欢迎来到学术参考网
当前位置:发表论文>论文发表

狭义相对论论文原文

发布时间:2023-12-09 11:30

狭义相对论论文原文

爱恩斯坦 《狭义相对论》简介
爱因斯坦第一假设
全部狭义相对论主要基于爱因斯坦对宇宙本性的两个假设。

第一个可以这样陈述: 所有惯性参照系中的物理规律是相同的。

此处唯一稍有些难懂的地方是所谓的“惯性参照系”。举几个例子就可以解释清楚:——
爱因斯坦第二假设:时间和空间
时间和空间

我们得出一个自相矛盾的结论。我们用来将速度从一个参照系转换到另一个参照系的“常识相对论”和爱因斯坦的“光在所有惯性系中速度相同”的假设相抵触。只有在两种情况下爱因斯坦的假设才是正确的:要么距离相对于两个惯性系不同,要么时间相对于两个惯性系不同。实际上,两者都对。第一种效果被称作“长度收缩”,第二种效果被称作“时间膨胀”。

长度收缩:

长度收缩有时被称作洛伦茨(Lorentz)或洛伦茨-弗里茨格拉德(FritzGerald)收缩。在爱因斯坦之前,洛伦茨和弗里茨格拉德就求出了用来描述(长度)收缩的数学公式。但爱因斯坦意识到了它的重大意义并将其植入完整的相对论中。这个原理是:参照系中运动物体的长度比其静止时的长度要短。

下面用图形说明以便于理解:

上部图形是尺子在参照系中处于静止状态。一个静止物体在其参照系中的长度被称作他的“正确长度”。一个码尺的正确长度是一码。下部图中尺子在运动。用更长、更准确的话来讲:我们相对于某参照系,发现它(尺子)在运动。长度收缩原理指出在此参照系中运动的尺子要短一些。

这种收缩并非幻觉。当尺子从我们身边经过时,任何精确的试验都表明其长度比静止时要短。尺子并非看上去短了,它的确短了!然而,它只在其运动方向上收缩。下部图中尺子是水平运动的,因此它的水平方向变短。你可能已经注意到,两图中垂直方向的长度是一样的。

时间膨胀:

所谓的时间膨胀效应与长度收缩很相似,它是这样进行的:

某一参照系中的两个事件,它们发生在不同地点时的时间间隔,总比同样两个事件发生在相同地点的时间间隔长。

这更加难懂,我们仍然用图例加以说明:

图中两个闹钟都可以用于测量第一个闹钟从A点运动到B点所花费的时间。然而两个闹钟给出的结果并不相同。我们可以这样思考:我们所提到的两个事件分别是“闹钟离开A点”和“闹钟到达B点”。在我们的参照系中,这两个事件在不同的地点发生(A和B)。然而,让我们以上半图中闹钟自身的参照系观察这件事情。从这个角度看,上半图中的闹钟是静止的(所有的物体相对于其自身都是静止的),而刻有A和B点的线条从右向左移动。因此“离开A点”和“到达B点”着两件事情都发生在同一地点!(上半图中闹钟所测量的时间称为“正确时间”)按照前面提到的观点,下半图中闹钟所记录的时间将比上半图中闹钟从A到B所记录的时间更长。

此原理的一个较为简单但不太精确的陈述是:运动的钟比静止的钟走得更慢。最著名的关于时间膨胀的假说通常被成为双生子佯谬。假设有一对双胞胎哈瑞和玛丽,玛丽登上一艘快速飞离地球的飞船(为了使效果明显,飞船必须以接近光速运动),并且很快就返回来。我们可以将两个人的身体视为一架用年龄计算时间流逝的钟。因为玛丽运动得很快,因此她的“钟”比哈瑞的“钟”走得慢。结果是,当玛丽返回地球的时候,她将比哈瑞更年轻。年轻多少要看她以多快的速度走了多远。

时间膨胀并非是个疯狂的想法,它已经为实验所证实。最好的例子涉及到一种称 为"介子"的亚原子粒子。一个介子衰变需要多少时间已经被非常精确地测量过。无论怎样,已经观测到一个以接近光速运动的介子比一个静止或缓慢运动的介子的寿命要长。这就是相对论效应。从运动的介子自身来看,它并没有存在更长的时间。这是因为从它自身的角度看它是静止的;只有从相对于实验室的角度看该介子,我们才会发现其寿命被“延长”或“缩短”了。?

应该加上一句:已经有很多很多的实验证实了相对论的这个推论。(相对论的)其他推论我们以后才能加以证实。我的观点是,尽管我们把相对论称作一种“理论”,但不要误认为相对论有待于证实,它(实际上)是非常完备的。

伽玛参数(γ)
现在你可能会奇怪:为什么你在日常生活中从未注意到过长度收缩和时间膨胀效应?例如根据刚才我所说的,如果你驱车从俄荷马城到勘萨斯城再返回,那么当你到家的时候,你应该重新对表。因为当你驾车的时候,你的表应该比在你家里处于静止状态的表走得慢。如果到家的时候你的表现时是3点正,那么你家里的表都应该显示一个晚一点的时间。为什么你从未发现过这种情况呢?

答案是:这种效应显著与否依赖于你运动速度的快慢。而你运动得非常慢(你可能认为你的车开得很快,但这对于相对论来说,是极慢的)。长度收缩和时间膨胀的效果只有当你以接近光速运动的时候才能注意到。而光速约合186,300英里/秒(或3亿米/秒)。在数学上,相对论效应通常用一个系数加以描述,物理学家通常用希腊字母γ加以表示。这个系数依赖于物体运动的速度。例如,如果一根米尺(正确长度为1米)快速地从我们面前飞过,则它相对于我们的参照系的长度是1/γ米。如果一个钟从A点运动到B点要3秒钟,那么相对于我们的参照系,这个过程持续3/γ秒。

为了理解现实中为什么我们没有注意到相对论效应,让我们看一下(关于)γ的公式:

这里的关键是分母中的v2/c2。v是我们所讨论的物体的运动速度,c是光速。因为任何正常尺寸物体的速度远小于光速,所以v/c非常小;当我们将其平方后(所得的结果)就更小了。因此对于所有实际生活中通常尺寸的物体而言,γ的值就是1。所以对于普通的速度,我们通过乘除运算后得到的长度和时间没有变化。为了说明此事,下面有一个对应于不同速度的γ值表。(其中)最后一列是米尺在此速度运动时的长度(即1/γ米)。

速度 速度
(英里/小时) γ 长度
0 0 1 1
20 米/秒 45 1.0000000000000022 .9999999999999978
100,000 米/秒 224,000 1.000000056 .999999944
.1 c (3千万米/秒) 6千7百万 1.005 .995
.9 c 6亿 2.29 .44
.999 c 6亿7千万 22.4 .045
c 6亿7千万 无穷 0

第一列中c仍旧表示光速。.9c等于光速的十分之九。为了便于参照举个例子:“土星五号”火箭的飞行速度大约是25,000英里/小时。你看,对于任何合理的速度,γ几乎就是1。因此长度和时间几乎没有变化。在生活中,相对论效应只是发生在科幻小说(其中的飞船远比“土星五号”快得多)和微观物理学中(电子和质子常被加速到非常接近光速的速度)。在从芝加哥飞往丹佛的路上,这种效应是不会显现出来的。

假设你正在一架飞机上,飞机水平地以每小时几百英里的恒定速度飞行,没有任何颠簸。一个人从机舱那边走过来,说:“把你的那袋花生扔过来好吗?”你抓起花生袋,但突然停了下来,想道:“我正坐在一架以每小时几百英里速度飞行的飞机上,我该用多大的劲扔这袋花生,才能使它到达那个人手上呢?”

