数学文化论文思路
数学文化论文思路
数学是一种文化,数学文化是人类社会优秀的、先进的文化。下文是我为大家整理的关于数学文化的论文范文的内容,欢迎大家阅读参考!
浅谈数学文化建设
摘要 随着新课改的不断深入,数学文化在小学数学教学中的地位和作用显得越来越重要。本文从教师数学文化素养、教材数学文化建设、教学数学文化渗透三个方面对小学数学文化建设作了探索,希望能给新课改提供借鉴和启示。
关键词 小学数学教学;数学文化;数学文化建设
数学是人类的文化,数学文化表现在数学的起源、发展、完善和应用的过程中。新课标指出:“数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。”数学文化的核心是数学产生、发展的历史进程中,逐步沉淀下来的数学思考,数学观念,数学品质。因此,就小学数学教学而言,小学数学文化的建设显得尤为重要。下面是我关于小学数学文化建设的几点思考。
一、小学数学教师数学文化素养
数学新课程精神强调:数学课程应展示数学文化的魅力,即展示数学文化的悠久历史,展示数学文化的博大精深,展示数学家的探索精神,展示数学文化的美学价值。作为数学文化传播者的小学数学教师,其自身的数学文化素养是决定小学数学文化建设的关键因素。
1.强化数学文化意识
数学之于文化好比种子之于土壤,是厚重的人类历史文化孕育了今天的数学。无论是从数学本身的发展看,还是从数学对社会与人类进步的作用看,数学文化的教育功能都是非常重要的。数学文化的教育功能主要包括四个方面:(1)使学生真正理解数学的本质;(2)发展学生理性精神;(3)培养学生创新精神;(4)培养学生审美能力。所以,小学数学教师首先要强化自身的“数学文化”意识,树立学生的“数学文化”意识。如果只掌握专业知识而没有深厚的数学文化底蕴,那他的数学王国将成为无源之水、无本之木。数学家们有这样一种观点:三流的教师传授知识,二流的教师传授技巧,一流的教师传授思想方法,而超级大师传播数学文化。
2.加强数学文化学习研究
小学数学教师仅仅具有“数学文化”意识是远远不够的,还必须认真地系统学习与研究数学文化,切实把它当做一项系统工程来做。
学习研究数学文化的发展历史,可以从中汲取丰富的数学文化养分,提高自身的数学素养。比如,最早系统提出数学文化观的美国数学家怀尔德()的《数学概念的进化》和《作为文化体系的数学》、美国著名数学教育家M・克莱因的《西方文化中的数学》、《古今数学思想》和《数学―――确定性的丧失》,郑毓信的《数学文化学》,方延明的《数学文化导论》,黄秦安的《数学哲学与数学文化》,齐民友的《数学与文化》,张顺燕的《数学的源与流》,张奠宙的《20世纪数学经纬》等国内外著作,都为我们的数学文化研究指明了方向。其次,学校要通过数学文化的知识培训、讲课比赛、外出交流等方式,切实为小学数学教师提供更多学习研究展示数学文化的机会与平台。
二、小学数学教材数学文化建设
除了应该不断加强数学文化的研究学习,自觉提高自身数学文化素养外,还必须认真进行教材研究,并着力推进教材数学文化校本化建设。
1.教材数学文化建设研究
在自身具有一定数学文化素养基础上,小学数学教师还需要下大力气深入研究小学数学教材,充分挖掘教材中数学文化的丰富内涵。只有将课本中枯燥的、抽象的数学问题经过自己的“加工、提炼、再创造”,才能还原成原汁原味的生活问题生动地呈现给学生,把他们带进一个绚丽多彩的数学皇宫,让他们感受数学丰富的方法、深邃的思想、独特的艺术之美,分享数学前行足迹中的创造、超越及其背后折射出的人类智慧和人性光芒,真正实现探索数学本质的理性回归。
2.教材数学文化校本化建设
鉴于地域不同和学生差异,地区的发展状况、学生的生活背景不尽相同,因此教师通常需要对手头使用的教材加以改进,适应自己的课堂教学的需求。为此宜在本地区组织数学骨干教师,充分挖掘教材中所隐藏的数学文化意蕴,使数学内容充满浓郁的生活气息和文化气息,从而使学生体会到数学与自然、与社会、与生活的密切相关性,重视学生数学知识与现实生活的有机结合,重视学生的情感、态度、价值观等人本教育,重视学生动手实践、合作交流、自主探索、创新能力的培养,彰显数学的文化价值和教育价值。只要不断探索和完善,就能开发出适合本地区特色的数学校本教材。
