金属工艺学铸造论文
金属工艺学铸造论文
将金属熔炼成符合一定要求的液体并浇进铸型里,经冷却凝固、清整处理后得到有预定形状、尺寸和性能的铸件(零件或毛坯)的工艺过程。现代机械制造工业的基础工艺。铸造生产的毛坯成本低廉,对于形状复杂、特别是具有复杂内腔的零件,更能显示出它的经济性;同时它的适应性较广,且具有较好的综合机械性能。但铸造生产所需的材料(如金属、木材、燃料、造型材料等)和设备(如冶金炉、混砂机、造型机、造芯机、落砂机、抛丸机等)较多,且会产生粉尘、有害气体和噪声而污染环境。
铸造是人类掌握较早的一种金属热加工工艺,已有约6000年的历史。公元前3200年,美索不达米亚出现铜青蛙铸件。公元前13~前10世纪之间,中国已进入青铜铸件的全盛时期,工艺上已达到相当高的水平,如商代的重875千克的司母戊方鼎、战国的曾侯乙尊盘和西汉的透光镜等都是古代铸造的代表产品。早期的铸造受陶器的影响较大,铸件大多为农业生产、宗教、生活等方面的工具或用具,艺术色彩较浓。公元前513年,中国铸出了世界上最早见于文字记载的铸铁件——晋国铸鼎(约270千克重)。公元8世纪前后,欧洲开始生产铸铁件。18世纪的工业革命后,铸件进入为大工业服务的新时期。进入20世纪,铸造的发展速度很快,先后开发出球墨铸铁,可锻铸铁,超低碳不锈钢以及铝铜、铝硅、铝镁合金,钛基、镍基合金等铸造金属材料,并发明了对灰铸铁进行孕育处理的新工艺。50年代以后,出现了湿砂高压造型,化学硬化砂造型和造芯、负压造型以及其他特种铸造、抛丸清理等新工艺。
铸造种类很多,按造型方法习惯上分为:①普通砂型铸造,包括湿砂型、干砂型和化学硬化砂型3类。②特种铸造,按造型材料又可分为以天然矿产砂石为主要造型材料的特种铸造(如熔模铸造、泥型铸造、铸造车间壳型铸造、负压铸造、实型铸造、陶瓷型铸造等)和以金属为主要铸型材料的特种铸造(如金属型铸造、压力铸造、连续铸造、低压铸造、离心铸造等)两类。铸造工艺通常包括:①铸型(使液态金属成为固态铸件的容器)准备,铸型按所用材料可分为砂型、金属型、陶瓷型、泥型、石墨型等,按使用次数可分为一次性型、半永久型和永久型,铸型准备的优劣是影响铸件质量的主要因素;②铸造金属的熔化与浇注,铸造金属(铸造合金)主要有铸铁、铸钢和铸造有色合金;③铸件处理和检验,铸件处理包括清除型芯和铸件表面异物、切除浇冒口、铲磨毛刺和披缝等凸出物以及热处理、整形、防锈处理和粗加工等。
求一个关于铸造的论文?
随意推荐两篇,谨供参考
1、国内外铸造生产线设计生产中的问题及解决办法
一.概述
随着国民经济的不断发展,近年来对铸件的要求越来越高,特别是汽车发动机缸体、缸盖类铸件,不仅要求材质好,而且还要求尺寸精度高、表面光法、重量轻。为此,作为影响铸件质量的关键工部件造型工部,纷纷采用新的工艺和设备,以满足铸件质量和产量的要求。据不完全统计,我国引进的高压造型线、气冲造型线、静压造型线已有60条左右;国内自己设计制造的高压造型线、气冲造型线已有70余条。
从使用情况来看,这些造型线确实为我国的铸件产量和质量的提高起了很重要的作用,但与我们的希望来比,还很不够。进口线的实际生产率一般在设计能力的5080%,国产线现在使用的估计只占50%,而在这50%中,开动率也较低,出现以上现象的原因是多方面的,归纳起来大概有以下几方面。
二.存在问题
1.设计存在的问题
由于造型线设备复杂,动作多,逻辑性强,因此,设计中就难免有考虑不周的地方,特别是造型线设计的初期,问题更多,比如:材质选用不合理,元件选用不当,逻辑关系不强等。这就决定了我国早期的高压线多数运行状况不太理想。比如:某大厂在70年代初期设计了一条高压造型线,制造安装后一直没有使用,其主要原因是:设计时许多辅机上的垂直液压缸原始位置设在中间位置,由于国产液压阀的泄漏,致使许多辅机不能处在原始位置;运行部件没有考虑制造的误差及液压泄漏,经常相碰,该联锁的电器上也没有联锁,放了这么多年,给工厂带来了很大的经济损失,听说最近要拆掉。国内如此,国外的造型线也同样存在设计上的不足,比如某厂引进一条高压造型线,由于设计时没有考虑砂箱走边的检测及清扫,以至砂箱的进翻箱机时经常卡死,甚至把翻箱机顶坏。还有一家厂引进的静压造型线在设计时工艺性考虑的不周,使上箱在下箱上边翻箱,从而导致造好的下箱内腔掉进砂子,造成铸件缺陷。
2.设备可靠性差
影响设计可靠性的因素主要有设计、制造、安装、生产管理、维修等。