不,你根本不用考虑这个问题,你只需要用与你在机场时相同的动作(和力气)投掷就行。花生的运动同飞机停在地面时一样。

你看,如果飞机以恒定的速度沿直线飞行,控制物体运动的自然法则与飞机静止时是一样的。我们称飞机内部为一个惯性参照系。(“惯性”一词原指牛顿第一运动定律。惯性是每个物体所固有的当没有外力作用时保持静止或匀速直线运动的属性。惯性参照系是一系列此规律成立的参照系。

另一个例子。让我们考查大地本身。地球的周长约40,000公里。由于地球每24小时自转一周,地球赤道上的一点实际上正以每小时1600公里的速度向东移动。然而我敢打赌说Steve Young在向Jerry Rice(二人都是橄榄球运动员。译者注)触地传球的时候,从未对此担心过。这是因为大地在作近似的匀速直线运动,地球表面几乎就是一个惯性参照系。因此它的运动对其他物体的影响很小,所有物体的运动都表现得如同地球处于静止状态一样。

实际上,除非我们意识到地球在转,否则有些现象会是十分费解的。(即,地球不是在沿直线运动,而是绕地轴作一个大的圆周运动)

例如:天气(变化)的许多方面都显得完全违反物理规律,除非我们对此(地球在转)加以考虑。另一个例子。远程炮弹并非象他们在惯性系中那样沿直线运动,而是略向右(在北半球)或向左(在南半球)偏。(室外运动的高尔夫球手们,这可不能用于解释你们的擦边球)对于大多数研究目的而言,我们可以将地球视为惯性参照系。但偶尔,它的非惯性表征将非常严重(我想把话说得严密一些)。

这里有一个最低限度:惯性系是一个静止或作匀速直线运动的系。爱因斯坦的第一假设使此类系中所有的物理规律都保持不变。运动的飞机和地球表面的例子只是用以向你解释这是一个平日里人们想都不用想就能作出的合理假设。谁说爱因斯坦是天才?

爱因斯坦第二假设
19世纪中页人们对电和磁的理解有了一个革命性的飞跃,其中以詹姆斯.麦克斯韦(James Maxwell)的成就为代表。电和磁两种现象曾被认为毫不相关,直到奥斯特(Oersted)和安培(Ampere)证明电能产生磁;法拉弟(Faraday)和亨利(Henry)证明磁能产生电。现在我们知道电和磁的关系是如此紧密,以致于当物理学家对自然力进行列表时,常常将电和磁视为一件事。

麦克斯韦的成就在于将当时所有已知的电磁知识集中于四个方程中:

(如果你没有上过理解这些方程所必需的三到四个学期的微积分课程,那么就坐下来看它们几分钟,欣赏一下其中的美吧)

麦克斯韦方程对于我们的重要意义在于,它除了将所有人们已知的电磁知识加以描述以外,还揭示了一些人们不知道的事情。例如:构成这些方程的电磁场可以以振动波的形式在空间传播。当麦克斯韦计算了这些波的速度后,他发现它们都等于光速。这并非巧合,麦克斯韦(方程)揭示出光是一种电磁波。

我们应记住的一个重要的事情是:光速直接从描述所有电磁场的麦克斯韦方程推导而来。

现在我们回到爱因斯坦。

爱因斯坦的第一个假设是所有惯性参照系中的物理规律相同。他的第二假设是简单地将此原则推广到电和磁的规律中。这就是,如果麦克斯韦假设是自然界的一种规律,那么它(和它的推论)都必须在所有惯性系中成立。这些推论中的一个就是爱因斯坦的第二假设:光在所有惯性系中速度相同。

爱因斯坦的第一假设看上去非常合理,他的第二假设延续了第一假设的合理性。但为什么它看上去并不合理呢?

例如:天气(变化)的许多方面都显得完全违反物理规律,除非我们对此(地球在转)加以考虑。另一个例子。远程炮弹并非象他们在惯性系中那样沿直线运动,而是略向右(在北半球)或向左(在南半球)偏。(室外运动的高尔夫球手们,这可不能用于解释你们的擦边球)对于大多数研究目的而言,我们可以将地球视为惯性参照系。但偶尔,它的非惯性表征将非常严重(我想把话说得严密一些)。

火车上的试验

为了说明爱因斯坦第二假的合理性,让我们来看一下下面这副火车上的图画。火车以每秒100,000,000米/秒的速度运行,Dave站在车上,Nolan站在铁路旁的地面上。Dave用手中的电筒“发射”光子。

光子相对于Dave以每秒300,000,000米/秒的速度运行,Dave以100,000,000米/秒的速度相对于Nolan运动。因此我们得出光子相对于Nolan的速度为400,000,000米/秒。

问题出现了:这与爱因斯坦的第二假设不符!爱因斯坦说光相对于Nolan参照系的速度必需和Dave参照系中的光速完全相同,即300,000,000米/秒。那么我们的“常识感觉”和爱因斯坦的假设那一个错了呢?

好,许多科学家的试验(结果)支持了爱因斯坦的假设,因此我们也假定爱因斯坦是对的,并帮大家找出常识相对论的错误之处。

记得吗?将速度相加的决定来得十分简单。一秒钟后,光子已移动到Dave前300,000,000米处,而Dave已经移动到Nolan前100,000,000米处。其间的距离不是400,000,000米只有两种可能:——

1、 相对于Dave的300,000,000米距离对于Nolan来说并非也是300,000,000米
2、 对Dave而言的一秒钟和对Nolan而言的一秒钟不同

尽管听起来很奇怪,但两者实际上都是正确的。
宇宙执法者的历险
宇宙执法者AD在A行星上被邪恶的EN博士所擒。EN博士给AD喝了一杯13小时后发作的毒酒,并告诉AD解药在距此40,000,000,000公里远的B行星上。AD得知此情况后立即乘上其0.95倍光速的星际飞船飞往B星,那么:AD能即使到达B星并取得解药吗?