三、小学数学教学数学文化渗透
为加强小学数学文化建设,学校要采取多种方法形成“数学文化场”,使数学文化真正走进校园、走进课堂。
1.校园数学文化渗透
数学文化是校园文化的一个重要组成部分,数学文化是培养学生文化素养的重要载体。学校可通过校园文化平台、校园网络平台、多媒体平台等多种方式倾力打造“数学文化场”,形成浓郁的数学文化氛围,使数学文化真正走进校园。学校可通过数学板报、班级数学网页、数学角、数学晚会、数学文化节、数学文化读本、数学长廊等多种形式丰富学生的校园生活,推进校园数学文化建设,提升数学文化的品位,潜移默化地渗透数学文化。
2.课堂数学文化渗透
传统的数学教学忽视了数学文化的重要作用。在教学目标上,往往只重视数学知识传授和技能训练而忽视情感、态度、价值观等人文教育;在教学内容上,过分拘泥于知识的逻辑性,思维的抽象性,忽视数学知识与学生生活的有机结合,忽视数学学习和学生情感体验的有机融合;在学习方式上,学生往往是被动接受、机械练习,缺少动手实践、自主探索的机会,忽视挖掘数学文化内涵,培养学生主动参与数学学习的意识和兴趣。
数学教师只有不断提高自身的数学文化素养、加强数学文化研究,才能更好地将数学文化渗透于课堂教学中,让学生更好地体验数学、理解数学、热爱数学,实现数学文化的科学价值和人文价值的真正回归。
参考文献:
[1]M・克莱因著.张祖贵译.西方文化中的数学[M].上海:复旦大学出版社,2010.
[2]郑毓信,王宪昌,蔡仲.数学文化学[M].成都:四川教育出版社,2011.
浅析数学教育中渗透数学文化
摘 要:随着新课改的深入,数学课堂中的种种问题凸显出来。本文从数学文化的角度来反思了我国的数学教育,得出了一些结果。我们的数学教育不光是要教学生们加减乘除,更多的是要通过我们的数学教育,培养学生具有数学的精神、数学的思维、数学解决问题的方法。
中关键词:数学文化 价值 精神 兴趣
古老的中华民族早就有数学文化的传统,并闪闪发光,而我们在初高中所接触的数学却是丝毫提不起学生的精神,那我们的数学教育究竟有什么问题呢?为什么在别人的眼里我们国家的数学教育是那么成功,而我们国人却把我们的数学教育批评得一文不值、学生学得那么痛苦?通过学习数学文化这门课,我对这个问题有了深入的思考。
很多中学生认为数学不好,没什么用,只是考试的工具,每天把他们的头都学疼了。是我们的数学无用无趣,还是我们的学生意识不到数学的价值与乐趣?以前的我,也是对数学厌烦,没有好感,像很多学生一样,只是迫于高考才学习数学。但是自从学了数学文化这门课后,我才知道原来数学这么有价值、有用,而且历史悠久。数学的魅力让我赞叹。蜗牛、波浪、植物、蜘蛛网、建筑物,几乎一切事物都有数学的影子。
数学无处不在。有了数学才让建筑物妙不可言,有了数学才让预测如此准确,有了数学才让科学的宝塔如此坚固。我们的哲学家赞美数学,我们的科学家喜欢数学,可是怎么才能让我们的中小学生热爱数学呢?
数学作为一种文化,它不仅仅包括我们中小学生每天接触的加减乘除,还包括其他宝贵丰富的内容。例如,数学精神,它也是数学文化的一部份。日本数学家、数学教育家米山国藏就曾提出过七种数学精神,其中包括应用化的精神、扩张化的精神、系统化的精神、致力于发明发现的精神、统一建设的精神、严密化的精神以及思想经济化的精神。[1]虽然说我们不能完全体会到数学的所有精神,但是数学所具有的独特的精神足可以让我们赞叹不已。
没有一个学科可以像数学这样言简意赅却严密、不可击破。我们要学会欣赏数学这种简单、严密的美。这就要求我们教育工作者,不仅仅教授我们学生那些运算、定理,还要传递给我们学生数学的精神、数学的美。记得上数学文化课时,梅老师曾说:“我们的传统数学教育的一个弊端就是向我们的学生提供的更多的是符号变换方面的知识与技能。”其实,我们完全可以去教给学生那些知识,但是当我们在教的时候,应该引导学生去欣赏数学的美。
数学有了符号去抽象表达事物、定理,数学就有了这种简单、朴素的美。我们知道一种知识它越抽象,它就越具有概括性与普适性,也就越有用、越高级。当我们的学生学会欣赏数学的这种简单美,他也就不会那么讨厌数学了,同时,我们的数学教育也会更进一步。
