有机化学反应历程论文
有机化学反应历程论文
有机化学发展介绍及前景
一.发展介绍
1806年首次由瑞典的贝采里乌斯(ius,1779—1848)提出,当时是作为无机化学的对立物而命名的。19世纪初,许多化学家都相信,由于在生物体内存在着所谓的“生命力”,因此,只有在生物体内才能存在有机物,而有机物是不可能在实验室内用无机物来合成的。1824年,德国化学家维勒(F.W�hler,1800—1882)用氰经水解制得了草酸;1828年,他在无意中用加热的方法又使氰酸铵转化成了尿素。氰和氰酸铵都是无机物,而草酸和尿素都是有机物。维勒的实验给予“生命力”学说以第一次冲击。在此以后,乙酸等有机物的相继合成,使得“生命力”学说逐渐被化学家们所否定。
有机化学的历史大致可以分为三个时期。
一是萌芽时期,由19世纪初到提出价键概念之前。
在这一时期,已经分离出了许多的有机物,也制备出了一些衍生物,并对它们作了某些定性的描述。当时的主要问题是如何表示有机物分子中各原子间的关系,以及建立有机化学的体系。法国化学家拉瓦锡(ier,1743—1794)发现,有机物燃烧后生成二氧化碳和水。他的工作为有机物的定量分析奠定了基础。在1830年,德国化学家李比希( Liebig,1803—1873)发展了碳氢分析法;1883年,法国化学家杜马(,1800—1884)建立了氮分析法。这些有机物定量分析方法的建立,使化学家们能够得出一种有机化合物的实验式。
二是经典有机化学时期,由1858年价键学说的建立到1916年价键的电子理论的引入。
1858年,德国化学家凯库勒(,1829—1896)等提出了碳是四价的概念,并第一次用一条短线“—”表示“键”。凯库勒还提出了在一个分子中碳原子可以相互结合,且碳原子之间不仅可以单键结合,还可以双键或三键结合。此外,凯库勒还提出了苯的结构。
早在1848年法国科学家巴斯德(r,1822—1895)发现了酒石酸的旋光异构现象。1874年荷兰化学家范霍夫('t Hoff, 1852—1911)和法国化学家列别尔( Bel,1847—1930)分别独立地提出了碳价四面体学说,即碳原子占据四面体的中心,它的4个价键指向四面体的4个顶点。这一学说揭示了有机物旋光异构现象的原因,也奠定了有机立体化学的基础,推动了有机化学的发展。
在这个时期,有机物结构的测定,以及在反应和分类方面都取得了很大的进展。但价键还只是化学家在实践中得出的一种概念,有关价键的本质问题还没有得到解决。
三是现代有机化学时期。
1916年路易斯(,1875—1946)等人在物理学家发现电子、并阐明了原子结构的基础上,提出了价键的电子理论。他们认为,各原子外层电子的相互作用是使原子结合在一起的原因。相互作用的外层电子如果从一个原子转移到另一个原子中,则形成离子键;两个原子如共用外层电子,则形成共价键。通过电子的转移或共用,使相互作用原子的外层电子都获得稀有气体的电子构型。这样,价键图像中用于表示价键的“—”,实际上就是两个原子共用的一对电子。价键的电子理论的运用,赋予经典的价键图像表示法以明确的物理意义。
1927年以后,海特勒(r,1904—)等人用量子力学的方法处理分子结构的问题,建立了价键理论,为化学键提出了一个数学模型。后来,米利肯(en,1896—1986)用分子轨道理论处理分子结构,其结果与价键的电子理论所得的结果大体上是一致的,由于计算比较简便,解决了许多此前不能解决的问题。对于复杂的有机物分子,要得到波函数的精确解是很困难的,休克尔(E.Hückel,1896—)创立了一种近似解法,为有机化学家们广泛采用。在20世纪60年代,在大量有机合成反应经验的基础上,伍德沃德(rd,1917—1979)和霍夫曼(nn,1937—)认识到化学反应与分子轨道的关系,他们研究了电环化反应、σ键迁移重排和环加成反应等一系列反应,提出了分子轨道对称守恒原理。日本科学家福井谦一(1918—1998)也提出了前线轨道理论。
在这个时期的主要成就还有取代基效应、线性自由能关系、构象分析,等等。
二.21世纪有机化学的发展
在21世纪,有机化学面临新的发展机遇。一方面,随着有机化学本身的发展及新的分析技术、物理方法以及生物学方法的不断涌现,人类在了解有机化合物的性能、反应以及合成方面将有更新的认识和研究手段;另一方面,材料科学和生命科学的发展,以及人类对于环境和能源的新的要求,都给有机化学提出新的课题和挑战。有机化学将在物理有机学、有机合成学、天然产物学、金属有机学、化学生物学、有机分析和计算学、农药化学、药物化学、有机材料化学等各个方面得到发展。
物理有机化学
物理有机化学是用物理化学的方法研究有机化学的科学。
主要的研究发展方向有:
1.运用现代光谱、波谱和显微技术表征分子结构,探索其与性能(物理、化学、生理、材料……)的关系;新分子和新材料的设计和理论研究。
2. 反应机理(协同、离子、自由基、卡宾、激发态、电子转移……) 和活泼中间体。
3. 主—客体化学;分子间弱相互作用和超分子化学;分子组装和识别;功能大分子和小分子相互作用及信息传递。
4. 新的计算化学方法、分子力学和动力学、分子设计软件包的开发;与实验的互补与指导。