我们做如下的计算:A、B两行星之间的距离为40,000,000,000公里。飞船的速度是1,025,000,000公里/小时。把这两个数相除,我们得到从A行星到B行星需要39小时。那么AD必死无疑。

等一下!这只对于站在A行星上的人而言。由于毒药在AD的体内是要经过新陈代谢(才能发作)的,我们必须从AD的参照系出发研究这一问题。我们可以用两种方法做这件事情,它们将得到相同的结论。

1. 设想一个大尺子从A行星一致延伸到B行星。这个尺子有40,000,000,000公里长。然而,从AD的角度而言,这个尺子以接近光速飞过他身边。我们已经知道这样的物体会发生长度收缩现象。在AD的参照系中,从A行星到B行星的距离以参数γ在收缩。在95%的光速下,γ的值大约等于3.2。因此AD认为这段路程只有12,500,000,000公里远(400亿除以3.2)。我们用此距离除以AD的速度,得到12.2小时,AD将提前将近1小时到达B行星!

2. A行星上的观察者会发现AD到达B需要花费大约39小时时间。然而,这是一个膨胀后的时间。我们知道AD的“钟”以参数γ(3.2)变慢。为了计算AD参照系中的时间,我们再用39小时除以3.2,得到12.2小时。(也)给AD剩下了大约1小时(这很好,因为这给了AD20分钟时间离开飞船,另外20分钟去寻找解药)。

AD将生还并继续与邪恶战斗。

如果对上文中我的描述加以仔细研究,你会发现许多似是而非,非常微妙的东西。当你深入地思考它的时候,一般你最终将提出这样一个问题:“等一下,在AD的参照系中,EN的钟表走得更慢了,因此在AD的参照系中,宇宙旅行应花费更长的时间,而不是更短……

如果你对这个问题感兴趣或者觉得困惑,你可能应该看一下后文《宇宙执法者的历险——微妙的时间》。或者你可以相信我所说的话“如果你把所有的因果都弄清楚,那么所有(这些)都是正确的”并跳到《质量和能量》一章。

宇宙执法者的历险—微妙的时间
好,这就是我们刚刚看到的。我们已经发现在AD相对于EN参照系旅行中的时间膨胀。在EN参照系中,AD是运动的,因此AD的钟走得慢。结果是在此次飞行中EN的钟走了39小时,而AD的钟走了12小时。这常常使人们产生这样的问题:相对于AD的系,EN是运动的,因此EN的钟应该走得慢。因此当AD到达B行星的时候,他的钟走的时间比EN的长。谁对?长还是短?

好问题。当你问这个问题的时候,我知道你已经开始进入情况了。在开始解释之前,我必须声明在前文所叙述的事情都是对的。在我所描述的情况下,AD可以及时拿到解药。现在让我们来解释这个徉谬。这与我尚未提及的“同时性”有关。相对论的一个推论是:同一参照系中的两个同时(但不同地点)发生的事件相对于另一个参照系不同时发生。

让我们来研究一些同时发生的事件。首先,让我们假设EN和AD在AD离开A行星时同时按下秒表。按照EN的表,这趟B行星之旅将花费39小时。换言之,EN的表在AD到达B行星时读数为39小时。因为时间膨胀,AD的表与此同时读数为12.2小时。即,以下三件事情是同时发生的:

1、EN的表读数为39
2、AD到达B行星
3、AD的表读数为12.2

这些事件在EN的参照系中是同时发生的。

现在在AD的参照系中,上述三个事件不可能同时发生。更进一步,因为我们知道EN的表一定以参数γ减慢(此处γ大约为3.2),我们可以计算出当AD的表读数为12.2小时的时候,EN的表的读数为12.2/3.2=3.8小时。因此在AD的系中,这些事情是同时发生的:

1、AD到达B行星
2、AD的钟的读数为1.2
3、EN的钟的读数为3.2

前两项在两个系中都是相同的,因为它们在同一地点——B行星发生。两个同一地点发生的事件要么同时发生,要么不同时发生,在这里,参照系不起作用。

从另一个角度看待此问题可能会对你有所帮助。你所感兴趣的事件是从AD离开A行星到AD到达B行星。一个重要的提示:AD在两个事件中都存在。也就是说,在AD的参照系中,这两个事件在同一地点发生。由此,AD参照系的事件被称作“正确时间”,所有其他系中的时间都将比此系中的更长(参见时间膨胀原理)。不管怎样,如果你对AD历险中的时间膨胀感到迷惑,希望这可以使之澄清一些。如果你原本不糊涂,那么希望你现在也不。

光速极限
在读AD历险记中,你可能注意到AD的速度几乎是,但并不等于光速。这似乎有很充分的理由:远低于光速的速度相对论效应不显著。然而实际情况是超光速在物理学中是不可能的。

我会告诉你这是为什么。假想AD奋力想将他的飞船加速到光速。好,我们已经知道物质的能量与γ参数成比例,这在相对论计算中太普遍了。但你现在也会知道当物体的运动速度等于光速时,γ参数将变为无穷大。因此,为了让AD的飞船加速到光速,他将需要无穷大的能量。这显然是不可能的。因此尽管对于一个物体可以以多么接近光速的速度运动并无限制,但任何有质量的物体都不可能达到光速。实际上,没有质量的物质必须以光速运动,在此我不想讨论其原因。唯一的一种没有质量的物质是光(被称作“光子”),或许还有中微子(不久前已经证实,中微子有质量。译者)

还有其他物体不能朝光速运动的原因。其中之一与“因果性”有关。假设我投出一个垒球并打碎了一扇窗户,那么“我投出球”就是“窗户被击碎”的原因。如果超光速是可能的,那么一定会有某种参照系,其中“窗户被击碎”先于“我投出球”发生。这导致各种逻辑冲突(特别是当窗户已经碎了之后又有人截获了飞行中的球,阻止了窗户被击碎!)因此我们将物体能超光速运行这种可能性排除了。更进一步,因果性排除的不仅是朝光速运动,更排除了任何超光速通讯。

光速,就我们所知而言,是一道不可逾越的障碍。

如果你和我一样是个科幻迷,这将是一个坏消息。几乎可以肯定,在除地球之外的太阳系中不存在有智慧的生命。然而恒星间的距离太远了!我们即使以光速运行,到达最近的恒星也要花上4年时间。所以没有比光快的交通手段,将很可能无法在银河系中游荡并与异型文明相遇,为争夺银河系的帝位而站,等等。

另一方面,由于长度收缩,或许情况并非那样令人绝望。假设你登上一条飞船,以接近光速飞往10光年以外的一颗恒星。从地球的参照系看来,这个旅行将持续10年。然而对于这次旅行中的乘客而言,长度缩短了。因此这个旅行只用了不到10年的时间。并且飞船飞行得越接近光速,(相对于地球和恒星的)长度收缩得也越多(你也可以从时间膨胀的角度考虑这个问题)。

为了说明这点,这里有一个表,标明以不同的速度到达不同目的地所需要的时间。让我解释一下它们的含义:首先,为了能产生显著的长度缩短,我们必须非常接近光速。因此我假设在旅行中飞船可以产生一个稳定的加速度。这也就是说,飞船内的人将感受到一个连续的加速度。例如,前半程以1g(g为地球的重力加速度。译者)加速,后半程以1g减速。