设计中零件选用不当,材质选用不合理,是影响可靠性的重要原因之一,过去着重强调了国产化和降低成本,因此,元器件全为国产件。但由于国产无器件质量不过关,严重影响了造型线的开动率。比如:由于机械传动的误差,会导致转运车上的轨道与冷却道轨道对不准,致使输送器小车和砂箱脱轨,造成较长时间的停车;同样规格的密封件,国产的只能用3~6个月,而进口的能用12年;同样的管接头,国产的就漏油,进口的就不漏油,仅此一项,某一条造型线严惩时每年将漏油200多吨,价值100多万元;由于接近开关发讯不准,也常导致误动作造成停车;液压阀及气动阀的泄漏和精度不高,也是影响造型线开动率的主要因素。比如某厂造型机的控制不仅有电器联锁,而且有气动联锁,气动控制管路的管子是Φ8×1的,连接的管接头较多,由于管接头及气阀的漏气,常使控制气路压力降低,不能使气阀动作,为此,不得不冒险将部分联锁取消。
制造质量的好坏,也将影响造型线的开动率,包括内在质量和尺寸精度。比如:由于加工精度达不到要求,造成设备移动部分和固定部分相碰,定位不准等故障;由于元件的材质或热处理达不到要求,将影响设备的使用寿命和可靠性;由于液压系统的清理不干净,导致油液污染,使阀卡死的现象也经常出现。我到过一个现场,两台主机的工作台同样是球铁的,一台球化好了,用了几年就没问题,而另一台,没有多久就坏了,断面象马蜂窝似的。再如,某厂引进的气冲线96年投产以来,主机工作台油缸已更换了三次,第一次没过保质期就坏了,结果索赔了一台,此后,每两三年更换一次。另外,电线接头长时间使用后引起松动,也导致坏电路二三次。安装不按规范,偷工减料,也是造成可靠性差的重要原因之一。比如:安装时对管子不按规范进行清洗,该氩弧焊的用普通焊代替,造成管子里边有焊渣;该装管夹的地方不装或少装,造成管子震动,管接头松动,时间一长开始漏油;该用RVV软线的地方,用KVV代替,宜造成断路;该用螺栓固定的地方一焊了之,等等。
3.维修困难
由于设计人员现场经验不足,设计出来的设备往往只注意功能性,而没有注意维修容易,比如有些易损件或耐磨件,在制造厂装配时依次可以装上,但如果使用过程中磨损了,需要更换,则必须大卸八块,才能换上。这样,既费时,又影响了整个设备的精度。再如,过去将滤网放在泵的吸油口,并埋在油箱内,由于油的污染,经常要对滤网进行清理,但清理一次滤网必须先把油抽干净,而不是将滤网放在回油管上,清洗更换都方便。在阀箱里或多管平行的地方,安装管夹时,没有留出足够的维修空间,一旦一根管子漏油,必须选把别的管子拆掉,才能拧紧,形象地说,就跟栽葱的一样。制造过程中不注意质量,零件严重超差,也是造成维修困难的一个重要原因。比如一个零件与另一个零件为过度配合,由于加工超差,装配时变成了过盈配合,一旦零件出了问题需更换时,就很难取出。还有,经常拆装的缸端管接头,不用球铰接头,而用端直角接头,从而给维修带来困难。安装时只顾管子、电线走向,而忽略维修的可能性的情况也是常有的,比如,有些设备距地沟壁有一定的距离,本来是作为维修空间用的,但安装时不注意,觉得走管子或电缆桥架挺方便的,就装上了,但使用维修时就叫苦了。
4.生产任务不足,成本较高
在市场经济的今天,铸件成本的高低显得越来越重要了。近几年来,由于乡镇和民营铸造企业的蓬勃发展以及城市的环境保护要求,再加上乡镇和民营铸造企业的成本较低,企业经营灵活,这些企业的铸件在市场上的份额越来越大,从而导致一些具有造型线的大中型企业生产能力不足。例如:现在许多厂爱“开三停四”,一个月上半个月的班,由原来的两班或三班改为单班,经常放长假等。造型线的运行成本较高,也是影响使用的一个因素。如果开动造型线,必须所有设备开动,包括相关工部的设备,这样,用电量较大,同时,所有人员都得到岗,再加上漏油损失,在产量少的情况下,开机将很不划算。比如:有一个厂原来产量很大,上了一条气冲造型线,后来,产量锐减,开动造型线明显不划算,再加上实行成本核算,只好将造型线封存,改为地面造型。
5.管理不善
没有通盘计划,各自为政的现象严重,致使一些企业不考虑自己的实际情况,盲目上马,但后来由于资金不足,产品不对路等原因,造成虽已有较大投入,但尚未形成生产能力而闲置着的设备数量也不少。
企业内部管理不善,主要表现为:维修人员责任不明确,没有明确的设备维修制度,备件采购和维修脱节,维修人员素质较低,工资待遇差等。经常看到这样的现象:操作工上班时维修工在休息,操作工下班了维修工也下班了,至少设备是否需要备件,是否带病工作,是束需要维修,没有人去管,只有设备实在开不动了,才去修理,而这时换上的备件往往又不合适。比如某厂造型线上的备件是由设备科来组织,线上该备什么,备多少,基本不与维修人员通气,买来的备件也不与造型线上实际使用的实物对照,因此,常常出现原来是24伏的阀,更换时变成了220伏;应该是内控内泄阀,更换时变成了内控外泄阀;加工的备件更换时才发现超差等现象,从而影响生产。
