数学统计学导论论文
数学统计学导论论文
1,专业研究的培养目标和方向,包括一般的经济统计数据和统计类专业方向,培养了良好的数学素养和数学和经济学,掌握基本理论和统计方法,并能熟练地使用数据的计算机分析,本次调查可以从事企业,事业单位和经济,管理,统计,管理,定量分析,如开发,应用和管理,或在科研,教育等部门从事高级专门人才的科研和教学工作。毕业生可继续攻读统计和数学与应用数学,信息与计算科学,概率与统计,统计,工学,管理学等相关学科,跨学科的硕士研究生,和其他学科。
2,课程设置主要课程:数学分析,高等代数,解析几何,概率论与数理统计,C语言编程,微分方程,数据结构,动态数据处理,随机过程,网络与通信,统计决策和分析,统计计算和软件,多元统计分析。
教学根据社会的实际需要,重点建立社会经济统计资料,或者金融和保险统计,或生物医学的统计数据,或一些工业统计课程等方面,指导学生参加,以形成自己的专业方向特点。
3,科学和经济学的学术/四年制本科学士学位/学士学位。
4,毕业生应获得以下几方面的知识和能力
4.1具有坚实的数学基础,受到更严格的科学思维训练;.
4.2掌握的统计数据。的基本理论,基本知识,基本方法和计算机技能;有收集的数据,以设计问卷调查数据和处理的基本能力;.
4.3了解社会经济统计数据,医学统计学,生物统计学统计或行业相关的自然科学基础知识,社会科学,工程和技术的领域,具有统计学理论的应用分析和解决在初始容量领域的实际问题;.
4.4了解统计理论的发展和前景,方法;.
4.5理学士,应该能够熟练使用各种统计软件包,有较强的统计计算能力;经济学学士,应该有一个坚实的经济基础,熟悉国家经济发展的方针,政策和统计法律,法规,并进行利用信息和管理的综合分析能力;.
4.6主数据查询,文献检索及运用现代信息技术获取相关信息的基本方法;有一定的科学研究和实际工作能力。
的数学,统计学,经济学,管理学
6.主要课程数学基础课(分析,代数,几何),概率论,数理统计5.主科目,运筹学基于计算机的,随机过程,而实用回归分析,时间序列分析,多变量统计分析,采样,非参数统计,根据应用方向的统计预测和决策和风险管理,以及选择的基本课程(例如作为经济统计方向选择的社会调查方法,经济和社会统计,国民经济核算,会计等)
中国编辑本段|回到顶部7.主要实践性教学环节
包括学术论文,社会调查,生产实习,毕业论文,1020周的总体安排。 点击看详细8.相近专业与应用数学,信息与计算科学
求一篇数学与应用数学专业导论
数学与应用数学导论(摘抄,整理)转载
数学在中国历史已久,出土的各时期文物都有关于数字的记录和一些简单的算法,如十进制,勾股定理,乘法法则……然而算盘的出现更加推动了数学在中国的发展,这是当时一些欧洲国家所不能比拟的
从上古时期的结绳,八卦,九九乘法表到中古时期(约汉朝)数学已经在中国发展起来并有一定的基础。历史上已有可考证的著作,祖冲之的圆周率比西方早1000多年,各种算法著作如解方程、平面立体形的计算、等差等比等问题……更难能可贵的是建立了数学教育制度
到了唐至宋期间,特别是唐朝可以说是数学的黄金年代,数学得到了更近一步的发展,几何、代数达到了新的高峰,其中有系统的代数学已建立起来,更多的数学方法与数学概念也得到更进一步的推广与发展。
但是到了近世纪也就是明清时期,中国算数开始衰落,由于中国算数的系统不够简明,中国数学陷入了停滞的阶段。于此同时西方国家的数学发展进入了一个新阶段。
18世纪的西方是各种科学综合发展的世纪,数学已经渗透进各门学科,在物理,化学、天文等各门学科中数学的地位日显重要,各种事物也离不开数学。18世纪主要以微积分发展为主,欧洲各国循着不同的路线前进。针对曲线作为微积分的主要研究对象发生转折,欧拉则第一次把函数放到了中心的地位,并且是建立在函数的微分的基础之上。函数概念本身正是由于欧拉等人的研究而大大丰富了。正由于这些学者们大胆创新的精神,微积分显示出它独一无二的作用,以微积分作为粘连剂,数学与力学开始结合,几何与代数开始结合。以微积分作为推动力,概率论得到进一步发展,数学教育得到发展。