数学家的理性思维、锲而不舍的探索精神也是值得学生去学习的。例如,欧拉是科学史上最多产的一位数学家,他十九岁开始发表论文,直到七十六岁,他一生共有八百多本著作和论文。他三十一岁右眼失明,晚年视力极差,最终双目失明,也没有停止对数学的研究与创作。如果我们的学生了解了欧拉,再来学习他的公式定理,那么我们的教学一定会取得成功。[2]学生要在数学这块土壤上汲取的营养太多太多,而不仅仅是课本上的定理。数学文化需要去丰富我们的数学课堂,我们的数学教育要多方面开展。
数学作为一种文化,它有着悠久的历史。从古至今,在这漫长的时间旅途中,出现了多少数学伟人,创造了多少有利于人类发展的文明成果。例如,欧拉公式和欧拉解决的著名哥尼斯堡七桥问题,黄金分割比的发现,我们中国的祖冲之与他的圆周率、刘徽的割圆术等等这些数学成果都为我们人类的文明发展做出了卓越贡献。就像我上高中时一样,有很多学生和我一样都不知道数学这些悠久灿烂的文明以及它们的重大意义。
其实,每一次数学的重大发现,都会推动历史的脚步向前发展。我们的学生要更多地了解数学的历史,了解数学家的事迹,了解那些对我们有过重大意义的数学发明发现。历史是一面镜子,如果我们不知道历史,我们就会对现在的东西不相信,不感兴趣,不珍惜。如果我们知道了它的历史,我们就会更好地认识今天的事物,去珍惜、学习它。我们的教师要多让我们的学生了解数学的历史,给学生们提供学习的机会。例如,在高一数学第一章《集合与函数概念》时,我们的教师可以先插入康托创立的集合论的历史知识。
这样的教学,就会改变传统的一味授受知识的境况,不仅教师讲得有趣,学生听得也有味。虽然说这样的教学好,但是这给我们的教师带来了难度与挑战,所以很多教师即使知道这样好也不愿意这样做。我们的教育者要真正担负起教书育人的职责,既然你来当教师,你就要对你的学生负责,对你自己负责。不要应付教学的差事,而是要在平常课余时间多看些有关自己科目的书,了解一下它的历史,它的名人趣事,这样才会在教学时有话可讲。我们的学生才会愿意听课,愿意学习,这样才能使我们的数学课堂生气盎然。
数学作为一种文化,它的作用、价值无处不在。我们要让学生了解数学的价值,从而给予他们学习数学的动力。可以这样说,如果一个人不懂得数学,不懂得数学文化,他将不能在未来这个世纪生存。数学促进了整个社会的发展,同时社会的发展离不开数学。数学被应用在各个领域,艺术品的设计、建筑物的创造、国家财政的预算、统计工作的完成都离不开数学。我们的学生知道了数学的价值如此之大,他就会自觉自动地去学习数学了。
当学生看到了他所要学习的东西的效益,他就会对它抱以积极的兴趣。那么就需要我们的教育工作者在传递知识的同时,还要向我们学生展示数学的价值。比如我们在讲授数学知识时,可以联系生活中的实例来激发学生的学习兴趣,例如购房分期付款问题等。总之,数学教育就是要贴近生活、贴近自然,让学生自己去体会数学的价值。
没有数学的创新,也就没有科技的创新。我们的教育工作者也可以在上课时多教授学生依靠数学科技进步的例子,让学生认识到数学的巨大价值,意识到数学离我们不远,数学就在我们身边。同学们可以自己利用数学去创新,可以是在学科内部,也可以是跨学科的,我们现在就可以学以致用。如果我们同学都意识到这一点了,我们民族也就有了希望。
年过花甲、有着四十年教龄的天津著名教师王连笑曾经说过:“数学不仅是计算、解题,数学中还包括学科思想文化、科学的思维方法以及人生哲理。对于学生来说,这些比数学知识本身更重要。教师不可能将每一个学生都培养成数学家,但是可以做到使每一个学生学会欣赏数学之美,感受数学带来的快乐。作为一名数学教师,不仅要教会学生数学的理性思维,更应将美好的人类情感交给学生,滋润学生的心灵。”[3]是的,我们的数学教育并不是把学生都培养成数学家,我们的教育工作者要开阔学生的视野,丰富课堂教育,提高我们学生对数学的认识,增强他们对数学的好感。
总结
我们国家今天的中小学生数学基础教育已经很成功了,人们都说我们到任何一个国家去,我们国家的小孩数学过硬。但为什么我们的数学教育不好呢?我们的数学教育缺的已不是那些加减乘除,缺的更多的是数学精神、数学思维、数学方法。数学文化需要灌注课堂,课堂需要数学文化。只有充满了数学文化气息的数学课堂才是飞舞的,洋溢着活力的。
参考文献:
[1]数学课程教材研究开发中心.数学文化[M].人民教育出版社,2003,第49页.