6.各工部不匹配
由于国内外铸造设备的标定生产率与实际相差很大,所以,经常导致铸造车间各工部不匹配,从而影响造型线的开动率,据不完全统计,一般造型线由于各工部不匹配而占停机时间约为30-50%左右。例如有一个厂,在车间设计时引进了一条造型线,但其它工部选用国产设备,投入使用后出现两个问题:一是其它工部设备故障率高,严重影响了造型线的开动率,使造型线处于半停产状态;二是混砂能力不够,国产混砂机的混砂能力在实际实用中只能达到名义能力的一半左右,而设计时按名义能力考虑,因此,造成这样的后果。该车间这样生产了大概三、四年,厂里下决心又对砂处理工部进行了改造,目前,使用情况良好。
三.解决问题的办法
要想将一条造型线用好,无非要作好“防”和“备”两方面的工作,“防”是防止问题的出现,“备”是防不胜防时,出现问题了要有所准备,将问题尽快解决。但要做到这两点,必须在以下方面下功夫。
1.加强学习,吸引国内外先进技术和经验,以防为主
设计人员的素质直接影响到造型线的水平,只有设计水平提高了,才有可能制造出好的造型线。为此,设计人员必须掌握国内外的先进技术和设备,并不断总结经验,逐步提高,使设计水平从“小学”提高到“大学”。近年来,我国铸造设备设计人员已充分意识到这一点,通过他们的努力,再加上生产实践、消化吸引国外先进的工艺和技术,我国铸造设备设计水平大大提高,他们不仅具有了设计出高水平造型线的能力,而且具有现场动手的能力,通过不断改进,已设计出多条布置合理,性能可靠的造型自动线。这些改进有:工艺方面:由气动微震改为高压造型,再发展为气冲造型、静压造型、触头式动力撞击造型等。使设备越来越简单,工艺性越来越好。可靠性方面:过去造型线控制用顺控器控制,设备又庞大,故障又多,维修也困难,但有了PC以后,我们马上用在造型线控制上,目前,基本上没有人说电器有问题了;过去辅机及转运车为了实现慢--快--慢的动作,用子母电机或行程阀控制,现在有了调频电机和比例阀,很容易就解决了,可靠性也得到了提高;过去动作检测发讯用行程开关,现在用接近开关或编码器;过去由于油温过高,常使密封件容易老化,产生漏油等现象,严重影响造型线的开动,针对这一原因,现在增加了液压油冷却面积,改变溢流阀型号,使无负荷时泄荷,而不是溢流,减少产生热量的原因,降低落同温;活塞式蓄能器改为囊式蓄能器,性能可靠,动作灵敏;将不可靠的国产元件改为进口元件等。维修方面:一条造型线再好也不可能一点问题没有,但出了问题很难解决,设计水平就不能说很高,为此,设计人员也下了很大功夫。便好:过去液压系统出了故障,必须先把系统卸荷,回油完了再维修,现在将阀箱带在设备上,并在进出油口各加一个截止阀,维修时阀一关就行了,十分方便;还有,经常拆装的较大零件,设计时直接设计上两个吊装孔,使维修变的十分方便。专业设计方面:过去许多大厂车间设计由自己的技术人员来完成,但由于受专业和实际经验的限制,设计完成后问题较多,特别是各工部不匹配的现象普遍存在。因此,铸造项目最好不要请非专业的技术人员来设计,要请专业的设计院所来设计,这样,就会少出错或不出错,不走弯路。
2.强化质量意识,提高产品质量
“质量就是生命”这句话我们大家都很熟悉,但在实际中对质量的认识还很不够,还应该加强,使每一个员工意识到没有质量,就没有生存。一切操作按规范进行,绝对禁止为了一点小利进行偷工减料的行为。过去经常有这样的事,图纸归图纸,加工归加工,加工的人不看图纸要求,设备做成什么就是什么,比如端直通管接头的螺纹孔,由于要靠组合垫密封,图纸上螺纹孔和端面的锪平面有垂直度要求,但机加工工人是不管的,甚至不锪平,所以,容易造成漏油。还有多个螺钉固定的设备,往往有几个螺钉孔对不上,因此,把螺钉磨成丝锥一样拧进去或不拧。当然,经过这么多年的生产实践,许多厂已意识到质量的重要性,加工手段也提高了许多,比如现在许多厂用专机或加工中心加工砂箱,过去自己制造的油缸现在也外协到专业油缸厂制造。另外,必须提高基础件的质量,过去同样12.9级的螺钉固定液压阀,进口的就不漏油,国产的就漏油。减速机内的齿轮,要求是硬齿面,耐实际是软齿面,用不了多外就坏,等等。
3.加强管理,健全维修制度,有备无患