十九世纪是数学史上创造精神和严格精神高度发扬的时代,18世纪的数学家忙于获取微积分的成果与应用,较少顾及其概念与方法的严密性,到十八世纪末,为微积分奠基的工作已紧迫地摆在数学家面前;另一方面,处于数学中心课题之外的数学分支已积累了一批重要问题,如复数的意义、欧式几何中平行公设的地位,高次代数方程根式解的可能性等,它们大都是从数学内部提出的课题;再者,自十八世纪后期开始,自然科学出现众多新的研究领域,如热力学、流体力学、电学、磁学、测地学等等,从数学外部给予数学以新的推动力。上述因素促成了十九世纪数学充满活力的创新与发展。
十九世纪数学突破分析学独占主导地位的局面,几何、代数、分析各分支出现如雨后春笋般的竟相发展。仅在十九世纪的前30多年中,一批二三十岁的年轻数学家就在数论、射影几何、复变函数、微分几何、非欧几何、群论等领域作出开创性的成绩。
直到现在数学在任何时刻都有举足轻重的地位,数学与应用数学也事各门专业的基础。应用数学研究的方向主要分:1)微分方程与应用;2)代数学及其应用;3)几何学及其应用;4)概率论及数理统计;5)非线性分析与分形;6)计算数学与数学建模。
数学一直应用在生活与科学中的每一处。
数学在经济学中的应用:数学是经济学大厦的支柱,在数学公式神秘而高贵的支撑下,经济学与其他人文学科相比,就如同皇室成员般举手投足之间常常流露出一种让人敬畏的贵族气息来。数学的用处在于为许多复杂的思想和现象提供了简洁而明了的解释,为许多错综的数据提供了计算模型。
数学在化学中的应用:统计力学需要高数基础,量子化学的方程需要积分和矩阵,分子力学里面全是基于牛顿力学的高等数学方程,在物理化学中的热力学动力学更是离不开它。
数学在物理中的应用:物理学的发展离不开数学,数学是物理学发展的根基,并且很多物理问题的解决是数学方法和物理思想巧妙结合的产物,数学对象的丰富多彩给了物理模型创建以广阔的空间。无论是函数思想,数型结合思想,还是解析方法,方程思想,都使具体的物理对象能够找到它的数学对应。物理更倾向于定量分析(事实上它是最纯粹的定量分析学科)。数学的基础全部建立在抽象思维之上,因而它简洁明了;物理模型把很难定量的实物转化为抽象的事物,数学便可以大显神通了,雷达、导弹、原子弹等的成功研制是物理学家和数学家们通力合作的结果。
数学在计算机中的应用:数学中严密的逻辑思维是计算机的灵魂,离散数学简直就成了计算机的同义词!计算机角度来看,理论计算机科学目前主要的研究领域包括:可计算性理论,算法设计与复杂性分析,密码学与信息安全,分布式计算理论,并行计算理论,网络理论,生物信息计算,计算几何学,程序语言理论等等。这些领域与数学之间互相交叉加上新领域的不断冲突已分不清具体哪里属于数学哪里属于计算机!
数学在医学中的应用:主要运用在模型的建立,医学统计学临床上可用来解释疾病发生与流行的程度和规律;评价新药或新技术的治疗效果;揭示生命指标的正常范围,相互的内在联系或发展规律,医学超声始于数学学等学科是当前超声技术已经成为医学发展的一个重要方面,药物动力学是定量研究药物在生物体内吸收、分布、排泄和代谢随时间变化的过程的一门学科,药物动力学模型是为了定量研究药物体内过程的速度规律而建立的模拟数学模型。模糊数学用确定的数字来表述不确定的现象,依据统计学的数据,运用模糊逻辑的思维方式,就可建立起模糊关系矩阵,再采用模糊数学的运算法则便可得到精确的结论。这就是模糊数学应用在医学领域方面的基本原理。
数学与应用数学是各种学科之本,应用极端广泛。因此学习数学专业的更应该握现代应用数学方面的基础理论知识,熟悉本学科理论及应用。运用这些思考方式的经验构成数学能力。这是当今信息时代越来越重要的一种智力。它使人们能批判地阅读,辨别谬误,摆脱偏见,估计风险。数学能使我们更好地了解我们生活于其中的充满信息的世界。无论对于以后更高层次学习还是认识世界来说,数学无疑已成为了一个有力的工具。
谁能介绍统计学都学什么!