[2]徐秀兰.数学教学中如何渗透数学文化[J].科教文汇,2007,(3).
[3]天津教育.2007,(1).
如何写好数学教学论文?
如何写好数学教育论文
华南师范大学数学系 何小亚
一、数学教育论文的基本结构
标题
(论文中心内容的概括,要求确切、恰当、鲜明、简短、精炼,一般不超过20字)
作者名(单位名、省、市、邮政编码)
摘要:
[ 摘要的内容应全部源自论文本身,是论文内容的高度“浓缩”,使读者能迅速了解论文的主要内容。它要求准确、简明扼要(一般不超过300字)、独立完整、客观陈述(不能以第三者的口气进行介绍、评论,如“文章认为……”、“本文通过……”、“本文论述了……”、“本文探讨了……”、“本文首次提出了……”这些表述是不符合要求的)]
关键词:
(关键词是从论文中选取出来,用以表示全文主题内容信息的单词或术语,约3—8个)
引言(开头语)
1. 选题的原因和重要性。
2. 对本课题已有研究情况的述评,如研究进展、对现有结论的评价、尚未解决的问题等。
3. 本课题研究的目的、方法、计划。
4. 本课题研究的意义和价值。
几种常见的开头方法:
1.内容范围开头法,即说明本文要论述的内容范围;
2.问题开头法,即以数学问题或研究对象所存在的问题的方式开头;
3.设问开头法,即以设问的形式把论文要论述的中心内容表达出来;
4.目的开头法,即直接把论文要达到的目的告诉读者;
5.背景开头法,即阐述所研究课题的历史背景;
6.结论开头法,即直接阐述论文的的主要结论。
正文
1 …………
1.1……
1.2……
1.3……
2 …………
………
结论与讨论(结束语)
结论部分起着总结全文、深化主题、揭示规律的作用,其内容大致为概述自己研究了什么问题,取得了什么结论,需要进一步研究的问题。
下列情况可以省略结论部分:
1. 前言部分已对结论进行了概括;
2. 结论已不言自明;
3. 验证性的论文;
4. 商榷、反驳、补充性的论文。
附录
附录是指因内容多,篇幅长而不便写入正文,但又必须向读者交代清楚的一些重要材料。因为正文中有些内容意犹未尽,列入正文中撰写又会冲淡主题,为此,在论文的最后部分以附录的方式进行弥补。附录的内容主要有座谈会提纲、问卷调查表格、测试问题、各类图表等。
参考文献
参考文献是指作者在撰写论文的过程中所引用的图书资料,包括参阅或直接引用的材料、数据、论点、词句,而必须在论文中注明出处的内容。它包括各种著作、期刊、学术报告、学位论文、科技报告、专利、技术标准等。
一般地说,在论文中引用前人的观点、数据、材料时,应按先后顺序标明数码,依次列出所引用内容的出处。
引用文献为期刊,可仿下面的例子书写:
[1] 何小亚. 数学应用题认知障碍的分析[J].上海教育科研,2001,
6:41-43.
[5] 何小亚. 建构良好的数学认知结构的教学策略[J].数学教育学报. 2002,11(1):25.
引用文献为专著、论文集、学位论文、学术报告等,可仿下面的例子书写:
[2] 赵振威,黄熙宗,范叙保,等. 中学数学解题研究[M]. 江苏:
江苏教育出版社,1998. 96-104.