首先上级主管部门要根据企业的具体情况,决定是否要上造型线,把好第一关,避免上了一半而中途下马,经国家和企业造成经济损失。如果上了造型线,企业内部必须加强管理,与造型线有关人员必须责、权、利分明,谁出了问题,谁负责任,谁来解决。要有严格的管理制度,注意各工部之间的匹配,注意人材的培养和合理利用。再好的一条线,如果管理维修跟不上,也不可能用好。因此,必须重视维修人员的素质。维修人员必须对造型线非常了解,明白每一个零件的用途,平时要进行预检预修及巡检,出了故障能很快正确地判断并及时排除。我到过一个现场,维修人员没见过造型线的液压原理图,对全线的动作原理不清楚,因此,出了故障手忙脚乱,最后捣鼓一通能用为止,究竟出了什么问题,怎样解决却不清楚。因此,大大影响了开动率。象这种状况,以后必须改进。备品备件的管理对自动化流水生产线来说,显得特别重要,建议此项工作由专人管理。备件清单的提供要与造型线上的需要一致,进货后要与造型线核对,并分类保管,保管条件要符合材质的要求,定期对备件进行检查,对过期的零件清理出去,及时补充新的零件。要做到造型线使用的备品备件随时能准确无误地提供,从而,确保造型线正常运转。总之,要用好一条造型,不是一件简单的事,几十台设备、一、二百个点,每天都毫无差错地运行,不仅要从设计、制造、安装、调试、维修、备品备件等造型线本身方面来下工夫,而且要从生产管理、各工部协调匹配、正确确定工艺参数等方面下功夫。随着技术水平、制造水平,加上设计人员的设计水平和使用者管理水平的不断提高,国产造型线一定能制造好,使用好。
刘小龙
2、浅谈如何提高压铸模寿命
材料自身存在的缺陷、维修和保养的方法都是会影响压铸模的寿命的。本文从后者来介绍如果提高压铸模的寿命,并列举了压铸模常见的故障原因及排除方法。
压铸模由于生产周期长、投资大、制造精度高,故造价较高,因此希望模具有较高的使用寿命。但由于材料、机械加工等一系列内外因素的影响,导致模具过早失效而报废,造成极大的浪费。
压铸模失效形式主要有:尖角、拐角处开裂、劈裂、热裂纹(龟裂)、磨损、冲蚀等。造成压铸模失效的主要原因有:材料自身存在的缺陷、加工、使用、维修以及热处理的问题。
1、材料自身存在的缺陷
众所周知,压铸模的使用条件极为恶劣。以铝压铸模为例,铝的熔点为580-740℃,使用时,铝液温度控制在650-720℃。在不对模具预热的情况下压铸,型腔表面温度由室温直升至液温,型腔表面承受极大的拉力。开模顶件时,型腔表面承受极大的压应力。数千次的压铸后,模具表面便产生龟裂等缺陷。
由此可知,压铸使用条件属急热急冷。模具材料应选用冷热疲劳抗力、断裂韧性、热稳定性高的热作模具钢。H13(4Cr5MoV1Si)是目前应用较广泛的材料,据介绍,国外80%的型腔均采用H13,现在国内仍大量使用3Cr2W8V,但3Cr2W8VT_艺性能不好,导热性很差,线膨胀系数高,工作中产生很大热应力,导致模具产生龟裂甚至破裂,并且加热时易脱碳,降低模具抗磨损性能,因此属于淘汰钢种。马氏体时效钢适用于耐热裂而对耐磨性和耐蚀性要求不高的模具。钨钼等耐热合金仅限于热裂和腐蚀较严重的小型镶块,虽然这些合金即脆又有缺口敏感性,但其优点是有良好的导热性,对需要冷却而又不能设置水道的厚压铸件压铸模有良好的适应性。因此,在合理的热处理与生产管理下,H13仍具有满意的使用性能。
制造压铸模的材料,无论从哪一方面都应符合设计要求,保证压铸模在其正常的使用条件下达到设计使用寿命。因此,在投入生产之前,应对材料进行一系列检查,以防带缺陷材料造成模具早期报废和加工费用的浪费。常用检查手段有宏观腐蚀检查、金相检查、超声波检查。
(1) 宏观腐蚀检查。主要检查材料的多孔性、偏柝、龟裂、裂纹、非金属夹杂以及表面的锤裂、接缝。
(2) 金相检查。主要检查材料晶界上碳化物的偏析、分布状态、晶料度以及晶粒间夹杂等。
(3) 超声波检查。主要检查材料内部的缺陷和大小。
2、压铸模的加工、使用、维修和保养
模具设计手册中已详细介绍了压铸模设计中应注意的问题,但在确定压射速度时,最大速度应不超过100m/S。速度太高,促使模具腐蚀及型腔和型芯上沉积物增多;但过低易使铸件产生缺陷。因此对于镁、铝、锌相应的最低压射速度为27、18、12m/s,铸铝的最大压射速度不应超过53m/s,平均压射速度为43m/s。
在加工过程中,较厚的模板不能用叠加的方法保证其厚度。因为钢板厚1倍,弯曲变形量减少85%,叠层只能起叠加作用。厚度与单板相同的2块板弯曲变形量是单板的4倍。另外在加工冷却水道时,两面加工中应特别注意保证同心度。如果头部拐角,又不相互同心,那么在使用过程中,连接的拐角处就会开裂。冷却系统的表面应当光滑,最好不留机加工痕迹。