目的地 距离
(光年) 加速度
( g) 最高速度 地球时间
(年) 飞船时间
(年)
人马座α星
4.3
.1
1
2

.57c
.95c
.98c

13.6
5.9
5.2

12.7
3.6
2.3

天狼星
8.7
.1
1
2

.72c
.98c
.995c

20.3
10.5
9.6

17.7
4.6
2.9

Vega
26.5
.1
1
2

.91c
.998c
.9994c

42
28.4
27.5

29.2
6.5
3.9

猎户座
520
.1
1
2

.9994c
.999993c
.999998c

539
522
521

78
12.2
6.8

Deneb
1600
.1
1
2

.99993c
.9999993c
.9999998c

1620
1602
1601

99
14.4
7.9

银河系中心
30000
.1
1
2

.9999998c
Really fast
Really fast

30020
30000
30000

156
20.0
10.7

仙女座(星系)
2200000
.1
1
2

Really fast
Really fast
Really fast

2200000
2200000
2200000

239
28.4
14.9

目的地 距离
(光年) 加速度
( g) 最高速度 地球时间
(年) 飞船时间
(年)

第二列以光年为单位给出了地球距离我们目的地的距离(一光年是光在一年内传播的距离,大约是6万亿英里)。我加入了三种不同加速度的计算,一种较小,另一种较大;剩下的一种与地球的重力加速度相等。加速度为2g的旅行可能会非常不舒服,因此或许你根本不用再考虑所有比这更大的速度。

第四列列出了最大速度(在中点处,当飞船正要转入减速运动时)与光速的比值。最后两列给出了旅行所需要的时间。首先以地球为参照系,然后以飞船为参照系。其中的差别很重要。我的意思是,如果说你乘飞船以2g的加速度飞往猎户座,在你到达猎户座之前要在飞船上渡过6.8年的时间。(尽管距离很远,但“飞船时间”增加得非常慢。这是因为距离越大,在开始减速前你越能接近光速飞行,因此你得到的长度收缩越多!)但当你到达那里的时候,地球上已经过500多年了。你到达猎户座后所发出的任何信息都将在500年后到达地球,回信也是如此。因此如果人类有一天能漫步在银河系之中,不同居住点之间将处于隔绝状态。地球上的人不可能以任何常规方式同猎户座附近的人交谈。

为建造一艘可以像这样无限加速的飞船,现在看来有无穷的技术困难。这些困难可能会被证实是不可克服的,那么我们就只能在幻想的空间遨游;但如果它们是可以克服的,并且如果我们人类可以活得足够长以克服它们,那么我刚才所描述的正是依据狭义相对论的理论上(可行的)远程宇宙旅行。

当然,许多科幻小说仍然加入了超光速飞行。但它们也常常不得不在其中引入一些奇怪的概念,如:“(时空)扭曲”、“超时空”。最终的情况是:就我们今天所知的时、空而言,超光速飞行是不可能的。但如果你喜欢,你总可以寄希望于某种时空的“窗口”或一个全新的,允许物体超光速运动的物理分枝被发现。

那样,我们就可以着手建立一个大银河帝国了!

爱因斯坦的相对论全文

狭义相对论的创立

早在16岁时,爱因斯坦就从书本上了解到光是以很快速度前进的电磁波,他产生了一个想法,如果一个人以光的速度运动,他将看到一幅什么样的世界景象呢?他将看不到前进的光,只能看到在空间里振荡着却停滞不前的电磁场。这种事可能发生吗?

与此相联系,他非常想探讨与光波有关的所谓以太的问题。以太这个名词源于希腊,用以代表组成天上物体的基本元素。17世纪,笛卡尔首次将它引入科学,作为传播光的媒质。其后,惠更斯进一步发展了以太学说,认为荷载光波的媒介物是以太,它应该充满包括真空在内的全部空间,并能渗透到通常的物质中。与惠更斯的看法不同,牛顿提出了光的微粒说。牛顿认为,发光体发射出的是以直线运动的微粒粒子流,粒子流冲击视网膜就引起视觉。18世纪牛顿的微粒说占了上风,然而到了19世纪,却是波动说占了绝对优势,以太的学说也因此大大发展。当时的看法是,波的传播要依赖于媒质,因为光可以在真空中传播,传播光波的媒质是充满整个空间的以太,也叫光以太。与此同时,电磁学得到了蓬勃发展,经过麦克斯韦、赫兹等人的努力,形成了成熟的电磁现象的动力学理论——电动力学,并从理论与实践上将光和电磁现象统一起来,认为光就是一定频率范围内的电磁波,从而将光的波动理论与电磁理论统一起来。以太不仅是光波的载体,也成了电磁场的载体。直到19世纪末,人们企图寻找以太,然而从未在实验中发现以太。

但是,电动力学遇到了一个重大的问题,就是与牛顿力学所遵从的相对性原理不一致。关于相对性原理的思想,早在伽利略和牛顿时期就已经有了。电磁学的发展最初也是纳入牛顿力学的框架,但在解释运动物体的电磁过程时却遇到了困难。按照麦克斯韦理论,真空中电磁波的速度,也就是光的速度是一个恒量,然而按照牛顿力学的速度加法原理,不同惯性系的光速不同,这就出现了一个问题:适用于力学的相对性原理是否适用于电磁学?例如,有两辆汽车,一辆向你驶近,一辆驶离。你看到前一辆车的灯光向你靠近,后一辆车的灯光远离。按照麦克斯韦的理论,这两种光的速度相同,汽车的速度在其中不起作用。但根据伽利略理论,这两项的测量结果不同。向你驶来的车将发出的光加速,即前车的光速=光速+车速;而驶离车的光速较慢,因为后车的光速=光速-车速。麦克斯韦与伽利略关于速度的说法明显相悖。我们如何解决这一分歧呢?

19世纪理论物理学达到了巅峰状态,但其中也隐含着巨大的危机。海王星的发现显示出牛顿力学无比强大的理论威力,电磁学与力学的统一使物理学显示出一种形式上的完整,并被誉为“一座庄严雄伟的建筑体系和动人心弦的美丽的庙堂”。在人们的心目中,古典物理学已经达到了近乎完美的程度。德国著名的物理学家普朗克年轻时曾向他的老师表示要献身于理论物理学,老师劝他说:“年轻人,物理学是一门已经完成了的科学,不会再有多大的发展了,将一生献给这门学科,太可惜了。”

爱因斯坦似乎就是那个将构建崭新的物理学大厦的人。在伯尔尼专利局的日子里,爱因斯坦广泛关注物理学界的前沿动态,在许多问题上深入思考,并形成了自己独特的见解。在十年的探索过程中,爱因斯坦认真研究了麦克斯韦电磁理论,特别是经过赫兹和洛伦兹发展和阐述的电动力学。爱因斯坦坚信电磁理论是完全正确的,但是有一个问题使他不安,这就是绝对参照系以太的存在。他阅读了许多著作发现,所有人试图证明以太存在的试验都是失败的。经过研究爱因斯坦发现,除了作为绝对参照系和电磁场的荷载物外,以太在洛伦兹理论中已经没有实际意义。于是他想到:以及绝对参照系是必要的吗?电磁场一定要有荷载物吗?