引用文献为报纸,可仿下例书写:
[8] 谢希德. 创造学习的新思路[N]. 人民日报,1998—12—25(10)
上述指的是一般小论文的格式。对于毕业论文,则要按照下面的格式。
一、问题的提出
(背景、问题、你要研究什么问题……)
二、术语界定
(术语界定就是去解释规定你论文中要用到的关键术语,如“新课标”是什么意思?、“数学建模”指的是什么?、“渗透”是什么意思……)
三、研究的现状(综述同行(相关文献)的研究情况)
(谁/什么文献/研究什么/什么结论/简单的评价。要以脚注的形式标明出处。文献综述最好按类别进行.。
四、研究的意义(价值)及理论基础(你的理论主要是数学课程标准理论)
五、研究方法(你的方法属文献研究、比较研究、定性研究)
六、研究结果
就是以下你的正文中属于你自己研究的结果。自己的东西有多少就写多少,不一定要面面俱到。别人的结果要放在研究现状里。否则读者很难区分哪一部分是别人的,哪一部分是你的。
七、研究结论
(根据“五、研究结果”得出的结论)
八、研究展望
(研究的不足/存在的问题/进一步值得研究的问题)
二、数学教育论文的选题
1.学习研究数学教育文献
数学教育类期刊
Educational Studies in Mathematics(荷兰);
Journal for Research in Mathematics Education(美);
Mathematics Teaching(英);
Mathematics Teacher(美);
《课程. 教材. 教法》(人民教育出版社)
《数学教育学报》(天津师范大学等)
《数学通报》(中国数学会,北京师范大学);
《数学教学》(华东师范大学);
《中学数学》(湖北大学);
《中学数学教学参考》(陕西师范大学);
《中学数学研究》(华南师范大学)。
2.把握数学教育研究的新动向
及时了解数学教育研究的新动向、新成果,积极参与教学改革,勇于实践,教学与科研相结合。
3.研究课程标准和新教材
九年义务教育阶段数学课程标准,高中数学课程标准,各种版本的新教材
4.研究学生学习数学的过程和教学方法
5.研究初等数学问题
对初等数学各个分支中的某些问题或某种方法进行专门的研究,比如某个定理的推广和改进,某种解题方法的提出与应用。
三、注意事项
1.结合自己的兴趣特长选择研究课题
2.注意文献资料的取舍
围绕课题选择文献资料,选择的材料应具有典型性(代表性)、
实践性、理论性和新颖性
3. 构思与布局
在总体构思论文的框架结构时,要注意从整体上思考如何提出问
题、分析问题和解决问题,将论文分成几个部分,每一部分又细分为几个小的部分,每一小部分有哪些要点。
4. 修改和定稿
初稿完成后,应仔细推敲,反复修改,要敢于否定自己,切忌马虎走过场。
5. 注意创新
论文应注意创新,最忌讳因循守旧,人家写什么,自己也写什
么,跟在别人后面人云亦云。我们在撰写数学教育论文时,无论是题目、内容、论点、例证,还是解决问题的思路和方法都应该锐意创新,因为有无创新是一篇论文质量高底的重要标志。
6.不容易被刊用的稿件的特点
(1) 论述的经验、方法是众所周知的;
(2) 所列举的数据有为自己评功摆好的嫌疑;
(3) 选用的例证陈旧;
(4) 仅仅是例证的堆砌,缺少深刻的理论分析;
(5) 概念不清,逻辑推理出错;
(6) 结论的推导冗长而应用面狭窄;
(7) 课题过大,设计面过宽,讨论问题面面俱到,但不深入;
(8) 文章过长(超过5000字)。
附件四:研究课题举例
一、一般性的研究课题
1. 中学数学课程标准的分析研究
2. 关于高考数学命题及答卷的研究
3. 数学开放题研究
4. 数学应用题研究
5. 优秀数学教师的教育思想及教学艺术评析
6. 数学教学改革实验研究
7. 数学差生的成因与教学对策
8. 学生数学能力评价研究
9. 数学教育中的素质教育内涵
10. 中学数学教学与学生创新意识培养
11. 中学数学教学与学生应用意识培养
12. 数学课程评价的理论与实践
13. 数学语言教学研究
14. 数学思想方法的教学研究
15. 中学数学作业处理
16. 运用数学方法论指导数学教学
17. 中学生数学阅读能力的调查研究
18. 中学生数学语言能力的调查研究
19. 数学学习方式的调查研究
20. 数学交流能力的调查研究
二、 高中数学新课程教学方面的研究课题
(一)在新课程理念下对原有内容的教学研究
1. 函数教学研究
2. 向量教学研究
3. 立体几何教学研究
4. 解析几何教学研究
5. 导数及其应用教学研究
6. 概率与统计的教学研究
7. 不等式教学研究
8. 三角恒等变换教学研究
(二)对新增内容的教学研究
9. 算法教学研究
10. 统计案例教学研究