统计学主要又分为描述统计学和推断统计学。给定一组数据,统计学可以摘要并且描述这份数据,这个用法称作为描述统计学。另外,观察者以数据的形态建立出一个用以解释其随机性和不确定性的数学模型,以之来推论研究中的步骤及母体,这种用法被称做推论统计学。这两种用法都可以被称作为应用统计学。另外也有一个叫做数理统计学的学科专门用来讨论这门科目背后的理论基础。
[编辑本段]统计学的发展历程
统计学的英文statistics最早是源于现代拉丁文statisticum collegium (国会)以及意大利文 statista (国民或政治家)。 德文Statistik,最早是由Gottfried Achenwall(1749)所使用,代表对国家的资料进行分析的学问,也就是“研究国家的科学”。在十九世纪统计学在广泛的数据以及资料中探究其意义,并且由John Sinclair引进到英语世界。 统计学是一门很古老的科学,一般认为其学理研究始于古希腊的亚里斯多德时代,迄今已有两千三百多年的历史。它起源于研究社会经济问题,在两千多年的发展过程中,统计学至少经历了“城邦政情”,“政治算数”和“统计分析科学”三个发展阶段。所谓“数理统计”并非独立于统计学的新学科,确切地说它是统计学在第三个发展阶段所形成的所有收集和分析数据的新方法的一个综合性名词。概率论是数理统计方法的理论基础,但是它不属于统计学的范畴,而属于数学的范畴。 统计学的发展过程的三个阶段《商务管理统计学》封面图 第一阶段称之为“城邦政情”(Matters of state)阶段 “城邦政情”阶段始于古希腊的亚里斯多德撰写“城邦政情”或“城邦纪要”。他一共撰写了一百五十馀种纪要,其内容包括各城邦的历史,行政,科学,艺术,人口,资源和财富等社会和经济情况的比较,分析,具有社会科学特点。“城邦政情”式的统计研究延续了一两千年,直至十七世纪中叶才逐渐被“政治算数”这个名词所替代,并且很快被演化为“统计学”(Statistics)。统计学依然保留了城邦(state)这个词根。 第二阶段称之为“政治算数”(Politcal arthmetic)阶段 与“城邦政情”阶段没有很明显的分界点,本质的差别也不大。 “政治算数”的特点是统计方法与数学计算和推理方法开始结合。分析社会经济问题的方式更加注重运用定量分析方法。 1690年英国威廉·配弟出版 (政治算数)一书作为这个阶段的起始标志. 威廉·配弟用数字,重量和尺度将社会经济现象数量化的方法是近代统计学的重要特征。因此,威廉?配弟的(政治算数)被后来的学者评价为近代统计学的来源,威廉?配弟本人也被评价为近代统计学之父。 配弟在书中使用的数字有三类: 第一类是对社会经济现象进行统计调查和经验观察得到的数字.因为受历史条件的限制,书中通过严格的统计调查得到的数据少,根据经验得出的数字多; 第二类是运用某种数学方法推算出来的数字。其推算方法可分为三种: “(1)以已知数或已知量为基础,循著某种具体关系进行推算的方法; (2)通过运用数字的理论性推理来进行推算的方法;《商务统计学》封面图 (3)以平均数为基础进行推算的方法”; 第三类是为了进行理论性推理而采用的例示性的数字.配弟把这种运用数字和符号进行的推理称之为“代数的算法”。从配弟使用数据的方法看,“政治算数”阶段的统计学已经比较明显地体现了“收集和分析数据的科学和艺术”特点,统计实证方法和理论分析方法浑然一体,这种方法即使是现代统计学也依然继承。 第三阶段称之为“统计分析科学”(Science of statistical analysis)阶段 在“政治算数”阶段出现的统计与数学的结合趋势逐渐发展形成了“统计分析科学”。 十九世纪末,欧洲大学开设的“国情纪要”或“政治算数”等课程名称逐渐消失,代之而起的是“统计分析科学”课程.当时的“统计分析科学”课程的内容仍然是分析研究社会经济问题。 “统计分析科学”课程的出现是现代统计发展阶段的开端. 1908年,“学生”氏(William Sleey Gosset的笔名Student)发表了关于t分布的论文,这是一篇在统计学发展史上划时代的文章。它创立了小样本代替大样本的方法,开创了统计学的新纪元。 现代统计学的代表人物首推比利时统计学家奎特莱(Adolphe Quelet),他将统计分析科学广泛应用于社会科学,自然科学和工程技术科学领域,因为他深信统计学是可以用于研究任何科学的一般研究方法. 现代统计学的理论基础概率论始于研究赌博的机遇问题,大约开始于1477年。数学家为了解释支配机遇的一般法则进行了长期的研究,逐渐形成了概率论理论框架。在概率论进一步发展的基础上,到十九世纪初,数学家们逐渐建立了观察误差理论,正态分布理论和最小平方法则。于是,现代统计方法便有了比较坚实的理论基础。
[编辑本段]统计学的观念
为了将统计学应用到科学,工业以及社会问题上,我们由研究母体开始。这可能是一个国家的人民,石头中的水晶,或者是某家特定工厂所生产的商品。一个母体甚至可能由许多次同样的观察程序所组成;由这种资料收集所组成的母体我们称它叫时间序列。 为了实际的理由,我们选择研究母体的子集代替研究母体的每一笔资料,这个子集称做样本。以某种经验设计实验所搜集的样本叫做资料。资料是统计分析的对象,并且被用做两种相关的用途:描述和推论。《统计学导论》封面图 描述统计学处理有关叙述的问题:资料是否可以被有效的摘要,不论是以数学或是图片表现,以用来代表母体的性质?基础的数学描述包括了平均数和标准差。图像的摘要则包含了许多种的表和图。 推论统计学被用来将资料中的数据模型化,计算它的机率并且做出对于母体的推论。这个推论可能以对/错问题的答案所呈现(假设检定),对于数字特征量的估计(估计),对于未来观察的预测,关联性的预测(相关性),或是将关系模型化(回归)。其他的模型化技术包括变异数分析(ANOVA),时间序列,以及资料采矿。 相关的观念特别值得被拿出来讨论。对于资料集合的统计分析可能显示两个变量(母体中的两种性质)倾向于一起变动,好像它们是相连的一样。举例来说,对于人收入和死亡年龄的研究期刊可能会发现穷人比起富人平均来说倾向拥有较短的生命。这两个变量被称做相关的。但是实际上,我们不能直接推论这两个变量中有因果关系;参见相关性推论因果关系(逻辑谬误)。 如果样本足以代表母体的,那么由样本所做的推论和结论可以被引申到整个母体之上。最大的问题在于决定样本是否足以代表 整个母体。统计学提供了许多方法来估计和修正样本和搜集资料过程中的随机性(误差),如同上面所提到的透过经验所设计的实验。参见实验设计。 要了解随机性或是机率必须具备基本的数学观念。数理统计(通常又叫做统计理论)是应用数学的分支,它使用机率论来分析并且验证统计的理论基础。 任何统计方法是有效的只有当这个系统或是所讨论的母体满足方法论的基本假设。误用统计学可能会导致描述面或是推论面严重的错误,这个错误可能会影响社会政策,医疗实践以及桥梁或是核能发电计划结构的可靠性。 即使统计学被正确的应用,结果对于不是专家的人来说可能会难以陈述。举例来说,统计资料中显著的改变可能是由样本的随机变量所导致,但是这个显著性可能与大众的直觉相悖。人们需要一些统计的技巧(或怀疑)以面对每天日常生活中透过引用统计数据所获得的资讯。
[编辑本段]统计方法