爱因斯坦喜欢阅读哲学著作,并从哲学中吸收思想营养,他相信世界的统一性和逻辑的一致性。相对性原理已经在力学中被广泛证明,但在电动力学中却无法成立,对于物理学这两个理论体系在逻辑上的不一致,爱因斯坦提出了怀疑。他认为,相对论原理应该普遍成立,因此电磁理论对于各个惯性系应该具有同样的形式,但在这里出现了光速的问题。光速是不变的量还是可变的量,成为相对性原理是否普遍成立的首要问题。当时的物理学家一般都相信以太,也就是相信存在着绝对参照系,这是受到牛顿的绝对空间概念的影响。19世纪末,马赫在所著的《发展中的力学》中,批判了牛顿的绝对时空观,这给爱因斯坦留下了深刻的印象。1905年5月的一天,爱因斯坦与一个朋友贝索讨论这个已探索了十年的问题,贝索按照马赫主义的观点阐述了自己的看法,两人讨论了很久。突然,爱因斯坦领悟到了什么,回到家经过反复思考,终于想明白了问题。第二天,他又来到贝索家,说:谢谢你,我的问题解决了。原来爱因斯坦想清楚了一件事:时间没有绝对的定义,时间与光信号的速度有一种不可分割的联系。他找到了开锁的钥匙,经过五个星期的努力工作,爱因斯坦把狭义相对论呈现在人们面前。

1905年6月30日,德国《物理学年鉴》接受了爱因斯坦的论文《论动体的电动力学》,在同年9月的该刊上发表。这篇论文是关于狭义相对论的第一篇文章,它包含了狭义相对论的基本思想和基本内容。狭义相对论所根据的是两条原理:相对性原理和光速不变原理。爱因斯坦解决问题的出发点,是他坚信相对性原理。伽利略最早阐明过相对性原理的思想,但他没有对时间和空间给出过明确的定义。牛顿建立力学体系时也讲了相对性思想,但又定义了绝对空间、绝对时间和绝对运动,在这个问题上他是矛盾的。而爱因斯坦大大发展了相对性原理,在他看来,根本不存在绝对静止的空间,同样不存在绝对同一的时间,所有时间和空间都是和运动的物体联系在一起的。对于任何一个参照系和坐标系,都只有属于这个参照系和坐标系的空间和时间。对于一切惯性系,运用该参照系的空间和时间所表达的物理规律,它们的形式都是相同的,这就是相对性原理,严格地说是狭义的相对性原理。在这篇文章中,爱因斯坦没有多讨论将光速不变作为基本原理的根据,他提出光速不变是一个大胆的假设,是从电磁理论和相对性原理的要求而提出来的。这篇文章是爱因斯坦多年来思考以太与电动力学问题的结果,他从同时的相对性这一点作为突破口,建立了全新的时间和空间理论,并在新的时空理论基础上给动体的电动力学以完整的形式,以太不再是必要的,以太漂流是不存在的。

什么是同时性的相对性?不同地方的两个事件我们何以知道它是同时发生的呢?一般来说,我们会通过信号来确认。为了得知异地事件的同时性我们就得知道信号的传递速度,但如何没出这一速度呢?我们必须测出两地的空间距离以及信号传递所需的时间,空间距离的测量很简单,麻烦在于测量时间,我们必须假定两地各有一只已经对好了的钟,从两个钟的读数可以知道信号传播的时间。但我们如何知道异地的钟对好了呢?答案是还需要一种信号。这个信号能否将钟对好?如果按照先前的思路,它又需要一种新信号,这样无穷后退,异地的同时性实际上无法确认。不过有一点是明确的,同时性必与一种信号相联系,否则我们说这两件事同时发生是没有意义的。

光信号可能是用来对时钟最合适的信号,但光速不是无限大,这样就产生一个新奇的结论,对于静止的观察者同时的两件事,对于运动的观察者就不是同时的。我们设想一个高速运行的列车,它的速度接近光速。列车通过站台时,甲站在站台上,有两道闪电在甲眼前闪过,一道在火车前端,一道在后端,并在火车两端及平台的相应部位留下痕迹,通过测量,甲与列车两端的间距相等,得出的结论是,甲是同时看到两道闪电的。因此对甲来说,收到的两个光信号在同一时间间隔内传播同样的距离,并同时到达他所在位置,这两起事件必然在同一时间发生,它们是同时的。但对于在列车内部正中央的乙,情况则不同,因为乙与高速运行的列车一同运动,因此他会先截取向着他传播的前端信号,然后收到从后端传来的光信号。对乙来说,这两起事件是不同时的。也就是说,同时性不是绝对的,而取决于观察者的运动状态。这一结论否定了牛顿力学中引以为基础的绝对时间和绝对空间框架。

相对论认为,光速在所有惯性参考系中不变,它是物体运动的最大速度。由于相对论效应,运动物体的长度会变短,运动物体的时间膨胀。但由于日常生活中所遇到的问题,运动速度都是很低的(与光速相比),看不出相对论效应。

爱因斯坦在时空观的彻底变革的基础上建立了相对论力学,指出质量随着速度的增加而增加,当速度接近光速时,质量趋于无穷大。他并且给出了著名的质能关系式:E=mc2,质能关系式对后来发展的原子能事业起到了指导作用。

广义相对论的建立

1905年,爱因斯坦发表了关于狭义相对论的第一篇文章后,并没有立即引起很大的反响。但是德国物理学的权威人士普朗克注意到了他的文章,认为爱因斯坦的工作可以与哥白尼相媲美,正是由于普朗克的推动,相对论很快成为人们研究和讨论的课题,爱因斯坦也受到了学术界的注意。

1907年,爱因斯坦听从友人的建议,提交了那篇著名的论文申请联邦工业大学的编外讲师职位,但得到的答复是论文无法理解。虽然在德国物理学界爱因斯坦已经很有名气,但在瑞士,他却得不到一个大学的教职,许多有名望的人开始为他鸣不平,1908年,爱因斯坦终于得到了编外讲师的职位,并在第二年当上了副教授。1912年,爱因斯坦当上了教授,1913年,应普朗克之邀担任新成立的威廉皇帝物理研究所所长和柏林大学教授。

在此期间,爱因斯坦在考虑将已经建立的相对论推广,对于他来说,有两个问题使他不安。第一个是引力问题,狭义相对论对于力学、热力学和电动力学的物理规律是正确的,但是它不能解释引力问题。牛顿的引力理论是超距的,两个物体之间的引力作用在瞬间传递,即以无穷大的速度传递,这与相对论依据的场的观点和极限的光速冲突。第二个是非惯性系问题,狭义相对论与以前的物理学规律一样,都只适用于惯性系。但事实上却很难找到真正的惯性系。从逻辑上说,一切自然规律不应该局限于惯性系,必须考虑非惯性系。狭义相对论很难解释所谓的双生了佯谬,该佯谬说的是,有一对孪生兄弟,哥在宇宙飞船上以接近光速的速度做宇宙航行,根据相对论效应,高速运动的时钟变慢,等哥哥回来,弟弟已经变得很老了,因为地球上已经经历了几十年。而按照相对性原理,飞船相对于地球高速运动,地球相对于飞船也高速运动,弟弟看哥哥变年轻了,哥哥看弟弟也应该年轻了。这个问题简直没法回答。实际上,狭义相对论只处理匀速直线运动,而哥哥要回来必须经过一个变速运动过程,这是相对论无法处理的。正在人们忙于理解相对狭义相对论时,爱因斯坦正在接受完成广义相对论。