11. 框图、推理与证明教学研究
12. 选修系列3教学研究
13. 选修系列4教学研究
(三)双基与能力教学研究
14. 新课程理念下高中数学双基教学设计研究
15. 关于培养学生抽象、概括能力的研究
16. 关于合情推理与演绎推理在培养学生思维能力中的作用的研究
17. 数学新课程实施中学生自主学习的研究
18. 数学教学中培养学生自我监控能力的研究
19. 关于《标准》中课程内容与要求的科学性、可行性的研究
20. 数学文化对于促进学生数学学习的研究
21. 数学教学中渗透数学探究、研究性学习的研究
三、高中数学新课程的评价课题
1. 对学生数学学习过程评价的研究
2. 体现新课程理念的模块终结性评价工具与方法的开发
3. 对选修系列3、选修系列4读书报告的评价
4. 对数学探究、数学建模的评价
5. 高中新数学课程课堂教学评价
6. 高中数学教师专业化发展评价
7. 数学新课程理念下的高考命题研究
8. 数学教学中情感、态度、价值观的评价
9. 关于过程性评价与终结性评价有机结合的研究
四、高中数学新课程的信息技术研究课题
1. 信息技术的三重连环表示法(数字、图形与符号)对于数学教学的影响与作用
2. 网络环境对于数学新课程实施的促进作用(如运用网络资源,展现数学文化)
3. 信息技术与研究性学习的融合
4. 运用信息技术手段,改变学生学习方式(结合具体内容研究)
5. 信息技术对评价的形式与内容带来的影响
6. 以信息技术为主要手段的数学课程和教学资源库的建立
7. 信息技术对于学生数学能力(如图形直观能力、逻辑思维能力或运算能力等)的影响与促进
8. 运用信息技术手段,展示数学知识的发生和发展过程的案例研究
9. 信息技术与数学课程内容整合的案例开发
五、高中数学新课程的课程资源研究课题
1. 算法的背景与实例的收集与积累
2. 概率与统计的背景与实例的收集与积累
3. 导数及其应用的背景与实例的收集与积累
4. 关于高中数学选修系列3课程资源的开发与积累
5. 关于高中数学选修系列4课程资源的开发与积累
6. 现行高中数学新教材的比较研究
7. 数学新课程资源的拓广与应用
8. 网上数学资源的拓广与利用
9. 数学教学软件的研制与开发
10. 数学教学资源的传播与信息共享
六、高中数学新课程的研究性学习(数学建模、数学探究)
1. 如何指导学生选择数学探究、数学建模的课题
2. 数学探究、数学建模活动与课堂教学的关系研究
3. 研究性学习对培养学生能力的作用
中学数学教材、教学研究的问题
1.“好”的情境的标准是什么?如何开发?若干优秀情境交流。
2.如何在一些重要的数学概念(如,函数)中,突显“数学化”过程。
2.一些重要的数学思想在中学数学中的渗透(如随机的思想、公理化的思想)。
3.统计与概率内容的系统设计及案例交流。
4.课题学习的系统设计及案例交流。
5.整理与复习的系统设计及案例交流。
6.几何内容的系统设计及案例交流。
7.发展学生推理能力的系统设计及案例交流。
8.小学、初中、高中的衔接,知识之间的联系(哪些重要的联系?如何体现?)。
9.信息技术对课程内容选择、呈现以及教师专业发展的影响。
10.如何体现数学的文化价值,不只局限于数学史。
11.教材如何体现教学内容的弹性(阅读材料、选学内容、开放问题、提供参考书籍)
12.教材怎样才能更好地体现数学的特点及学生的认知特点。
13.建立数学模型与数学的双基教学。
14.如何处理教材“留白”和学生自学(阅读)之间的关系。
15.教材“留白”与教师发展空间之间的关系。
16.对评价的思考与实践。
附二:
教学设计模板
课题名称:×××××××
教学年级:×年级
设计者:(姓名、单位、邮编、联系电话(手机或小灵通!)、E-mail等)
一、教学内容分析
1.教学主要内容
2.教材编写特点
本节课内容在单元中的地位,本节课教材编写的意图及特点等。
3.教材内容的数学核心思想
4.我的思考
下面的学习目标、活动设计、组织与实施是如何落实对教学内容分析的理解,特别是核心数学思想的落实。
说明:教学内容分析应该建立在教师良好的数学素养之上。可以在教学组内或学区中心集体研讨,或专家的指导下完成。需要注意的是,对教学内容的分析应体现在学习目标和教学过程的设计上。
二、学生分析
1.学生已有知识基础(包括知识技能,也包括方法)
2.学生已有生活经验和学习该内容的经验
3.学生学习该内容可能的困难
4.学生学习的兴趣、学习方式和学法分析
5.我的思考:
下面的学习目标、活动设计、组织与实施是如何落实对学生分析的理解。
说明:学生分析应该通过对学生的实际调研作为科学依据,不能仅凭经验判断。学生分析是个性化的工作,不能由他人的结果简单代替自己的学生分析。