1)测量的尺度 统计学一共有四种测量的尺度或是四种测量的方式。这四种测量(名目,顺序,等距,等比)在统计过程中具有不等的实用性 。等比尺度(Ratio measurements)拥有零值及资料间的距离是相等被定义的,等距尺度(Interval measurements)资料间的距离是相等被定义的但是它的零值并非绝对的无而是自行定义的(如智力或温度的测量)。( Ordinal measurements)顺序尺度的意义并非表现在其值而是在其顺序之上。名目尺度(Nominal measurements)的测量值则不具量的意义。 2)统计技术 以下列出一些有名的统计检定方法以及可供验证实验数据的程序 费雪最小显著差异法(Fisher's Least Significant Difference test ) 学生t检验(Student's t-test) 曼-惠特尼 U 检定(Mann-Whitney U) 回归分析(regression analysis) 相关性(correlation) 皮尔森积矩相关系数(Pearson product-moment correlation coefficient) 史匹曼等级相关系数(Spearman's rank correlation coefficient ) 卡方分配(chi-square )
[编辑本段]统计学历史中的学派
一、18-19世纪——统计学的创立和发展 德国的斯勒兹曾说过:“统计是动态的历史,历史是静态的统计。”可见统计学的产生与发展是和生产的发展、社会的进步紧密相联的。 (1)统计学的创立时期 统计学的萌芽产生在欧洲。17世纪中叶至18世纪中叶是统计学的创立时期。在这一时期,统计学理论初步形成了一定的学术派别,主要有国势学派和政治算术学派。 1、国势学派 国势学派又称记述学派,产生于17世纪的德国。由于该学派主要以文字记述国家的显著事项,故称记述学派。其主要代表人物是海尔曼·康令和阿亨华尔。康令第一个在德国黑尔姆斯太特大学以“国势学”为题讲授政治活动家应具备的知识。阿亨华尔在格丁根大学开设“国家学”课程,其主要著作是《近代欧洲各国国势学纲要》,书中讲述“一国或多数国家的显著事项”,主要用对比分析的方法研究了解国家组织、领土、人口、资源财富和国情国力,比较了各国实力的强弱,为德国的君主政体服务。因在外文中“国势”与“统计”词义相通,后来正式命名为“统计学”。该学派在进行国势比较分析中,偏重事物性质的解释,而不注重数量对比和数量计算,但却为统计学的发展奠定了经济理论基础。但随着资本主义市场经济的发展,对事物量的计算和分析显得越来越重要,该学派后来发生了分裂,分化为图表学派和比较学派。 2、政治算术学派 政治算术学派产生于17世纪中叶的英国,创始人是威廉·配第(1623-1687),其代表作是他于1676年完成的《政治算术》一书。这里的“政治”是指政治经济学,“算术”是指统计方法。在这部书中,他利用实际资料,运用数字、重量和尺度等统计方法对英国、法国和荷兰三国的国情国力,作了系统的数量对比分析,从而为统计学的形成和发展奠定了方法论基础。因此马克思说:“威廉·佩第——政治经济学之父,在某种程度上也是统计学的创始人。” 政治算术学派的另一个代表人物是约翰·格朗特(1620-1674)。他以1604年伦敦教会每周一次发表的“死亡公报”为研究资料,在 1662年发表了《关于死亡公报的自然和政治观察》的论著。书中分析了60年来伦敦居民死亡的原因及人口变动的关系,首次提出通过大量观察,可以发现新生儿性别比例具有稳定性和不同死因的比例等人口规律;并且第一次编制了“生命表”,对死亡率与人口寿命作了分析,从而引起了普遍的关注。他的研究清楚地表明了统计学作为国家管理工具的重要作用。 (2)统计学的发展时期 18世纪末至19世纪末是统计学的发展时期。在这时期,各种学派的学术观点已经形成,并且形成了两主要学派,即数理统计学派和社会统计学派。 1、数理统计学派 在18世纪,由于概率理论日益成熟,为统计学的发展奠定了基础。19世纪中叶,把概率论引进统计学而形成数理学派。其奠基人是比利时的阿道夫·凯特勒(1796-1874),其主要著作有:《论人类》、《概率论书简》、《社会制度》和《社会物理学》等。他主张用研究自然科学的方法研究社会现象,正式把古典概率论引进统计学,使统计学进入一个新的发展阶段。