电火花加工在模具型腔加工中应用越来越广泛,但加工后的型腔表面留有淬硬层。这是由于加工中,模具表面自行渗碳淬火造成的。淬硬层厚度由加工时电流强度和频率决定,粗加工时较深,精加工时较浅。无论深浅,模具表面均有极大应力。若不清除淬硬层或消除应力,在使用过程中,模具表面就会产生龟裂、点蚀和开裂。消除淬硬层或去应力可用:①用油石或研磨去除淬硬层;②在不降低硬度的情况下,低于回火温度下去应力,这样可大幅度降低模腔表面应力。
模具在使用过程中应严格控制铸造工艺流程。在工艺许可范围内,尽量降低铝液的浇铸温度,压射速度,提高模具预热温度。铝压铸模的预热温度由100~130℃提高至180~200℃,模具寿命可大幅度提高。
焊接修复是模具修复中一种常用手段。在焊接前,应先掌握所焊模具钢型号,用机械加工或磨削消除表面缺陷,焊接表面必须是干净和经烘干的。所用焊条应同模具钢成分一致,也必须是干净和经烘干的。模具与焊条一起预热(H13为450℃),待表面与心部温度一致后,在保护气下焊接修复。在焊接过程中,当温度低于260℃时,要重新加热。焊接后,当模具冷却至手可触摸,再加热至475℃,按25mm/h保温。最后于静止的空气中完全冷却,再进行型腔的修整和精加工。模具焊后进行加热回火,是焊接修复中重要的一环,即消除焊接应力以及对焊接时被加热淬火的焊层下面的薄层进行回火。
模具使用一段时间后,由于压射速度过高和长时间使用,型腔和型芯上会有沉积物。这些沉积物是由脱模剂、冷却液的杂质和少量压铸金属在高温高压下结合而成。这些沉积物相当硬,并与型芯和型腔表面粘附牢固,很难清除。在清除沉积物时,不能用喷灯加热清除,这可能导致模具表面局部热点或脱碳点的产生,从而成为热裂的发源地。应采用研磨或机械去除,但不得伤及其它型面,造成尺寸变化。
经常保养可以使模具保持良好的使用状态。新模具在试模后,无论试模合格与否,均应在模具未冷却至室温的情况下,进行去应力回火。当新模具使用到设计寿命的1/6~1/8时,即铝压铸模10000模次,镁、锌压铸模5000模次,铜压铸模800模次,应对模具型腔及模架进行450—480℃回火,并对型腔抛光和氮化,以消除内应力和型腔表面的轻微裂纹。以后每12000~15000模次进行同样保养。当模具使用50000模次后,可每25000~30000模次进行一次保养。采用上述方法,可明显减缓由于热应力导致龟裂的产生速度和时间。
在冲蚀和龟裂较严重的情况下,可对模具表面进行渗氮处理,以提高模具表面的硬度和耐磨性。但渗氮基体的硬度应在35-43HRC,低于35HRC时氮化层不能牢固与基体结合,使用一段时间后会大片脱落:高于43HRC,则易引起型腔表面凸起部位的断裂。渗氮时,渗氮层厚度不应超过0.15mm,过厚会于分型面和尖锐边角处发生脱落。
3、热处理
热处理的正确与否直接关系到模具使用寿命。由于热处理过程及工艺规程不正确,引起模具变形、开裂而报废以及热处理的残余应力导致模具在使用中失效的约占模具失效比重的一半左右。
压铸模型腔均由优质合金钢制成,这些材料价格较高,再加上加工费用,成本是较高的。如果由于热处理不当或热处理质量不高,导致报废或寿命达不到设计要求,经济损失世大。因此,在热处理时应注意以下几点:
(1) 锻件在未冷至室温时,进行球化退火。
(2) 粗加工后、精加工前,增设调质处理。为防止硬度过高,造成加工困难,硬度限制在25-32HRC,并于精加工前,安排去应力回火。
(3) 淬火时注意钢的临界点Ac1和AC3及保温时间,防止奥氏体粗化。回火时按20mm/h保温,回火次数一般为3次,在有渗氮时,可省略第3次回火。
(4) 热处理时应注意型腔表面的脱碳与增碳。脱碳会记过迅速引起损伤、高密度裂纹;增碳会降低冷热疲劳抗力。
(5) 氮化时,应注意氮化表面不应有油污。经清洗的表面,不允许用手直接触摸,应戴手套,以防止氮化表面沾有油污导致氮化层不匀。
(6) 两道热处理工序之间,当上一道温度降至手可触摸,即进行下道,不可冷至室温。
写一篇关于金属的小论文,并与同学交流
金属材料是指由金属元素或以金属元素为主构成的具有金属特性的材料的统称。包括纯金属、合金、金属间化合物和特种金属材料等。
人类文明的发展和社会的进步同金属材料关系十分密切。继石器时代之后出现的铜器时代、铁器时代,均以金属材料的应用为其时代的显著标志。现代,种类繁多的金属材料已成为人类社会发展的重要物质基础。我们对金属材料的认识应从以下几方面开始:
一、分类:
金属材料通常分为黑色金属、有色金属和特种金属材料。
①黑色金属又称钢铁材料,包括含铁90%以上的工业纯铁,含碳 2%~4%的铸铁,含碳小于 2%的碳钢,以及各种用途的结构钢、不锈钢、耐热钢、高温合金、精密合金等。广义的黑色金属还包括铬、锰及其合金。
