欢迎来到学术参考网
当前位置:发表论文>论文发表

鸡兔同笼小论文四年级

发布时间:2023-12-11 05:25

鸡兔同笼小论文四年级

鸡兔同笼是中国古代的数学名题之一。大约在
1500
年前,
《孙子算经》中就记
载了这个有趣的问题。
书中是这样叙述的:
“今有雉兔同笼,
上有三十五头,
下有九
十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从
上面数,有35个头,从下面数,有94只脚。问笼中各有几只鸡和兔?

算这个有个最简单的算法。(总脚数
-总头数×鸡的脚数)÷(兔的脚数
-鸡的脚数)=兔的只数 (94-35乘以2)÷2=12(兔子数)

解释:让兔子和鸡同时抬起两只脚,这样笼子里的脚就减少了兔的头数×
2
只,由
于鸡只有
2
只脚,所以笼子里只剩下兔子的两只脚,再÷
2
就是兔子数。

假设法

假设全是鸡:
2
×
35=70
(只)
鸡脚比总脚数少:
94

70=24
(只)
兔:
24
÷
(4-2)=12
(只)鸡:
35

12=23
(只)假设法(通俗)假设鸡和兔子都抬起一只脚,笼中站立
的脚:
94-35=59
(只)然后再抬起一只脚,这时候鸡两只脚都抬起来就摔倒了,只
剩下用两只脚站立的兔子,
站立脚:
59-35=24
(只)
兔:
24
÷
2=12
(只)
鸡:
35-12=23
(只)假设全是兔:
4
×
35=140
(只)如果假设全是兔那么兔脚比总数多:
140-94=46
(只)鸡:
46
÷(
4-2

=23
(只)兔:
35

23=12
(只)

方程法一元一次方程解:
设兔有
x
只,
则鸡有
(35-x

只。
4x+2(35-x)=94
解得
x=12


解:设鸡有
x
只,则兔有(
35-x
)只。
2x+4(35-x)=94
解得
x=23
答:兔子有
12
只,
鸡有
23
只。
通常设方程时,
选择腿的只数多的动物,
会在套用到其他类似鸡兔
同笼的问题上,
好算一些。
二元一次方程解:
设鸡有
x
只,
兔有
y
只。
x+y=35

2x+4y=94
解得
x=23

y=12
答:兔子有
12
只,鸡有
23
只。

抬腿法

方法一:假如让鸡抬起一只脚,兔子抬起
2
只脚,还有
94
÷
2=47
(只)脚。笼子里
的兔就比鸡的脚数多
1
,这时,脚与头的总数之差
47-35=12
,就是兔子的只数。

鸡兔同笼数学小论文怎么写

这学期我们学习了假设策略,由此我就想到一个非常著名的例题:鸡兔同笼。

这个问题是我国古代著名趣题之一。大约在1500年前,《孙子算经》中记载的这个有趣的问题:“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”这四句的意思就是:有若干只鸡和兔在同一个笼子里,从上面数,有三十五个头;从下面数,有九十四只脚。求笼中各有几只鸡和兔?同学们,你会解答这个问题吗?你知道孙子是如何解答这个“鸡兔同笼“的问题吗?,原来孙子提出了大胆的设想。他假设砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,而每只兔就变成了“双脚兔”。这样,“独脚鸡”和“双脚兔”的脚就由94只变成了47只;而每只“鸡”的头数与脚数之比变为1:1,每只“兔”的头数与脚数之比变为1:2。由此可知,有一只“双脚兔”,脚的数量就会比头的数量多1。所以,“独脚鸡”和“双脚兔”的脚的数量与他们的头的数量之差,就是兔子的只数,即:47-35=12(只);鸡的数量就是:35-12=23(只)。

我们学习了假设策略,现在解答这道题就不难了,我有两种不同的解题方法,一,假设全是鸡,每只鸡有两只脚 那么35只鸡,就有35*2=70只脚,那么还少94-70=24只脚,每只兔比鸡多两只脚,24/2=12只,这就是兔子的只数,鸡的只数就是35-12=23只。二:假设全是兔子,每只兔子四只脚,那么35只兔子就是35*4=140只脚,多出了140-94=46只脚,每只鸡比兔少两只脚,那么46/2=23只,就是鸡的只数,那么兔子就是35-23=12只。

这道题和大多数假设问题相似,其数量关系就是:总数相差量/个体相差量。通过学习,了解鸡兔同笼问题,感受古代数学问题的趣味性,激发了我学习数学的兴趣,同时通过多角度地思考,让我尝试用不同的方法去解决鸡兔同笼问题,培养我的逻辑推理能力。

数学小论文鸡兔同笼共有400字

已知总头数和总脚数,问鸡兔各几只公式:
兔子数=( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)
鸡数=(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)

方法一: 设全部都是鸡
总脚数将是2个总头数,多出来的实际脚数=实际脚数-2个总头数实际脚数多出来,就是因为有兔子,每多一只兔子,就多2只脚,兔子数=实际多出来的脚数有多少个2
兔子数=实际总脚数的一半-总头数