由于历史的局限性,凯特勒在研究过程中混淆了自然现象和本质区别,对犯罪、道德等社会问题,用研究自然现象的观点和方法作出一些机械的、庸俗化的解释。但是,他把概率论引入统计学,使统计学在“政治算术”所建立的“算术”方法的基础上,在准确化道路上大大跨进了一步,为数理统计学的形成与发展奠定了基础。 2、社会统计学派 社会统计学派产生于19世纪后半叶,创始人是德国经济学家、统计学家克尼斯(1821-1889),主要代表人物主要有恩格尔(1821- 1896)、梅尔(1841-1925)等人。他们融合了国势学派与政治算术学派的观点,沿着凯特勒的“基本统计理论”向前发展,但在学科性质上认为统计学是一门社会科学,是研究社会现象变动原因和规律性的实质性科学,以此同数理统计学派通用方法相对立。社会统计学派在研究对象上认为统计学是研究体而不是个别现象,而且认为由于社会现象的复杂性和整体性,必须地总体进行大量观察和分析,研究其内在联系,才能揭示现象内在规律。这是社会统计学派的“实质性科学”的显著特点。 社会经济的发展,要求统计学提供更多的统计方法;社会科学本身也不断地向细分化和定量化发展,也要求统计学能提供更有效的调查整理、分析资料的方法。因此,社会统计学派也日益重视方法论的研究,出现了从实质性方法论转化的趋势。但是,社会统计学派仍然强调在统计研究中必须以事物的质为前提和认识事物质的重要性,这同数理统计学派的计量不计质的方法论性质是有本质区别的。 二、20世纪——迅速发展的统计学 20世纪初以来,科学技术迅猛发展,社会发生了巨大变化,统计学进入了快速发展时期。归纳起来有以下几个方面。 1、由记述统计向推断统计发展。记述统计是对所搜集的大量数据资料进行加工整理、综合概括,通过图示、列表和数字,如编制次数分布表、绘制直方图、计算各种特征数等,对资料进行分析和描述。而推断统计,则是在搜集、整理观测的样本数据基础上,对有关总体作出推断。其特点是根据带随机性的观测样本数据以及问题的条件和假定(模型),而对未知事物作出的,以概率形式表述的推断。目前,西方国家所指的科学统计方法,主要就是指推断统计来说的。 2、由社会、经济统计向多分支学科发展。在20世纪以前,统计学的领域主要是人口统计、生命统计、社会统计和经济统计。随着社会、经济和科学技术的发展,到今天,统计的范畴已覆盖了社会生活的一切领域,几乎无所不包,成为通用的方法论科学。它被广泛用于研究社会和自然界的各个方面,并发展成为有着许多分支学科的科学。 3、统计预测和决策科学的发展。传统的统计是对已经发生和正在发生的事物进行统计,提供统计资料和数据。20世纪30年代以来,特别是第二次世界大战以来,由于经济、社会、军事等方面的客观需要,统计预测和统计决策科学有了很大发展,使统计走出了传统的领域而被赋予新的意义和使命。 4、信息论、控制论、系统论与统计学的相互渗透和结合,使统计科学进一步得到发展和日趋完善。信息论、控制论、系统论在许多基本概念、基本思想、基本方法等方面有着共同之处,三者从不同角度、侧面提出了解决共同问题的方法和原则。三论的创立和发展,彻底改变了世界的科学图景和科学家的思维方式,也使统计科学和统计工作从中吸取了营养,拓宽了视野,丰富了内容,出现了新的发展趋势。 5、计算技术和一系列新技术、新方法在统计领域不断得到开发和应用。近几十年间,计算机技术不断发展,使统计数据的搜集、处理、分析、存贮、传递、印制等过程日益现代化,提高了统计工作的效能。计算机技术的发展,日益扩大了传统的和先进的统计技术的应用领域,促使统计科学和统计工作发生了革命性的变化。如今,计算机科学已经成为统计科学不可分割组成部分。随着科学技术的发展,统计理论和实践深度和广度方面也不断发展。 6.统计在现代化管理和社会生活中的地位日益重要。随着社会、经济和科学技术的发展,统计在现代化国家管理和企业管理中的地位,在社会生活中的地位,越来越重要了。人们的日常生活和一切社会生活都离不开统计。英国统计学家哈斯利特说:“统计方法的应用是这样普遍,在我们的生活和习惯中,统计的影响是这样巨大,以致统计的重要性无论怎样强调也不过分。”甚至有的科学有还把我们的时代叫做“统计时代”。显然,20世纪统计科学的发展及其未来,已经被赋予了划时代的意义。