②有色金属是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等。有色合金的强度和硬度一般比纯金属高,并且电阻大、电阻温度系数小。
③特种金属材料包括不同用途的结构金属材料和功能金属材料。其中有通过快速冷凝工艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减振阻尼等特殊功能合金,以及金属基复合材料等。
金属材料按生产成型工艺又分为铸造金属、变形金属 、喷射成形金属,以及粉末冶金材料。
铸造金属通过铸造工艺成型,主要有铸钢、铸铁和铸造有色金属及合金。
变形金属通过压力加工如锻造、轧制、冲压等成型,其化学成分与相应的铸造金属略有不同。
喷射成形金属是通过喷射成形工艺制成具有一定形状和组织性能的零件和毛坯。
金属材料的性能可分为工艺性能和使用性能两种。
二、性能
为更合理使用金属材料,充分发挥其作用,必须掌握各种金属材料制成的零、构件在正常工作情况下应具备的性能(使用性能)及其在冷热加工过程中材料应具备的性能(工艺性能)。
材料的使用性能包括物理性能(如比重、熔点、导电性、导热性、热膨胀性、磁性等)、化学性能(耐用腐蚀性、抗氧化性),力学性能也叫机械性能。
材料的工艺性能指材料适应冷、热加工方法的能力。
三、生产工艺:
金属材料生产,一般是先提取和冶炼金属 。
有些金属需进一步精炼并调整到合适的成分,然后加工成各种规格和性能的产品。提炼金属,钢铁通常采用火法冶金工艺,即采用转炉、平炉、电弧炉、感应炉、冲天炉(炼铁)等进行冶炼和熔炼;有色金属兼用火法冶金和湿法冶金工艺 ;高纯金属以及要求特殊性能的金属还采用区域熔炼、真空熔炼和粉末冶金工艺。金属材料通过冶炼并调整成分后,经过铸造成型,或经铸造、粉末冶金成型工艺制成锭、坯,再经塑性加工制成各种形态和规格的产品。对有些金属制品,要求其有特定的内部组织和力学性能,还常采用热处理工艺 。常用的热处理工艺有淬火、正火、退火、时效处理(将淬火后的金属制件置于室温或较高温度下保温适当时间,以提高其强度和硬度)等。
四、发展趋势:
金属材料的发展已从纯金属、纯合金中摆脱出来。随着材料设计、工艺技术及使用性能试验的进步,传统的金属材料得到了迅速发展,新的高性能金属材料不断开发出来。如快速冷凝非晶和微晶材料、高比强和高比模的铝锂合金、有序金属间化合物及机械合金化合金、氧化物弥散强化合金、定向凝固柱晶和单晶合金等高温结构材料、金属基复合材料以及形状记忆合金、钕铁硼永磁合金、贮氢合金等新型功能金属材料,已分别在航空航天、能源、机电等各个领域获得了应用,并产生了巨大的经济效益。
急求 《金属工艺学论文》 ??????
电火花曲面展成加工的研究
来源:福建泉州华侨大学机电及自动化学院 作者:刘石安
【摘 要】研究数控电火花铣削加工工艺,探索大面积曲面铣削加工方法,加工路径直接由通用模具设计软件生成,电极损耗补偿按加工路径均匀递增补偿法计算。
【关键词】电火花加工;电火花铣削加工;电极补偿
电火花成形是模具型腔加工的主要方式,其加工质量关键之一是电极的制造,由于粗、中、精加工时的放电间隙不同,电极尺寸也应不同,因此需制作多个电极才能最终满足加工精度的要求。特别是型腔加工面积较大时,有时还必须使用分割电极加工法,依次完成型腔各个部分的加工。由此使电极制作成本增高。分割电极加工时,型腔表面还会产生接缝以及电极二次装夹重复定位精度问题,这些都会影响电火花成形加工的质量。
随着数控技术的发展,模具型腔加工有了新的工艺方法——数控电火花铣削加工,即用简单电极展成复杂型面。数控电火花铣削加工工艺的关键是加工路径的生成和电极损耗的补偿。对此国内外许多电加工学者做了大量深入细致的研究,如研究等损耗分层加工模型以及基于该模型建立加工路径生成的专用CAM软件,研究电极损耗精密检测技术、在线电极补偿等[1~4]。
数控电火花铣削工艺可进行修尖角加工、窄缝加工及侧面伺服加工等,但本文更关心的是空间直线伺服进给问题,研究的主要内容集中于空间曲线轨迹加工方向、空间曲面展成加工方向,探索型腔型面的数控电火花铣削加工工艺。
本文引用金属切削加工中心的工艺路线,应用通用的模具加工软件UG造型,生成加工路径,并将加工代码编译成具体机床的数控指令。在电极损耗补偿方面,只考虑Z轴方向的补偿,并提出沿电极加工路径、按轨迹路程均匀递增补偿电极损耗的方法。
1 数控电火花铣削加工工艺
加工中心的铣削加工工艺已很成熟,故将其引入数控电火花铣削加工工艺中。经过研究和实验,已证实轮廓加工、挖槽加工、沿曲面加工、修边、去残留等加工问题都能用数控电火花铣削加工方法解决,也就是说数控电火花铣削加工中的加工路径生成问题可以用通用模具加工软件解决。