1907年,爱因斯坦撰写了关于狭义相对论的长篇文章《关于相对性原理和由此得出的结论》,在这篇文章中爱因斯坦第一次提到了等效原理,此后,爱因斯坦关于等效原理的思想又不断发展。他以惯性质量和引力质量成正比的自然规律作为等效原理的根据,提出在无限小的体积中均匀的引力场完全可以代替加速运动的参照系。爱因斯坦并且提出了封闭箱的说法:在一封闭箱中的观察者,不管用什么方法也无法确定他究竟是静止于一个引力场中,还是处在没有引力场却在作加速运动的空间中,这是解释等效原理最常用的说法,而惯性质量与引力质量相等是等效原理一个自然的推论。

1915年11月,爱因斯坦先后向普鲁士科学院提交了四篇论文,在这四篇论文中,他提出了新的看法,证明了水星近日点的进动,并给出了正确的引力场方程。至此,广义相对论的基本问题都解决了,广义相对论诞生了。1916年,爱因斯坦完成了长篇论文《广义相对论的基础》,在这篇文章中,爱因斯坦首先将以前适用于惯性系的相对论称为狭义相对论,将只对于惯性系物理规律同样成立的原理称为狭义相对性原理,并进一步表述了广义相对性原理:物理学的定律必须对于无论哪种方式运动着的参照系都成立。

爱因斯坦的广义相对论认为,由于有物质的存在,空间和时间会发生弯曲,而引力场实际上是一个弯曲的时空。爱因斯坦用太阳引力使空间弯曲的理论,很好地解释了水星近日点进动中一直无法解释的43秒。广义相对论的第二大预言是引力红移,即在强引力场中光谱向红端移动,20年代,天文学家在天文观测中证实了这一点。广义相对论的第三大预言是引力场使光线偏转,。最靠近地球的大引力场是太阳引力场,爱因斯坦预言,遥远的星光如果掠过太阳表面将会发生一点七秒的偏转。1919年,在英国天文学家爱丁顿的鼓动下,英国派出了两支远征队分赴两地观察日全食,经过认真的研究得出最后的结论是:星光在太阳附近的确发生了一点七秒的偏转。英国皇家学会和皇家天文学会正式宣读了观测报告,确认广义相对论的结论是正确的。会上,著名物理学家、皇家学会会长汤姆孙说:“这是自从牛顿时代以来所取得的关于万有引力理论的最重大的成果”,“爱因斯坦的相对论是人类思想最伟大的成果之一”。爱因斯坦成了新闻人物,他在1916年写了一本通俗介绍相对认的书《狭义相对论与广义相对论浅说》,到1922年已经再版了40次,还被译成了十几种文字,广为流传。

相对论的意义

狭义相对论和广义相对论建立以来,已经过去了很长时间,它经受住了实践和历史的考验,是人们普遍承认的真理。相对论对于现代物理学的发展和现代人类思相的发展都有巨大的影响。 相对论从逻辑思想上统一了经典物理学,使经典物理学成为一个完美的科学体系。狭义相对论在狭义相对性原理的基础上统一了牛顿力学和麦克斯韦电动力学两个体系,指出它们都服从狭义相对性原理,都是对洛伦兹变换协变的,牛顿力学只不过是物体在低速运动下很好的近似规律。广义相对论又在广义协变的基础上,通过等效原理,建立了局域惯性长与普遍参照系数之间的关系,得到了所有物理规律的广义协变形式,并建立了广义协变的引力理论,而牛顿引力理论只是它的一级近似。这就从根本上解决了以前物理学只限于惯性系数的问题,从逻辑上得到了合理的安排。相对论严格地考察了时间、空间、物质和运动这些物理学的基本概念,给出了科学而系统的时空观和物质观,从而使物理学在逻辑上成为完美的科学体系。

狭义相对论给出了物体在高速运动下的运动规律,并提示了质量与能量相当,给出了质能关系式。这两项成果对低速运动的宏观物体并不明显,但在研究微观粒子时却显示了极端的重要性。因为微观粒子的运动速度一般都比较快,有的接近甚至达到光速,所以粒子的物理学离不开相对论。质能关系式不仅为量子理论的建立和发展创造了必要的条件,而且为原子核物理学的发展和应用提供了根据。

广义相对论建立了完善的引力理论,而引力理论主要涉及的是天体。到现在,相对论宇宙学进一步发展,而引力波物理、致密天体物理和黑洞物理这些属于相对论天体物理学的分支学科都有一定的进展,吸引了许多科学家进行研究。

一位法国物理学家曾经这样评价爱因斯坦:“在我们这一时代的物理学家中,爱因斯坦将位于最前列。他现在是、将来也还是人类宇宙中最有光辉的巨星之一”,“按照我的看法,他也许比牛顿更伟大,因为他对于科学的贡献,更加深入地进入了人类思想基本要领的结构中。”
回答者:鸶歌 - 秀才 二级 7-11 13:13

相对论是关于时空和引力的基本理论,主要由爱因斯坦(Albert Einstein)创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。相对论的基本假设是光速不变原理,相对性原理和等效原理。相对论和量子力学是现代物理学的两大基本支柱。奠定了经典物理学基础的经典力学,不适用于高速运动的物体和微观条件下的物体。相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。相对论极大的改变了人类对宇宙和自然的“常识性”观念,提出了“同时的相对性”,“四维时空”“弯曲空间”等全新的概念。

狭义相对论,是只限于讨论惯性系情况的相对论。牛顿时空观认为空间是平直的、各向同性的和各点同性的的三维空间——绝对空间,时间是独立于空间的单独一维(因而也是绝对的),即绝对时空观。狭义相对论认为空间和时间并不相互独立,而是一个统一的四维时空整体,并不存在绝对的空间和时间。在狭义相对论中,整个时空仍然是平直的、各向同性的和各点同性的,这是一种对应于“全局惯性系”的理想状况。狭义相对论将真空中光速为常数作为基本假设,结合狭义相对性原理和上述时空的性质可以推出洛仑兹变换。

广义相对论是爱因斯坦在1915年发表的理论。爱因斯坦提出“等效原理”,即引力和惯性力是等效的。这一原理建立在引力质量与惯性质量的等价性上(目前实验证实,在10 − 12的精确度范围内,仍没有看到引力质量与惯性质量的差别)。根据等效原理,爱因斯坦把狭义相对性原理推广为广义相对性原理,即物理定律的形式在一切参考系都是不变的。物体的运动方程即该参考系中的测地线方程。测地线方程与物体自身故有性质无关,只取决于时空局域几何性质。而引力正是时空局域几何性质的表现。物质质量的存在会造成时空的弯曲,在弯曲的时空中,物体仍然顺着最短距离进行运动(即沿着测地线运动——在欧氏空间中即是直线运动),如地球在太阳造成的弯曲时空中的测地线运动,实际是绕着太阳转,造成引力作用效应。正如在弯曲的地球表面上,如果以直线运动,实际是绕着地球表面的大圆走。

