冯诺依曼模型论文
冯诺依曼模型论文
冯诺依曼论文的名称叫冯诺依曼体系结构。
根据冯诺依曼体系结构构成的计算机,必须具有如下功能:
把需要的程序和数据送至计算机中。
必须具有长期记忆程序、数据、中间结果及最终运算结果的能力。
能够完成各种算术、逻辑运算和数据传送等数据加工处理的能力。
能够根据需要控制程序走向,并能根据指令控制机器的各部件协调操作。
能够按照要求将处理结果输出给用户。
为了完成上述的功能,计算机必须具备五大基本组成部件,包括:
输入数据和程序的输入设备
记忆程序和数据的存储器
完成数据加工处理的运算器
控制程序执行的控制器
输出处理结果的输出设备
天才中的全才——冯·诺依曼
冯·诺依曼,著名的匈牙利裔美籍科数学家、物理学家。和化学家。1903年12月28日诞生于匈牙利布达佩斯的一个犹太人家庭。
冯·诺依曼从小就显示出数学和记忆方面的天才,从孩提时代起,冯诺依曼就有过目不忘的天赋,六岁时他就能用希腊语同父亲互相开玩笑。六岁时他能心算做八位数除法,八岁时掌握微积分,在十岁时他花费了数月读完了一部四十八卷的世界史,并可以对当前发生的事件和历史上某个事件做出对比,并讨论两者的军事理论和政治策略 ,十二岁就读懂领会了波莱尔的大作《函数论》要义。
临近考大学时,诺依曼的父亲开始为儿子的职业规划操心。他咨询了许多朋友,其中不乏一些著名的科学家,最终认定了 20世纪是化学工程的世纪。诺依曼却只对数学感兴趣,但他也明白数学家在匈牙利前景并不算好。为了达成双赢的共识,两人商讨后,决定同时修两门学科。
其后的四年间,冯·诺依曼在[布达佩斯大学]注册为数学方面的学生,但并不听课,只是每年按时参加考试,考试都得A 。与此同时,冯·诺依曼进入柏林大学(1921年),1923年又进入瑞士苏黎世联邦工业大学学习化学。1926年他在苏黎世联邦工业大学获得化学方面的大学毕业学位,通过在每学期期末回到布达佩斯大学通过课程考试,他也获得了布达佩斯大学数学博士学位。
逗留在苏黎世期间,冯·诺依曼常常利用空余时间研读数学、写文章和数学家通信。在此期间冯·诺依曼受到了希尔伯特和他的学生施密特和外尔的思想影响,开始研究数理逻辑。当时外尔和波伊亚两位也在苏黎世,他和他们有过交往。一次外尔短期离开苏黎世,冯·诺依曼还代他上过课。聪慧加上得天独厚的栽培,冯·诺依曼在茁壮地成长,当他结束学生时代的时候,他已经漫步在数学、物理、化学三个领域的某些前沿。
1926年春,冯·诺依曼到哥廷根大学任希尔伯特的助手。1927~1929年,冯·诺依曼在柏林大学任兼职讲师,期间他发表了集合论、代数和
二次大战欧洲战事爆发后,冯·诺依曼的活动超越了普林斯顿,参与了同反法西斯战争有关的多项科学研究计划。1943年起他成了制造原子弹的顾问,战后仍在政府诸多部门和委员会中任职。1954年又成为美国原子能委员会成员。
1955年的夏天,X射线检查出他患有癌症,但他还是不停的工作,病势扩展。 后来他被安置在轮椅上,继续思考、演说及参加会议。长期而无情的疾病折磨着他,慢慢地终止了他所有的活动。1956年4月,他进入华盛顿的沃尔特·里德医院,1957年2月8日在医院逝世,享年53岁。
冯诺依曼理论的要点是:数字计算机的数制采用二进制;计算机应该按照程序顺序执行。人们把冯诺依曼的这个理论称为冯诺依曼体系结构。从ENIAC(ENIAC并不是冯诺依曼体系)到当前最先进的计算机都采用的是冯诺依曼体系结构。所以冯诺依曼是当之无愧的数字计算机之父。
1928年冯·诺依曼发表了论文《集合论的公理化》,是对上述集合论的公理化处理。该系统十分简洁,它用第一型对象和第二型对象相应表示朴素集合论中的集合和集合的性质,用了一页多一点的纸就写好了系统的公理,它已足够建立朴素集合论的所有内容,并借此确立整个现代数学。冯·诺依曼的系统给出了集合论的也许是第一个基础,所用的有限条公理,具有像初等几何那样简单的逻辑结构。冯·诺依曼从公理出发,巧妙地使用代数方法导出集合论中许多重要概念的能力简直叫人惊叹不已,所有这些也为他未来把兴趣落脚在计算机和“机械化”证明方面准备了条件。
20年代后期,冯·诺依曼参与了希尔伯特的元数学计划,发表过几篇证明部分算术公理无矛盾性的论文。l927年的论文《关于希尔伯特证明论》最为引人注目,它的主题是讨论如何把数学从矛盾中解脱出来。文章强调由希尔伯特等提出和发展的这个问题十分复杂,当时还未得到满意的解答。它还指出阿克曼排除矛盾的证明并不能在古典分析中实现。为此,冯·诺依曼对某个子系统作了严格的有限性证明。这离希尔伯特企求的最终解答似乎不远了。恰在此时,1930年哥德尔证明了不完全性定理。定理断言:在包含初等算术(或集合论)的无矛盾的形式系统中,系统的无矛盾性在系统内是不可证明的。至此,冯·诺依曼只能中止这方面的研究。冯·诺依曼还得到过有关集合论本身的专门结果。他在数学基础和集合论方面的兴趣一直延续到他生命的结束。
