统内分工
合作;核是遗传物质贮存和复制的主要场所,也是遗传
性状和新陈代谢的控制中心,是生命系统的控制中心;
各有其重要性,又有其特殊性,相互独立,又相互联系,
构成一个和谐统一的、有机的、复杂的生命系统。
1.1 细胞膜的结构和功能细胞生活在液体环境中,
膜是与外界环境相隔的界线,是保证细胞内化学反应
顺利进行的天然屏障,这与结构有关。
(1)主要的分子组成由磷脂双分子层构成基本
骨架,这种结构的存在就必然有与之相对应的功能存
在,脂溶性物质能够以自由扩散的方式优先通过细胞
膜;在磷脂双分子层中镶嵌有蛋白质分子,这一结构的
存在,也必然有与之相对应的功能存在,蛋白质分子
可作为物质运输载体,从而使膜具有主动运输的功能。
(2)结构特点与功能特性组成细胞膜的磷脂分
子和蛋白质分子大都可以运动,因而决定了细胞膜的
结构特点是具有一定的流动性,细胞膜的功能特性是
具有选择透过性,这是两个不同而又有联系的概念,膜
的流动性存在,既可以使膜中的各种成分需要调整其
组合分布而有利于控制物质出入细胞,又能使细胞经
受一定的变形而不致破裂(如:人体的自细胞能变形穿
过毛细血管壁),具有保护的作用,从而保证了活细胞
完成各种生理功能。细胞膜的流动性是选择透过性的
基础,而活细胞的细胞膜具有选择透过性,是细胞生命
活动的体现,这样就保证细胞按生命活动的需要吸收
和排出物质,而物质透过细胞膜等各项生理功能的实
施,又需要细胞膜的流动性这一结构特点来保障,这就
是结构特点和功能特性的统一。流动性是细胞膜结构
固有的属性,无论细胞是否与外界发生物质交换关系,
流动性总是存在的,而选择透过性是对细胞膜生理特
性的描述,这一特性只有在流动性基础上,完成物质交
换功能方面体现出来。总结如下:(图附在后面)
1.2 细胞质的结构和功能细胞质是细胞结构中的
重要组成部分,是活细胞内新陈代谢的主要场所,也是
同化作用和异化作用发生的主要场所。活细胞中的生
命活动,绝大多数物质的合成和分解,就是发生在细胞
质中,是细胞生命活动最活跃的部位,活细胞中的细胞
质处在流动状态。在亚显微结构下,把细胞质作为一
个整体来研究,实际上细胞质主要包括细胞质基质和
细胞器。本部分内容上连接第一章“生命的物质基
础”(细胞质也是由化学元素和化学元素组成的化合
物而形成的结构),尤其是细胞质中的水分、无机盐、核
苷酸、氨基酸等,进一步体现了生命系统的物质性。该
内容下连接第三章“生物的新陈代谢”中细胞呼吸和
光合作用的重点知识,本部分具有承上启下的作用。
线粒体与细胞呼吸正相关,叶绿体与光合作用正相关。
其余多种细胞器教学中,限于教材,侧重介绍其分布,
结构和功能作简要介绍。最后归类总结出双层膜的、
单层膜的、非膜结构的、生成水的、生成ATP的、含有
DNA的细胞器、“四个场所”。但应凸现出一个重要的
教学理念:物质组成结构,结构决定功能;结构和功能
和谐统一的学科思想。
1.3 细胞核的结构和功能该内容介绍细胞核的组
成及原核细胞的基本结构,前者主要由三个部分核模、
核仁、染色质组成,核膜使核内与质中的化学反应分
开,既相互联系,又相互独立,核膜同样具有选择透过
性,控制细胞质与细胞核之间的物质交换,对细胞核内
物质具有保护作用,膜上的核孔有利于核、质问进行频
繁的、大量的大分子的物质交流,是大分子交换的理想
通道[2];核仁的折光系统强,是真核生物细胞最明显
的标志;染色质与染色体的关系既是重点又是难点,具
有抽象性,是难消化的知识点;都含有DNA分子,是生
物的遗传物质,同样也体现了结构和功能和谐统一。
1.4 细胞质流动的实验指导学生正确使用高倍显
微镜观察黑藻细胞质的流动,观察中为什么只看到叶
绿体,而看不到其他细胞器的原因(叶绿体大,有色
素),为什么只看到叶绿体黑藻细胞边缘流动(成熟的