方法二:假设都是兔子,
总脚数将=4个总头数,实际脚数比都是兔子少,因为有鸡,每只鸡比兔子少2只脚
实际脚数比都是兔子少,少了多少个2,就是鸡数
鸡数=2个总头数-实际总脚数的一半

抬腿法

方法一
假如让鸡抬起一只脚,兔子抬起2只脚,还有总脚数一半(只)脚。笼子里的每只兔就比鸡的脚数多1,这时,脚与头的总头数之差=总脚数一半(只)脚-总头数=就是兔子的只数。
方法二
假如鸡与兔子都抬起两只脚,就是说鸡浮在空中没有脚,兔子只有2只脚,还剩下(总脚数-两个头数)只脚 , 这时地上只有兔子的脚,而且每只兔子有两只脚在地上,所以有兔子只数=(总脚数-两个头数)的一半=实际总脚数的一半-总头数。
方法三
我们可以先让兔子都抬起2只脚,那么就有2个总头数只脚,脚数和原来差总脚数-2个总头数只脚,这些都是每只兔子抬起2只脚,一共抬起(总脚数-2个总头数)只脚,得到兔子只数=(总脚数-2个总头数)的一半=实际总脚数的一半-总头数。
方法四
让所有兔子抬起两条前腿像鸡一样只有两条后腿着地,其实就是变成鸡一样的只有2只脚,就会有2个总数的脚,少的脚数=总脚数-2个总头数=2个兔子数
兔子数=实际总脚数的一半-总头数

方法五
假设法(通俗)

假设鸡和兔子都抬起一只脚,鸡成金鸡独立,兔子变成三脚兔,笼中站立的脚=实际总脚数-总头数(只)

然后再抬起一只脚,这时候鸡两只脚都抬起来就摔倒了,是屁股坐在地,只剩下用两只脚站立的兔子,剩下脚数=实际总脚数-2个总头数(只),兔子数=(总脚数-2个总头数)的一半=实际总脚数的一半-总头数

鸡下翅膀法

让所有鸡把翅膀放下当成脚,其实就是变成兔子一样的4只脚,就会有4个总数的脚,多出来的脚=4个总头数-总脚数=2个鸡数
鸡数=2个总头数-实际总脚数的一半

三年级后

公式:鸡数=2倍总头数-总脚数的一半,兔数=总脚数的一半-总头数

鸡脚数=2倍鸡数
兔数=总头数-鸡数
兔脚数=4倍兔数=4倍(总头数-鸡数)=4倍总头数-4倍鸡数
总脚数=鸡脚数+兔脚数=2倍鸡数+(4倍总头数-4倍鸡数)=4倍总头数-2倍鸡数
2倍鸡数=4倍总头数-总脚数

鸡数=2倍总头数-总脚数的一半
兔数=总头数-鸡数=总头数-(2倍总头数-脚数的一半)=总脚数的一半-总头数

方程法

鸡数=2倍总头数-总脚数的一半
兔数=总脚数的一半-总头数

方法一

假设其中的兔子数是x
那么鸡数就是总头数-x
总脚数=4x+2(总头数-x)

总脚数=2x+2总头数
2x=总脚数-2总头数
x=(总脚数-2总头数)/2
x=总脚数/2-总头数

方法二

假设其中的鸡数是x
那么兔子数就是总头数-x
总脚数=2x+4(总头数-x)
2x=4总头数-总脚数
x=2总头数-总脚数/2

数学论文小学四年级关于鸡兔同笼与假设法的

例题:

有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和
兔?

1)假设全是鸡,则应该有脚: 2×35=70(只)

因为把有4只脚的兔当成了鸡,所以比总脚数会少一些

比总脚数少的脚数: 94-70=24 (只)

少了这么多脚是因为把有4只脚的兔当成了只有2只脚鸡,从而每只兔少算了脚: 4-2=2(只)

有一只兔,就少算了1个2,2只兔少算了2个2……

24里共有几个2,就是兔的只数: 24÷2=12(只)

剩下的就是鸡的只数: 35-12=23(只)

2)假设全是兔,则应该有脚: 4×35=140(只)

因为把有2只脚的鸡当成了兔,所以比总脚数会多一些

比总脚数多的脚数: 140-94=46(只)

多了这么多脚是因为把有2只脚的鸡当成了有4只脚兔,从而每只鸡多算了脚: 4-2=2(只)

有一只鸡,就多算了1个2,2只鸡多算了2个2……

24里共有几个2,就是鸡的只数: 46÷2=23(只)

剩下的就是兔的只数: 35-23=12(只)

补充题:

班主任张老师带五年级(7)班50名同学栽树,张老师栽5棵,男生每人栽3棵,女生每人栽2棵,总

共栽树120棵,问几名男生,几名女生?

上一篇:化学工程师期刊封皮

下一篇:河北糖烟酒周刊杂志社