实证论文样本
实证论文样本
做实证研究样本至少选一些代表性的
从统计上说,至少30才可以,才算大样本。但是还是要看变量数,原则上说样本数至少比变量数多一个,这些是样本的最低要求。
对于研究生毕业论文,对数据样本的选择可以根据研究课题进行调整,通常分析的的问题越复杂需要的数据量就会越大
小包法律实证分析系统,帮助研究者进行数据收集、数据清洗、数据验证,可以创建如线性回归方式的高级模型,可以不断调整数据使实证显著。
实证论文中问卷调查样本数量最佳范围是多少?
问卷样本数量在500-1000即可,太多了数据差异性不明显,太少了没有信度。
首先,取决于样本总体的广泛性,比如研究汉族和藏族学生,那样本量差异就很大。因为汉族学生的总体很庞大,要想获得一个具有代表性样本,显然需要很大的样本量。而藏族学生的总体很少,相对少的样本量理论上代表性也可能比较好了。
那么样本量如何确定呢,主要有以下几个因素:
1、总体指标的变异情况。这会影响到应答率的准确率,从而对样本量产生影响,在计算样本的过程中,还要考虑好以下几个重要环节。
2、预测值要有一定的精确度。因为抽样误差的大小会直接影响到估计值的准确程度。
3、一是为保证抽样率的准确性,必须要做好抽样推断,使之有一定的可信度;在确定样本后,样本量的计算是一个很关键的问题,需要一个科学的公式,是专业性的。总体来主,样本量要根据估计的域的多少来决定样本量的多少。
4、总之样本量的确定要遵循一人原则,即:精度和费用的互相作用,费用一定精度最高,精度一定费用最低。
5、而样本的收集与整理可以上各大问卷网站或者沃销众填上解决,也可以加入QQ、微信群免费互填问卷。
6、这里介绍一个公式,对于已知数据为绝对数,我们一般根据下列步骤来计算所需要的样本量。已知期望调查结果的精度(E), 期望调查结果的置信度(L),以及总体的标准差估计值σ的具体数据,总体单位数N。
计算公式为:n=σ2/(e2/Z2+σ2/N)。
特殊情况下,如果是很大总体,计算公式变为:n= Z2σ2/e2。
实证论文怎么写
关于实证论文怎么写如下:
前奏
实证的文章首先要有数据,没有数据一切都是虚构。所以,先把数据处理好。处理数据分两个基本步骤,第一为数据清理;第二为数据计算。这里没有统一的标准应当如何处理数据,但有一个基本要求就是做好识别。
技巧是,要么你借用比较成熟的理论模型,由理论模型到计量模型。这样不会有太大的偏差。如果是自己构建计量模型,那么要自己严格按照统计和计量要求做,对模型的假设前提与限制有全面准确的理解。
研究问题
假设所有模型构建、数据分析、稳健性检验都完成了,这个时候你要动笔写论文。在这个阶段,你要做的第一件事情是搞清楚自己在研究什么问题!
其实,确认研究问题应该在处理数据之前,否则你很难想象连问题都不知道,你如何处理庞大的原始数据。我之所以把数据处理放在确定问题之前,主要是基于现实的情况。
方法论
当你有了实证结果又确认了自己的研究问题是不是就万事俱备了呢?不,至少,在这个阶段,你还不能动笔写论文。
你必须要明白,论文的成功不仅仅依靠“完美”的实证结果!任何实证结果都像是大厨做出的菜,一位厨艺高超的师傅可以用普通原料烹制出美味佳肴。所以,“完美”的结果有时候只能蒙外行,却不能欺骗审稿人。
这里,我强调逻辑推理与阐述问题时的语言流畅性。不要小看这两个问题,用什么样的叙事结构去组织文章很大程度上决定了文章的档次。
在论文主体部分,应当注意,问题的提出和解决必须严格按照逻辑顺序,要有写“小说”的心态,做好铺垫,突出重点,善于总结。时时刻刻注意论文的走向,并且确保读者(甚至是外行)可以通过你的引导轻松抓住文章的重点要点(即使他们未必理解所有经济学术语和计量方法)。
提纲与计划
在解决了数据、论题、方法论之后,你可以开始制定计划。这种计划不是那种空而无物的标题式提纲,必须在每一个段落明确写作目的,明确所用模型(或其他方法)的假设与限制,明确写作的要点。
完成计划初稿后,不要动笔。两天之后修改计划。再两天之后交给其他人修改。一周之后自己再修改,与导师(或者其他有经验的同行)商议定稿。
写作与发表
接下来,按照提纲扩充论文,具体步骤将在下一段中详细展开。论文完成之后,不要立刻修改。等两周,等自己把一些固有想法淡忘之后再复读论文进行第一次修稿。将第二稿给同事修改,返回后再次修改。
严格地说,在大修改之后,应该再次做报告以确认修改是成功有效的。隔一段日子,对论文重新进行修改,定稿。一般论文从初稿写作完成到投递刊物应该有3-6个月。
投递之后,如果通过初审那么一般会要求作者再次修改(一次就刊发的稿子很少很少),那么接下来就是漫长的修改与等待了。
细节与步骤
一般实证论文分为:摘要、引言、理论框架、实证部分、总结五大部分,其中实证部分可以分为数据描述、实证模型、实证结果、稳健性检验。
最后写作摘要和引言,这是惯例。一般应该先写作理论框架,随后可以确定方法,然后解释模型的设定和数据情况,最后报告结果与稳健性结论。
尾声
实证性文章的结果是报告参数,但其实这些参数的具体值并不重要。这话也许很矛盾,既然我们的工作是围绕着参数进行的,为什么具体值又不重要呢?
第一,这些参数解决不了实际问题。它们不是圆周率的pai值,也不是物理中的g值。就算你计算出了一个很重要的参数,又能如何呢?
第二,参数的解读可以帮助我们理解经济学问题或者现象。从这个角度说, 解读比数字本身重要。
第三,由于国别(或者地区)差异,很多参数并不具备普遍性,也很难真正解释世界。不能夸大参数的作用。为了达到某种效果,无限夸大参数估计的力量,会使很多人迷失方向。
上一篇:格言期刊目录
下一篇:东华大学学报格式