倒相对论:相对论的提出,同样受到很多的指责,有很多人认为它是错误的,并大大阻碍了社会的发展。然而这种观点并不被主流科学界所接受。

爱因斯坦和他的相对论

除了量子理论以外,1905年刚刚得到博士学位的爱因斯坦发表的一篇题为《论动体的电动力学》的文章引发了二十世纪物理学的另一场革命。文章研究的是物体的运动对光学现象的影响,这是当时经典物理学面对的另一个难题。

十九世纪中叶,麦克斯韦建立了电磁场理论,并预言了以光速C传播的电磁波的存在。到十九世纪末,实验完全证实了麦克斯韦理论。电磁波是什么?它的传播速度C是对谁而言的呢?当时流行的看法是整个宇宙空间充满一种特殊物质叫做“以太”,电磁波是以太振动的传播。但人们发现,这是一个充满矛盾的理论。如果认为地球是在一个静止的以太中运动,那么根据速度迭加原理,在地球上沿不同方向传播的光的速度必定不一样,但是实验否定了这个结论。如果认为以太被地球带着走,又明显与天文学上的一些观测结果不符。

1887年迈克尔逊和莫雷利用光的干涉现象进行了非常精确的测量,仍没有发现地球有相对于以太的任何运动。对此,洛仑兹(H.A.Lorentz)提出了一个假设,认为一切在以太中运动的物体都要沿运动方向收缩。由此他证明了,即使地球相对以太有运动,迈克尔逊也不可能发现它。爱因斯坦从完全不同的思路研究了这一问题。他指出,只要摒弃牛顿所确立的绝对空间和绝对时间的概念,一切困难都可以解决,根本不需要什么以太。

爱因斯坦提出了两条基本原理作为讨论运动物体光学现象的基础。第一个叫做相对性原理。它是说:如果坐标系K'相对于坐标系K作匀速运动而没有转动,则相对于这两个坐标系所做的任何物理实验,都不可能区分哪个是坐标系K,哪个是坐标系K′。第二个原理叫光速不变原理,它是说光(在真空中)的速度c是恒定的,它不依赖于发光物体的运动速度。

从表面上看,光速不变似乎与相对性原理冲突。因为按照经典力学速度的合成法则,对于K′和K这两个做相对匀速运动的坐标系,光速应该不一样。爱因斯坦认为,要承认这两个原理没有抵触,就必须重新分析时间与空间的物理概念。

经典力学中的速度合成法则实际依赖于如下两个假设:1.两个事件发生的时间间隔与测量时间所用的钟的运动状态没有关系;2.两点的空间距离与测量距离所用的尺的运动状态无关。爱因斯坦发现,如果承认光速不变原理与相对性原理是相容的,那么这两条假设都必须摒弃。这时,对一个钟是同时发生的事件,对另一个钟不一定是同时的,同时性有了相对性。在两个有相对运动的坐标系中,测量两个特定点之间的距离得到的数值不再相等。距离也有了相对性。

如果设K坐标系中一个事件可以用三个空间坐标x、y、z和一个时间坐标t来确定,而K′坐标系中同一个事件由x′、y′、z′和t′来确定,则爱因斯坦发现,x′、y′、z′和t′可以通过一组方程由x、y、z和t求出来。两个坐标系的相对运动速度和光速c是方程的唯一参数。这个方程最早是由洛仑兹得到的,所以称为洛仑兹变换。

利用洛仑兹变换很容易证明,钟会因为运动而变慢,尺在运动时要比静止时短,速度的相加满足一个新的法则。相对性原理也被表达为一个明确的数学条件,即在洛仑兹变换下,带撇的空时变量x'、y'、z'、t'将代替空时变量x、y、z、t,而任何自然定律的表达式仍取与原来完全相同的形式。人们称之为普遍的自然定律对于洛仑兹变换是协变的。这一点在我们探索普遍的自然定律方面具有非常重要的作用。

此外,在经典物理学中,时间是绝对的。它一直充当着不同于三个空间坐标的独立角色。爱因斯坦的相对论把时间与空间联系起来了。认为物理的现实世界是各个事件组成的,每个事件由四个数来描述。这四个数就是它的时空坐标t和x、y、z,它们构成一个四维的连续空间,通常称为闵可夫斯基四维空间。在相对论中,用四维方式来考察物理的现实世界是很自然的。狭义相对论导致的另一个重要的结果是关于质量和能量的关系。在爱因斯坦以前,物理学家一直认为质量和能量是截然不同的,它们是分别守恒的量。爱因斯坦发现,在相对论中质量与能量密不可分,两个守恒定律结合为一个定律。他给出了一个著名的质量-能量公式:E=mc2,其中c为光速。于是质量可以看作是它的能量的量度。计算表明,微小的质量蕴涵着巨大的能量。这个奇妙的公式为人类获取巨大的能量,制造原子弹和氢弹以及利用原子能发电等奠定了理论基础。

对爱因斯坦引入的这些全新的概念,大部分物理学家,其中包括相对论变换关系的奠基人洛仑兹,都觉得难以接受。旧的思想方法的障碍,使这一新的物理理论直到一代人之后才为广大物理学家所熟悉,就连瑞典皇家科学院,1922年把诺贝尔奖金授予爱因斯坦时,也只是说“由于他对理论物理学的贡献,更由于他发现了光电效应的定律。”对于相对论只字未提。

爱因斯坦于1915年进一步建立起了广义相对论。狭义相对性原理还仅限于两个相对做匀速运动的坐标系,而在广义相对论性原理中匀速运动这个限制被取消了。他引入了一个等效原理,认为我们不可能区分引力效应和非匀速运动,即非匀速运动和引力是等效的。他进而分析了光线在靠近一个行量附近穿过时会受到引力而弯折的现象,认为引力的概念本身完全不必要。可以认为行星的质量使它附近的空间变成弯曲,光线走的是最短程线。基于这些讨论,爱因斯坦导出了一组方程,它们可以确定由物质的存在而产生的弯曲空间几何。利用这个方程,爱因斯坦计算了水星近日点的位移量,与实验观测值完全一致,解决了一个长期解释不了的困难问题,这使爱因斯坦激动不已。他在写给埃伦菲斯特的信中这样写道:“……方程给出了近日点的正确数值,你可以想象我有多高兴!有好几天,我高兴得不知怎样才好。”