值得注意的是电火花铣削加工并不等同金属切削加工,由于放电间隙和电极损耗的存在,会对型腔尺寸精度产生影响,因此在给数控电火花铣削加工编程时必须注意如下问题:
(1) 加工余量。该参量的最小值要求大于放电间隙,超精加工时加工余量并不为零,且前一道工序要给后一道工序留下余量。
(2) 加工方式。在轮廓加工或挖槽加工时可以选择生成圆弧段程序。而在沿曲面加工时必须选择直线加工方式,包括切入切出程序,即程序段必须是空间微直线段,这也有利于电极损耗补偿计算。
(3) 加工精度。加工精度越高,弦线对空间曲线的逼近度越高,空间微直线段越多,程序越长。实际加工时,粗加工可以选择低一点的精度,以减少程序段数。
(4) 残余波峰高。该参量指刀具横向进给量,其值越小,加工曲面越光顺。该参量也可以用刀具直径的百分比表示。
(5) 电极尺寸。本文要求每次加工编程时输入电极直径的实测值,这样可让电极损耗补偿计算只须放在Z轴方向。
(6) 电参量和电极长度补偿。电参量的选择要参考加工余量,超精加工时要选择正极性加工方式,要用电子的能量去修平放电痕凸起。电极损耗补偿值依工艺经验而定,它与电参量、电极材料对及工作液等相关。电极损耗补偿值均匀插入每个微直线段端点上。
数控电火花铣削加工编程路线(图1)按上述6个方面要求设置参量,就可生成粗、中、精加工路径及机床数控指令。
加工余量、加工方式、精度、残余波峰高、实际电极尺寸
零件
毛坯
UG-NX
刀具路径补偿软件
电参数
刀具长度补偿值输入
电火花数控铣削加工程序
图1 数控电火花铣削加工编程路线
用模具软件UG设计了一空间曲面,上有“电火花”字样。为体现数控电火花铣削加工能力,将所有工序全部采用数控电火花铣削加工方案。粗加工用ф14mm电极,按挖槽采用分层加工,横向进刀为电极直径的80%;中精加工用ф8mm和ф4mm的端电极,按矢量、沿曲面方式加工,横向进刀分别为电极直径的8%和2.5%。图2为中精加工刀具路径。
电极ф8mm,E293 电极ф4mm,E250
(a)中加工 (b)中精加工
电极ф4mm,E250 电极ф4mm,E200
(c)中精加工 (d)精加工
图2 电火花中、精铣削加工刀具路径
在图2d中左下角有一块粉红色的残留区域(在曲面曲率较大凹处),该区域端刀无法深入,因此在精加工之后还需要再用ф4mm指状R刀电极进行最后的光整和去残留加工。
另外,在同一加工余量条件下,工艺上还要求生成反向刀具路径,进行反向铣削加工,消除前一道工序正向加工时因电极损耗而产生的阶梯波浪面,以提高表面形状精度。
2 电极损耗补偿对策
2.1 电极损耗的影响
在数控电火花铣削加工过程中,放电一般发生在电极端部前沿尖角处,电流密度较大,放电集中度高,存在着较严重的电极损耗现象。在加工的开始阶段,工件材料去除量较大;在加工的末尾阶段,工件材料去除量最小,因此实际加工面是一个“斜坡面”,如图3A表面所示。在A表面与B表面之间是本道工序的未加工区。显而易见,电极损耗影响加工精度。
电极补偿过量面C
无电极损耗理想加工面B
没有补偿的加工面A
h1当前层厚度
h2下一层厚度
图3 电极损耗补偿控制参考面
2.2 电极损耗补偿的目的
一方面可控制每一层铣削加工的尺寸及形状精度,另一方面还可给下一层铣削加工减少加工余量累计负担。电极损耗补偿值的给定应按不过度补偿为原则,即其值应小于本层加工量与下一层加工余量之和。
2.3 电极损耗补偿计算的方法
沿曲面铣削加工时按直线方式生成加工路径,所有程序段都是空间微直线段,假设在加工路径相对较长的条件下,电极损耗沿路程均匀分布,其补偿值沿轨迹,按路程均匀递增补偿到每段空间直线终点上,那么电极损耗补偿值在第i程序段的值为:
△i=(△/∑Lk)·(∑j=0→iLj)
式中:△i为第i程序段的电极损耗补偿值;△为当前层铣削加工电极损耗预估值;∑Lk为当前层总的加工路径长;∑j=0→iLj为电极在第i程序段已走过的加工路径长。
△值与电参数和加工路径长度有关,主要用于电火花中、精加工;超精加工时其值设为零。
△i值用于第i程序段的电极损耗Z轴方向的补偿值,是用离线补偿计算法得到的。
3 电火花曲面铣削加工工艺实验
工艺实验在RobForm30三轴数控电火花成形机上进行,用UG软件造型、生成加工路径文件,选用专家系统生成的加工余量和电参数,再经电极损耗补偿处理,生成数控电火花铣削加工程序代码。