[编辑本段]统计学现状
在科学技术飞速发展的今天,统计学广泛吸收和融合相关学科的新理论,不断开发应用新技术和新方法,深化和丰富了统计学传统领域的理论与方法,并拓展了新的领域。今天的统计学已展现出强有力的生命力。在我国,社会主义市场经济体制的逐步建立,实践发展的需要对统计学提出了新的更多、更高的要求。随着我国社会主义市场经济的成长和不断完善,统计学的潜在功能将得到更充分更完满的开掘。 第一,对系统性及系统复杂性的认识为统计学的未来发展增加了新的思路。由于社会实践广度和深度迅速发展,以及科学技术的高度发展,人们对客观世界的系统性及系统的复杂性认识也更加全面和深入。随着科学融合趋势的兴起,统计学的研究触角已经向新的领域延伸,新兴起了探索性数据的统计方法的研究。研究的领域向复杂客观现象扩展。21世纪统计学研究的重点将由确定性现象和随机现象转移到对复杂现象的研究。如模糊现象、突变现象及混沌现象等新的领域。可以这样说,复杂现象的研究给统计开辟了新的研究领域。 第二,定性与定量相结合的综合集成法将为统计分析方法的发展提供新的思想。定性与定量相结合的综合集成方法是钱学森教授于1990年提出的。这一方法的实质就是将科学理论、经验知识和专家判断相结合,提出经验性的假设,再用经验数据和资料以及模型对它的确实性进行检测,经过定量计算及反复对比,最后形成结论。它是研究复杂系统的有效手段,而且在问题的研究过程中处处渗透着统计思想,为统计分析方法的发展提供了新的思维方式。 第三,统计科学与其他科学渗透将为统计学的应用开辟新的领域。现代科学发展已经出现了整体化趋势,各门学科不断融合,已经形成一个相互联系的统一整体。由于事物之间具有的相互联系性,各学科之间研究方法的渗透和转移已成为现代科学发展的一大趋势。许多学科取得的新的进展为其他学科发展提供了全新的发展机遇。模糊论、突变论及其他新的边缘学科的出现为统计学的进一步发展提供了新的科学方法和思想。将一些尖端科学成果引入统计学,使统计学与其交互发展将成为未来统计学发展的趋势。统计学也将会有一个令人振奋的前景。今天已经有一些先驱者开始将控制论、信息论、系统论以及图论、混沌理论、模糊理论等方法和理论引入统计学,这些新的理论和方法的渗透必将会给统计学的发展产生深远的影响。 统计学产生于应用,在应用过程中发展壮大。随着经济社会的发展、各学科相互融合趋势的发展和计算机技术的迅速发展,统计学的应用领域、统计理论与分析方法也将不断发展,在所有领域展现它的生命力和重要作用。
[编辑本段]学科分支
一些学科大量地利用了应用统计学,以至它们自己已经各自独立成为一门学科。《统计学——科学与工程应用》封面图 统计学的分支学科有: 统计学史 理论统计学 统计调查分析理论 统计核算理论 统计监督理论 统计预测理论 统计逻辑学 统计法学 描述统计学 推断统计学 经济统计学 宏观经济统计学 微观经济统计学 管理统计学 科学技术统计学 农村经济调查 社会统计学 教育统计学 文化与体育统计学 卫生统计学 司法统计学 社会福利与社会保障统计学 生活质量统计学 人口统计学 环境与生态统计学 自然资源统计学 环境统计学 生态平衡统计学 国际统计学 国际标准分类统计学 国际核算体系与方法论体系 国际比较统计学 其他 生物统计学 商务统计学 工程统计学 心理统计学 化学统计学 档案统计学 社会经济统计学 水文统计学 数理统计学 统计语言学 统计物理学 化学统计学 延伸学科 有些科学广泛的应用统计的方法使得他们拥有各自的统计术语,这些学科包括: 农业科学 生物统计 商用统计 资料采矿(应用统计学以及图形从资料中获取知识) 经济统计学 电机统计 统计物理学 人口统计 心理统计学 教育统计学 社会统计(包括所有的社会科学) 文献统计分析 化学与程序分析(所有有关化学的资料分析与化工科学) 运动统计学,特别是棒球以及曲棍球 统计对于商业以及工业是一个基本的关键。他被用来了解与测量系统变异性,程序控制,对资料作出结论,并且完成资料取向的决策。在这些领域统计扮演了一个重要的角色。