已有知识基础的调研可以通过设计几个指向明确的小问题实现,对这方面的数据统计及分析是更为重要的,这种分析是教师设计和修正“学习目标”的重要依据。
学生经验、学生学习困难、学生学习兴趣等的调研可以通过访谈实现,可以是抽样,也可以是有针对性的,如对于学困生做特别的访谈,可能会发现他们身上所具有的学习要素。
调研中可以将学生测验、访谈、小组观察等结合起来。
三、学习目标(以学生为主语)
1. 知识与技能
2. 过程与方法(数学思考、解决问题)
3. 情感态度价值观
说明:
1.教学内容分析和学生分析是学习目标制定的依据和前提。因此,如果对教学内容分析的要求越透彻,对学生分析的要求越科学和规范,学习目标的设计就越不是一件简单而迅速的工作。
2.学习目标是为学生的“学”所设计,教师的“教”是为学生的学习目标的达成服务的。学习目标是个性化的,又是尊重数学学科发展需要和学生未来学习需要的。
3.学习目标的制定应从以上几个方面进行思考,但具体形式不一定逐条对应。
4.学习目标应该在下面的教学活动中得到实在的落实。特别是教学活动中设计意图应该阐释,活动及其组织与实施是如何为达成目标服务的。
四、教学活动
教学活动就是为学习目标的实现所设计的活动。包括
1.活动内容
2.活动的组织与实施
说明:指教学活动开展的具体形式,包括学生学习方式—独立学习,还是合作学习等;教师活动的开展—提问或提出任务,组织合作学习,
组织交流,讲授等;教学资源的准备等,如学具、教具、课件等。
3.活动的设计意图
说明:为教学活动和活动的组织实施进行辩护,辩护的出发点是分析它们是否促成了学生学习目标的达成。不是简单地主观臆断是为目标服务,应该有一定的理由—数学的、教学的。更不应该写成一些没有针对性,放之四海而皆准的“普遍真理”。
4. 活动的时间分配预设
说明:主要指对教学活动的时间分配预设,以便于自己检测教学设计上合理与否。
可以参考下面的表格形式,也可以用文档的形式。
活动内容 活动的组织与实施(含教师活动和学生活动) 设计意图 时间分配
五、教学效果评价
目的是检测学习目标是否实现,为进行教学反思和改进教学提供依据。
可以采取测验、访谈、课堂观察等多种方式评价教学效果。教学设计中应包括教学效果评价的方案。例如,对于知识技能目标达成度的评价,可以设计当堂课或课后能够做的1-2个小问题。
以下几点供教师思考:
(1) 情境的作用是什么?应该为学习目标服务,不是仅仅追求“热闹”。
(2) 如何组织有效的教学活动,如小组活动的组织、信息技术的使用、练习的设计等,使得它们更为有效?
(3) 学习目标是教学设计的核心,设计了就要努力执行和实现。所有的教学活动和教学设计都应该为促成“目标”的实现服务。
(4) 教学是需要设计的,最后达到寓教于“无形”之中。
(5) 设计应该考虑单元或更大的范围。
数学文化论文
浅谈数学文化中的和合思想
和合是我国传统文化的一个重要概念。“和”是平和、和谐、祥和、协调
的意思。“合”是合作、对称、结合、统一的意思。和合思想认为,整个物质
世界是一个和谐的整体,宇宙、自然、社会、精神各元素都处在一个和谐的
优化结构中。而数学文化系统就是一个完美的和谐优化结构。数学文化
中的数学发展史、数学哲学思想、数学方法、数学美育等重要内容蕴含着丰
富的和合思想。其具体体现是整体系统性、平衡稳定性、有序对称性。
一、整体系统性
1.数学公理系统的相容性
数学的公理化系统具有相容性、独立性和完备性。在这三项基本要求
中,最主要的是相容性。相容性就是不矛盾性或和谐性,是指各公理不能
互相抵触,它们推导的真命题也不能互相矛盾,公理系统的相容性是数学
系统和谐的基础,也是基本要求。
除了数学各分支自身要形成相容的公理系统之外,数学还要求各分支
之间互相协调,不能互相抵触。有的系统之间,还形成密切的同构关系,在
不同的数学系统之间,相容性是一致的。例如欧氏几何与非欧几何(罗式
几何、黎曼几何)中平行公理是互否的命题,可在欧氏几何中构造非欧几何
的模型,所以可以这样说只要欧氏几何无矛盾,那么非欧几何也是无矛
盾的。
2.数学运算系统的完整性
数学的运算法则、运算公式、运算结论都是完整的、准确的。特别是数
学的运算语言,它把文字语言、符号语言、图像语言完全融合到一个统一体
中,互相印证、互相诠释、互相转化,达到了天衣无缝的完美。当扩充数系
时,要建立新的理论和运算拓广原有运算和关系时,要尽量保持原有的运
算、关系的一致性,如有不一致,必须作一规定,使新系统与原有系统和谐。
3.数学推理系统的严密性
在我们日常的数学活动中,常常用到反证法,在这种方法中,往往不仅
要用到系统的公理和定理,而且要用到其他分支的知识。在整个推理过程