表1 是实验选用的加工参数。在精加工中去除的工件材料厚0.016mm,而预估电极损耗△取值0.05~0.07mm(实验值),实际的加工路径总长约为45000.00mm,如按理论计算,每100mm长得到0.10~0.16μm的补偿,18000条程序平均每条得到0.0025~0.0038μm的补偿,因此,如果按规格化计算,那么只有刀具加工很长一段距离之后,刀具电极才会作出实际意义上的补偿,真正作出实际意义上补偿的程序段比例很低。
表1 电火花铣削加工参 mm
加工类型 加工余量 电参数 电极补偿
粗加工
粗加工
中加工
中精加工
精加工
超精加工
0.800 E383 0.500
0.400 E373 0.250
0.200 E293 0.100
0.150 E250 0.075
0.134 E220 0.050~0.070
0.122 E200 0
注:电参数采用RobForm30电火花成形机规准。
粗加工时电极补偿视具体情况而定,首先选择补偿方式加工,补偿取值一般小于加工余量,如果电极损耗较大,电极端面圆角过大,此时应更换电极,Z轴重新对零位后,再进行加工。超精加工时只需生成正、反向加工刀具路径,来回打光打抛曲面。实验中还加入了轮廓加工、残余加工、修边,并考虑了加工精度设置、最大微直线段长度设置等内容。
电极制作部分是一个比较重要的环节,故自制了机上修磨装置,依据铣床刀具工具磨原理,设计有“电碰”定位基准,可精确定位,可修整电极圆柱面,也可修整电极端部球面。但由于铜电极在机械力作用下容易变形让刀,因此只成功修整了φ5~8mm指状棒电极。
图4是数控电火花铣削加工的实物照片,是一个面积约为100mm×70mm的曲面。 答案补充 也可以去百度去看看!
金属型铸造的工艺设计
根据金属型铸造工艺的一些特点,为了保证铸件质量,简化金属型结构,充分发挥它的技术经济效益,首先必须对铸件的结构进行分析,并制订合理的铸件工艺。 金属型铸造结构工艺性的好坏,是保证铸件质量,发挥金属型铸造优点的先决条件。合理的铸造构应遵循下列原则:1)铸造结构不应阻碍出型,妨碍收缩;2)厚差不能太大,以免造成各部分温差悬殊,从而引起铸件缩裂和缩松;3)限制金属型铸件的最小壁厚。另外,对铸件非加工面的精度和光洁度应要求适当。 铸件的浇注位置直接关系到型芯和分型面的数量、液体金属的导入位置,冒口的补缩效果,排气的通畅程度以及金属型的复杂程度等。选择浇注位置的原则如下:1.保证金属液在充型时流功平稳,排气方便,避免液流卷气和金属被氧化;2. 有利于顺序凝固,补缩良好,以保证获得组织致密的铸件;3.型芯数目应尽量减少,安放方便、稳定、而且易于出型;4.有利于金属型结构简化,铸件出型方便等。 分型面形式一般有垂直、水平和综合分类(垂直、水平混合分型或曲面分型)三种。选择分型面的原则如下:1.为简化金属型结构,提高稿件精度,对形状教简单的铸件最好都布置在半型内,或大部分布置在半型内;2.分型面数目应尽量少,保证铸件外形美观,铸件出型和下芯方便;3.选择的分型面应保证设置浇冒口方便,金属充型时流动平稳,有利于型腔里的气体排出;4.分型面不得选在加工基准面上;5,尽量避免曲面分型,减少拆卸件及活决数量。 根据金属型铸造的某些特点,在设计浇注系统时须注意以下几点:金属浇注速度大,超过砂型的约20%。其次,在液体金属充型时,型腔里的气体要能顺利排除,其流向应尽可能与液流方向一致,顺利的将气体挤向冒口或出气冒口;此外,应注意使液体金属在充型时流动平稳,不产生涡流,不冲击型壁或型芯,更不可产生飞溅。金属型的浇注系统一般分为顶注式底注式和侧注式三类。1)顶注式,其热分布较合理,有利于顺序凝固,可减少金属液的消耗,但金属液流动不平稳,易进法,铸件高时,易冲击型胶底部或型芯。若用于浇注铝合金件,一般只适用于铸件高度小于100毫米的简单件;2)底注式,金属液流动较平稳,有利于排气,但温度分布不合理,不利于铸件顺利凝固;3)侧注式,兼有上述两者的优点,金属液流动平稳,便于集渣,排气等,但金属液消耗大,浇口清理工作量大。金属型浇注系统的结构与砂型铸造基本相似,但由于金属型壁不透气,导热能力强,因此要求浇注系统结构,能有利于降低金属液流速,流动平稳,减少其对型壁的冲刷。除应保证型腔内气体有充裕的时间排除外,还保证在充型过程中不得产生喷溅。当用金属型浇注黑色金属时,由于铸件冷速大,液流的粘度急剧增加,因此多采用封闭式浇口,其各部分截面积比例为:F内:F横:F直=1:1.15:1.25 金属型铸造的冒口和砂型铸造时具有同等的作用:即为补缩、集渣和排气。它的设计原则也与砂型用冒口相同。由于金属型冷却速度大,而冒口又常采用保温涂料或砂层,因此金属型的冒口尺寸可比砂型的冒口小。
上一篇:经济法本科论文选题
下一篇:民族类核心期刊投稿