《教育研究方法导论》的读后感
这段时间精读《教育研究方法导论》,感触很深。对于教育研究方法进行了全面系统的论述,为教育研究者提供了教育研究的基础理论知识。
我们要研究当代教育,就必须了解当代教育的产生与发展,了解人类为了自身的教育,都作出过那些努力,走过什么样的道路;我们要进行新课程改革,进行教育改革,就必须知道已有的课程体系,已有的教育方式方法的形成与发展,了解它们形成的时代背景,进而探讨随着社会新的元素的产生,新的文化的出现我们的教育该如何面对,通古今之变是为了改造现在。
作为教育科学的调查研究,其实只是对客观情况的一种调查,对于信度效度区分度等统计学指标的要求并不像自然学科那样严格,因此可以理解为是一种较低水平的问卷,在问卷设计的过程中主要考虑的应该是问卷的格式与表面效度,也就是要让问卷有足够的空间供人作答,可以让被调查者很容易弄清楚调查者的意图,准确作答,清晰表达自己的观点和基本情况。而在心理学调查问卷中,特别是某些人格问卷中,表面效度过低时不可接受的,不能让被试一眼就看穿调查者的意图,这是教育科学调查问卷同心理学问卷的不同之处。至于问卷的其他具体编制方法的原则,教育学同心理学的差异不大。
对于我们教育者来说,缺乏足够的本地区与其他地区的比较研究,因而简单机械地去套用其他地区已有的所谓“成功经验”,势必难以收到良好效果,且难以让一线的教育工作者满意,使教育经验推广工作难以顺利开展。
目前,“实验”这两个字被广泛使用,实验法是一项包含多门学科的综合方法,需要具备测量学、统计学、数学、运筹学等学科的有关知识,教育科学的理论研究方法大体相当于论文写作中文献综述类论文的写作方法,即通过对已有文献的阅读与掌握,从某一角度切入,整理抽象出属于作者自己的观点。这种方法最关键的是理论方法,一定要遵从严格的理论研究的原则和方法,书中列举了发生学方法、基本的逻辑思维方法、从抽象上升到具体、历史—逻辑方法、系统科学方法等五种方法资:料;来/源,于GZU521学:习;网 ,这些方法是我们进行理论研究必须遵循的准则,如果按照没有一定的方法,想当然地得出某种结论,必然走入主观主义的误区,使得出的观点缺乏说服力,站不住脚。这部分中,作为读者我们需要理解和掌握的是教育研究成果的表述,这是教育研究的最后一个步骤,是在方法之后呈现我们教育成果的过程。这个过程的'好坏,直接影响了我们教育研究的最终结果。从中的主要收获就是结果的呈现一定要规范,遵循约定俗成的体例与格式,做到理论完备、方法规范、解释合理、论证有力、结果可信、文字流畅,并有一定的创新之处。
这本教育研究方法导论,完整系统的向读者阐释了教育科学中所使用的研究方法,书中的某些观点和体例在现今看来或许有些陈旧,但这并不影响这本书的价值,通过研读这本书,读者可以对如何进行教育学科研究有一个初步的概念,有一种规范性的认识,这种对科学研究方法的认识是每个教育工作者都应具备的基本素养。
作为一本研究方法导论的书籍,作者并不希望读者能够通过这一本书掌握所有的方法和技能,引导读者思索和进一步学习才是最终目的,本书通过不同的篇幅,有重点地向我们介绍了教育研究方法中涉及到的一些基本问题,使读者在进行教育科学研究时不再盲目,能够有条理,脉络清晰地展开研究。
读完这本书,我们不能机械地掌握,重要的是要在实际的教育研究中合理运用,有了规范的步骤和方法,才能产生规范的有价值的研究成果。才能更好的指导我们今后的教学更加规范、合理、科学。
上一篇:时尚健康杂志封面有谁
下一篇:dazed杂志订阅