中要和谐。例如古希腊三大著名问题之一化圆为方,即作一个与给定圆面
积相等的正方形。要证明用圆规和直尺不能作出等面积的正方形就需要
用到数“=”的超越性。
在数学上的等式、解析式中出现“=”是和谐的体现。
二、平衡稳定性
“和合思想”认为天地自然万物处于平衡、和谐、有序的状态。各个事
物、要素互依、互涵、互补,处于全面的、立体的相互作用的过程之中。而数
学的平衡稳定性很好地体现了和合思想。
1.数学发展的平衡稳定
数学科学与其它学科相比,一个重要的特点就是历史的累积性、发展
的平衡稳定性。也就是说重大的数学理论总是在继承和发展原有理论的
基础上建立起来的,他们不仅不会推翻原有的理论,而且总是包容原有的
理论。比如天文学的“地心说”被“日心说”所代替,物理学中关于光的“粒
子说”被“波动说”代替,化学中的“燃素说”被“氧化说”代替等等,而数学
从来没有发生过这样的情况。这正如一位数学史家H?汉科尔所说:“在
大多数学科里,一代人的建筑为下一代人所拆毁,一个人的创造被另一个
人所破坏,唯独数学,每一代人都在古老的大厦上添加一层楼”。数学的这
一平衡稳定性,正是数学学科能不断焕发出无限活力和强大生命力根源。
2.数学学习过程的平衡稳定
人们对知识的学习过程都含有一定的认知结构。而学生学习数学知
识的过程不外乎“同化—顺应—平衡”这样一个相对稳定的过程。同化就
是把新的知识纳入已有的认知结构,使原有的知识体系不断得到充实丰
富。顺应就是新的知识不能纳入原有的认知结构,就要对原有认知结构进
行改造和提高,从而建立新的认知结构。平衡就是同化和顺应后,都有一
个巩固阶段,在这一阶段对知识的理解和内化是平衡稳定的。人们对数学
知识的学习正式在“同化—顺应—平衡”这样一个循环往复的过程中发
展的。
3.数学方法的平衡稳定
数学方法是认识数学客体过程中某种有规律的程序和手段,使理论用
于实践的中介,各种方法都和谐地存在在数学这个共同体中。比如常用的
数学思维方法:观察、分析、综合、抽象、猜想、类比、归纳、演绎;还有常用的
数学解题方法:比较方法、结构方法、模型方法、构造方法、化归方法、映射
反演法、几何变换法、公理化方法等。这些方法,无论是在初等数学中,还
是在高等数学中;无论是在几何学中,还是在代数学中,都在广泛的运用,
始终处于平衡稳定状态中,不会因时间、空间、以及学科的变化发生变异。
几何变换思想和方法,就是用运动和变化的观点去研究几何对象及其
相互关系,探讨图形运动过程中不变的关系、不变量和变化关系、变化量,
从中找出规律。在解题过程中,对图形有关部分进行变换,化不规则为规
则,化一般为特殊,化不利条件为有利条件。
三、有序对称性
“凡物必有合”,“合”就是对称、结合、统一。整个世界不仅和谐合理,
而且阴阳和合的对称。
1.数学的有序对称美
在初等数学中研究的对称性,可以描述的是一个图形、一个式子各个
部分的关系,也可以描述两个图形、式子的关系。图形、式子的变换显示着
数学中的对称美。
图形对称可称为狭义对称,例如中心对称图形、轴对称图形、旋转对称
图形是图形位置的一种对称。显示一种对称的美。
在许多概念中和方法、命题、公式、法则中也存在对称性,也可称为一
种对称。
在数学中,许多概念都是一正一反,相辅相成,成对出现的。例如数学
运算中加与减、乘与除、乘方与开方、微分与积分等,都可认为是一阴一阳
的对称;减一个负数可变成加一个正数,除可以变成乘的运算,所以说它们
之间又是统一有序的。在二元运算中通过交换律、结合律、分配律来反映
其对称性。
2.数学解题过程的有序结构
从文化的角度审视数学解题过程它是数学策略、数学逻辑、数学方法、
数学知识、数学技能与程式化的有机结合,是一个有序结构的统一体。比
如解方程过程的基本步骤是:去分母、去括号、移项合并、两边同除以未知
数的系数。这是一个和谐的有序结构。破坏了这个有序结构,就会发生解
题障碍。从思维过程看,它是“观察———联想———转化”这样一个有序过
程。观察是联想的基础,在观察中认识所给题目的特征;联想是转化的桥
梁,在联想中寻找解题途径;转化是解题的手段,在转化中确定解题方案,
从而最终解决问题。
数学无论是从整体和局部,形式和内容,还是结果和过程都体现着和
合思想的精神和内涵。我们用“和合思想”重新认识数学,发挥数学文化在
教学中的教育功能,就能有效地培养学生科学素养和文化素养。
参考文献:
[1]齐民友.数学文化[M].长沙:湖南教育出版社,1991.
[2]张维忠.数学文化与数学课程[M].上海:上海教育出版社,1999.
[3]郑毓信.数学文化学[M].成都:四川教育出版社,2001.
[4]李文林.数学史教程[M].高教出版社.
上一篇:商业会计杂志官网
下一篇:国外时装流行期刊