在1930~1940年间,冯·诺依曼在纯粹数学方面取得的成就更为集中,创作更趋于成熟,声誉也更高涨。后来在一张为国家科学院填的问答表中,冯·诺依曼选择了量子理论的数学基础、算子环理论、各态遍历定理三项作为他最重要数学工作。算子环理论始于1930年下半年,冯·诺依曼十分熟悉诺特和阿丁的非交换代数,很快就把它用于希尔伯特空间上有界线性算子组成的代数上去,后人把它称之为冯·诺依曼算子代数。
1940年,是冯·诺依曼科学生涯的一个转换点。在此之前,他是一位通晓物理学的登峰造极的纯粹数学家;此后则成了一位牢固掌握纯粹数学的出神入化的应用数学家。他开始关注当时把数学应用于物理领域去的最主要工具——偏微分方程。研究同时他还不断创新,把非古典数学应用到两个新领域:对策论和电子计算机。
冯·诺依曼研究过气象学。有相当一段时间,地球大气运动的流体力学方程组所提出的极为困难的问题一直吸引着他。随着电子计算机的出现,有可能对此问题作数值研究分析。冯·诺依曼搞出的第一个高度规模化的计算,处理的是一个二维模型,与地转近似有关。他相信人们最终能够了解、计算并实现控制以致改变气候。
冯·诺依曼还曾提出用聚变引爆核燃料的建议,并支持发展氢弹。1947年军队发嘉奖令,表扬他是物理学家、工程师、武器设计师和爱国主义者。
冯·诺依曼不仅曾将自己的才能用于武器研究等,而且还用于社会研究。1928年,冯·诺依曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。由他创建的对策论,无疑是他在应用数学方面取得的最为令人羡慕的杰出成就。现今,博弈论主要指研究社会现象的特定数学方法。它的基本思想,就是分析多个主体之间的利害关系,1944年,冯·诺依曼和摩根斯特恩合著的《博弈论和经济行为》是这方面的奠基性著作。将二人博弈推广到n人博弈结构并将博弈论系统的应用于经济领域,从而奠定了这一学科的基础和理论体系。论文包含了博弈论的纯粹数学形式的阐述以及对于实际应用的详细说明。这篇论文以及所作的与某些经济理论的基本问题的讨论,引起了对经济行为和某些社会学问题的各种不同研究,时至今日,这已是应用广泛、羽毛日益丰盛的一门数学学科。有些科学家热情颂扬它可能是“20世纪前半期最伟大的科学贡献之一”。
对冯·诺依曼声望有所贡献的最后一个课题是电子计算机和自动化理论。
计算机工程的发展也应大大归功于冯·诺依曼。计算机的逻辑图式,现代计算机中存储、速度、基本指令的选取以及线路之间相互作用的设计,都深深受到冯·诺依曼思想的影响。他不仅参与了电子管元件的计算机ENIAC的研制,并且还在普林斯顿高等研究院亲自督造了一台计算机。
在冯·诺依曼生命的最后几年,他的思想仍甚活跃,他综合早年对逻辑研究的成果和关于计算机的工作,把眼界扩展到一般自动机理论。他以特有的胆识进击最为复杂的问题:怎样使用不可靠元件去设计可靠的自动机,以及建造自己能再生产的自动机。从中,他意识到计算机和人脑机制的某些类似,这方面的研究反映在西列曼讲演中;逝世后才有人以《计算机和人脑》的名字,出了单行本。尽管这是未完成的著作,但是他对人脑和计算机系统的精确分析和比较后所得到的一些定量成果,仍不失其重要的学术价值。
关于冯.诺依曼的介绍?
约翰·冯·诺依曼出生于匈牙利的美国籍犹太人数学家,现代电子计算机与博弈论的重要创始人,在泛函分析、遍历理论、几何学、拓扑学和数值分析等众多数学领域及计算机学、量子力学和经济学中都有重大贡献。
冯·诺伊曼从小就以过人的智力与记忆力而闻名。冯·诺伊曼一生中发表了大约150篇论文,其中有60篇纯数学论文,20篇物理学以及60篇应用数学论文。他最后的作品是一个在医院未完成的手稿,后来以书名《计算机与人脑》发布,表现了他生命最后时光的兴趣方向。
扩展资料
学术成就:
1、遍历论
遍历论主要涉及动态系统和不变测度。1932年,冯诺依曼发表了一系列有关遍历论的论文,为遍历论的理论基础做出了贡献。[3]保罗·哈尔莫斯在1932年的一篇遍历论文章中指出“假使冯诺依曼在其它领域没有成就,光这些也足以让他在数学史上留下不朽之名”。
2、算子理论
冯诺依曼在“冯诺依曼代数”中提出了“算子环”的概念。冯诺依曼代数是一种定义于希尔伯特空间的有界算子的星代数,近似于弱算子拓扑,且包含有恒等算子。以他命名的冯诺依曼二重交换元定理表明弱算子拓扑中闭包的分析学定义会与其二重交换元所成集合的纯代数学定义等价。
参考资料来源:百度百科-冯.诺依曼
上一篇:时尚杂志有什么用
下一篇:时尚杂志风ppt