植物细胞大部分的空间被液泡占有),这都是在实验中
遇到的实际问题。
生物细胞小论文
论细胞生物学的发展 悠悠300余年,关于细胞的研究硕果累累;近50年来更进入了分子水平,老树又绽新花。许多研究成果已经或将要走进我们的生活:植物细胞在培养瓶中悄然长成幼苗;动物体细胞核移植诞生了克隆动物;不同生物细胞间DNA的转移创造出新的生物类型及其产品;病危的生命期盼着干细胞移植的救助…… 现在,生物学在人类的生产生活中的使用愈加广泛。美国细胞生物学家威尔逊曾经说过:“每一个生物科学问题的答案都必须在细胞中。”这句话明显说明了细胞生物学对整个生物科学的研究有着怎样的重要性。细胞生物学的发展,越来越受到人们的重视。 谈起细胞生物学,不得不提的是建立于19世纪的《细胞学说》。《细胞学说》的建立可谓是自然科学史上的一座丰碑。《细胞学说》的两位建立者——德国科学家施莱登和施旺。经过长时间不断的探索和研究,分别从结构、功能和分裂三个方面对细胞进行了探究,并从中提炼出了三个要点,构成了《细胞学说》的主体。《细胞学说》的建立,不仅为达尔文的《进化论》奠定了基础,更为后人对细胞生物学的研究,做出了巨大贡献。 在细胞学说创立的100年间,人们对细胞的研究基本停留在简单观察和形态描述的水平,细胞在生物学家的眼中多多少少还像一团胶状物,里面杂乱地散布着一些含混不清的东西。此时出现了一名科学家——美国的细胞生物学科学家克劳德,他决心把细胞内部的组分分离开,探索细胞内组分的结构和功能。当时分离细胞器所遇到的困难是今天的人们难以想象的。许多人对他冷嘲热讽,认为把好好的细胞弄碎是毫无意义的。但是克劳德坚信,要深入了解细胞的秘密,就必须将细胞内的组分分离出来。经过艰苦的努力,他终于摸索出采用不同的转速对破碎的细胞进行离心的方法,将细胞内的不同组分分开。这就是一直沿用至今的“转速离心法”。 如果说《细胞学说》是通往细胞生物学的一扇门,那么我认为克劳德的“转速离心法”便是这扇门的钥匙。这种方法的发现,使人类对细胞内部的进一步探究,有着非常重要的意义。 随着对细胞内更深入的探究,人类发现了细胞中一个新的世界。细胞中每个组分如此精巧,一个个小小的细胞器,在细胞中都起到了非常关键的作用。霍中和院士在《细胞生物学》中写到:“我确信哪怕最简单的一个细胞,也比迄今为止设计出的任何只能电脑更精巧。”人类也曾经试图组装出一个细胞。1990年,科学家发现人体生殖道支原体可能是最小、最简单的细胞。1995年,美国科学见文特尔领导的研究小组,对这种支原体的基因组进行了测序,发现它仅有480个基因。如果在480个基因中辨认出对细胞生活必不可少的“基本基因”,那么就有希望人工合成这些基因——一段不很长的DNA分子。 文特尔的方法是破坏一个又一个的基因,看那些基因是绝对不可或缺的,终于筛选出了300个对生命活动必不可少的基因,但其中100个基因的重要性尚不清楚。 文特尔以及其他一些科学家认为,如果能人工合成这300个基因的DNA分子,再用一个细胞膜把它和环境分隔开,在培养基中培养,让他能够生存、生长和繁殖,组装细胞就成功了。科学家现在已经能够合成长度为5000个碱基因对的DNA片段,文特尔估计生殖道支原体的DNA的碱基对比这要多100倍,因此,DNA的人工合成还需要方法上的创新。怎样给DNA分子包上细胞膜也是一个难题。他们的设想是,把生殖道支原体细胞的DNA破坏掉,再把人工合成的基因组“注入”支原体细胞。 有关实验还在进行中,不过可以确信的是,人类对细胞生物学的研究愈加深入,对人类今后的发展就愈加有利。通过不断的科学探究和深入研究,我相信在不久的将来,细胞生物学将成为一个重要的科学领域,会吸引更多的人去探索、研究。它也会绽放出他耀眼的光辉,来迎接着这崭新的时代!
上一篇:图书馆杂志退休
下一篇:多元化评价论文