1915年11月25日,爱因斯坦把题为“万有引力方程”的论文提交给了柏林的普鲁士科学院,完整地论述了广义相对论。在这篇文章中他不仅解释了天文观测中发现的水星轨道近日点移动之谜,而且还预言:星光经过太阳会发生偏折,偏折角度相当于牛顿理论所预言的数值的两倍。第一次世界大战延误了对这个数值的测定。1919年5月25日的日全食给人们提供了大战后的第一次观测机会。英国人爱丁顿奔赴非洲西海岸的普林西比岛,进行了这一观测。11月6日,汤姆逊在英国皇家学会和皇家天文学会联席会议上郑重宣布:得到证实的是爱因斯坦而不是牛顿所预言的结果。他称赞道“这是人类思想史上最伟大的成就之一。爱因斯坦发现的不是一个小岛,而是整整一个科学思想的新大陆。”泰晤士报以“科学上的革命”为题对这一重大新闻做了报道。消息传遍全世界,爱因斯坦成了举世瞩目的名人。广义相对论也被提高到神话般受人敬仰的宝座。

从那时以来,人们对广义相对论的实验检验表现出越来越浓厚的兴趣。但由于太阳系内部引力场非常弱,引力效应本身就非常小,广义相对论的理论结果与牛顿引力理论的偏离很小,观测非常困难。七十年代以来,由于射电天文学的进展,观测的距离远远突破了

求《狭义相对论》与《广义相对论》原文(中文版)

相对论分为广义相对论和狭义相对论
广义相对论的基本概念解释:

广义相对论是爱因斯坦继狭义相对论之后,深入研究引力理论,于1913年提出的引力场的相对论理论。这一理论完全不同于牛顿的引力论,它把引力场归结为物体周围的时空弯曲,把物体受引力作用而运动,归结为物体在弯曲时空中沿短程线的自由运动。因此,广义相对论亦称时空几何动力学,即把引力归结为时空的几何特性。

如何理解广义相对论的时空弯曲呢?这里我们借用一个模型式的比拟来加以说明。假如有两个质量很大的钢球,按牛顿的看法,它们因万有引力相互吸引,将彼此接近。而爱因斯坦的广义相对论则并不认为这两个钢球间存在吸引力。它们之所以相互靠近,是由于没有钢球出现时,周围的时空犹如一张拉平的网,现在两个钢球把这张时空网压弯了,于是两个钢球就沿着弯曲的网滚到一起来了。这就相当于因时空弯曲物体沿短程线的运动。所以,爱因斯坦的广义相对论是不存在“引力”的引力理论。

进一步说,这个理论是建立在等效原理及广义协变原理这两个基本假设之上的。等效原理是从物体的惯性质量与引力质量相等这个基本事实出发,认为引力与加速系中的惯性力等效,两者原则上是无法区分的;广义协变原理,可以认为是等效原理的一种数学表示,即认为反映物理规律的一切微分方程应当在所有参考系中保持形式不变,也可以说认为一切参考系是平等的,从而打破了狭义相对论中惯性系的特殊地位,由于参考系选择的任意性而得名为广义相对论。

我们知道,牛顿的万有引力定律认为,一切有质量的物体均相互吸引,这是一种静态的超距作用。

在广义相对论中物质产生引力场的规律由爱因斯坦场方程表示,它所反映的引力作用是动态的,以光速来传递的。

广义相对论是比牛顿引力论更一般的理论,牛顿引力论只是广义相对论的弱场近似。所谓弱场是指物体在引力场中的引力能远小于固有能,力场中,才显示出两者的差别,这时必须应用广义相对论才能正确处理引力问题。

广义相对论在1915年建立后,爱因斯坦就提出了可以从三个方面来检验其正确性,即所谓三大实验验证。这就是光线在太阳附近的偏折,水星近日点的进动以及光谱线在引力场中的频移,这些不久即为当时的实验观测所证实。以后又有人设计了雷达回波时间延迟实验,很快在更高精度上证实了广义相对论。60年代天文学上的一系列新发现:3K微波背景辐射、脉冲星、类星体、X射电源等新的天体物理观测都有力地支持了广义相对论,从而使人们对广义相对论的兴趣由冷转热。特别是应用广义相对论来研究天体物理和宇宙学,已成为物理学中的一个热门前沿。

爱因斯坦一直把广义相对论看作是自己一生中最重要的科学成果,他说过,“要是我没有发现狭义相对论,也会有别人发现的,问题已经成熟。但是我认为,广义相对论不一样。”确实,广义相对论比狭义相对论包含了更加深刻的思想,这一全新的引力理论至今仍是一个最美好的引力理论。没有大胆的革新精神和不屈不挠的毅力,没有敏锐的理论直觉能力和坚实的数学基础,是不可能建立起广义相对论的。伟大的科学家汤姆逊曾经把广义相对论称作为人类历史上最伟大的成就之一。

狭义相对论就是
狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解。在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间。现代微观物理学提到的高维空间是另一层意思,只有数学意义,在此不做讨论。
四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种”此消彼长”的关系。
四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大。在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。在四维时空里,动量和能量实现了统一,称为能量动量四矢。另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。可以说至少它比牛顿力学要完美的多。至少由它的完美性,我们不能对它妄加怀疑。
相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系。
物质在相互作用中作永恒的运动,没有不运动的物质,也没有无物质的运动,由于物质是在相互联系,相互作用中运动的,因此,必须在物质的相互关系中描述运动,而不可能孤立的描述运动。也就是说,运动必须有一个参考物,这个参考物就是参考系。
伽利略曾经指出,运动的船与静止的船上的运动不可区分,也就是说,当你在封闭的船舱里,与外界完全隔绝,那么即使你拥有最发达的头脑,最先进的仪器,也无从感知你的船是匀速运动,还是静止。更无从感知速度的大小,因为没有参考。比如,我们不知道我们整个宇宙的整体运动状态,因为宇宙是封闭的。爱因斯坦将其引用,作为狭义相对论的第一个基本原理:狭义相对性原理。其内容是:惯性系之间完全等价,不可区分。
著名的麦克尔逊--莫雷实验彻底否定了光的以太学说,得出了光与参考系无关的结论。也就是说,无论你站在地上,还是站在飞奔的火车上,测得的光速都是一样的。这就是狭义相对论的第二个基本原理,光速不变原理。
由这两条基本原理可以直接推导出相对论的坐标变换式,速度变换式等所有的狭义相对论内容。比如速度变幻,与传统的法则相矛盾,但实践证明是正确的,比如一辆火车速度是10m/s,一个人在车上相对车的速度也是10m/s,地面上的人看到车上的人的速度不是20m/s,而是(20-10^(-15))m/s左右。在通常情况下,这种相对论效应完全可以忽略,但在接近光速时,这种效应明显增大,比如,火车速度是0。99倍光速,人的速度也是0。99倍光速,那么地面观测者的结论不是1。98倍光速,而是0。999949倍光速。车上的人看到后面的射来的光也没有变慢,对他来说也是光速。因此,从这个意义上说,光速是不可超越的,因为无论在那个参考系,光速都是不变的。速度变换已经被粒子物理学的无数实验证明,是无可挑剔的。正因为光的这一独特性质,因此被选为四维时空的唯一标尺。

上一篇:公共管理小论文要求

下一篇:高等化学学报好中吗