有机合成化学
研究从较简单的前体小分子到目标分子的过程和结果的科学。
有机合成化学是有机化学的主要内容。70年代以来,有机合成步入了一个新的高涨发展时期。
有机合成的基础是各种各样的基元合成反应,发现新的反应或用新的试剂或技术改善提高已有的反应的效率和选择性是发展有机合成的主要途径。
合成反应方法学上的一个重大进展是大量的合成新试剂的出现,特别是元素有机和金属有机试剂。利用光、电、声等物理因素的有机合成反应也要给以适当的重视。
高选择性试剂和反应是有机合成化学中最主要的研究课题之一,其中包括化学和区域选择控制,立体选择性控制和不对称合成等。后者是近年来发展得较快的领域,包括了反应底物中手性诱导的不对称反应,化学计量手性试剂的不对称反应,手性催化剂不对称反应,利用生物的不对称合成反应和新的拆分方法等。反映过渡态反应部位的构象是反应选择性的关键因素
复杂有机分子的全合成一直是最受关注的领域,体现合成化学的水平,与生物科学相结合,重视分子的功能则是合成化学家的新热点。
有机合成化学的发展方向有: Z n& V& a+
1.合成方法学 新概念、试剂、方法、反应的运用,实用的在温和条件下经过较简单的步骤高选择性高产率地转化为目标分子。
2. 具独特性能(生理、材料、理论兴趣)的分子的(全)合成。
3. 资源可持续利用的无害原料、原子经济和环境友好的反应介质、过程和工艺路线、绿色安全的产品。
4. 学科新生长点、交叉点的扩展和手性、仿生等新技术的运用。
化学生物学
在分子水平上研究生物机体的代谢产物及其变化规律性;利用有机化学的方法研究调控生命体系过程的科学。
化学生物学是顺应20世纪后半叶生物学日新月异的发展,在化学学科的原有的几个分支——生物有机学、生物无机化学,生物分析化学、生物结构化学以及天然产物化学的基础上提出的新兴学科。
化学生物学研究目前大致包括以下几个部分:
1.从天然化合物和化学合成的分子中发现对生物体的生理过程具有调控作用的物质,并以这些生物活性小分子作为探针和工具,研究它们与生物靶分子的相互识别和信息传递的机理。
2.发现自然界中生物合成的基本规律,从而为合成更多样性的分子提供新的理论和技术。
3.作用于新的生物靶点的新一代的治疗药物的前期基础研究。
4.发展提供结构多样性分子的组合化学。
5.对于复杂生物体系进行静态和动态分析的新技术等。
金属有机化学
研究金属有机化合物[各种不同类型的C—M(杂原子)]的结构、合成、反应及其应用的科学。
主要的研究发展方向有:
1. 金属有机化学基元反应及其机理;各种不同类型的C—H(C、杂原子)的选择性形成、切断。
2. 导向合成化学和聚合反应的金属有机化学;金属有机化合物的新型高效催化作用及其应用。
药物化学和农药化学
药物化学是有机化学的一个重要分支,与生命科学密切相关。它是研究与人类疾病和健康、植物保护等生命现象有关的创新药物研制的科学。
药物化学的发展领域:
1. 高通量生物活性筛选;药物作用靶点和基于构效关系指导下的分子设计和组合化学学库设计。
2. 生化信息学的应用和创新、仿生及先导药物的发现、开发。
3. 非传统机制的药物合成、分析和功能测试。
有机新材料化学
有机材料化学是研究以有机化合物为基础的新型分子材料的开发的科学。现代科学技
术突飞猛进的发展,尤其是信息技术的发展,对材料科学提出了更高的要求,迫切需要研究新材料。相对于其他功能材料,以有机化学为基础的分子材料具有以下的特点:1.化学结构种类繁多,给人们提供了很多发现新材料的机遇;2.运用现代合成化学的理论和方法,能够有目的的改变分子的结构,进行功能组合和集成;3.运用组装和质组装的原理,能够在分子层次上组装功能分子,调控材料的性能。
有机材料化学的发展方向有以下:
1. 有机固体、半导体、超导体、光导体、非线性光学、铁磁体、聚合物材料。
2. 具有特殊和潜在光、电、磁功能分子的合成和器件有序组装。
3. 功能分子的结构、排列、组合和物化性能、机制的关系,新分子材料的设计和应用。
有机分离分析化学
研究有机物的分离、定性定量分析和结构解析的科学。
研究方向:
1. 基于近代光谱、波谱、色谱技术的进步对微(痕)量有机物的高效分析鉴定。
2. 复杂的生物活性大分子和混合物中的有效组份及环境样品的分离分析方法的建立。
绿色化学
面对环境保护的重大压力,绿色化学提出来一些新的观念,起基本点是,通过研究和改进化学化工反应以及相关的工艺,从根本上减少以至消除副产物的生成,从源头上解决环境污染的问题。以此为目的的研究所带来的新的高效化工工艺也会大大提高经济效益。可以看出,绿色化学是对世纪化学化工研究的重要发展方向,是实现可持续发展的重要保障。
本领域的发展和研究:
1.发展高效、高选择性的“原子经济性”反应其中,催化的不对称合成反应仍是获得单一性分子的方法之一,应加强有关的新反应、新技术、新配体及催化剂的研究,加强开发和改进与绿色有关的生物催化的有机反应的研究。
2.开发符合绿色化学要求的新反应以及相关的工艺降低或者避免使用对环境有害的原料,减少副产物的排放,直至实现零排放。
3. 环境友好的反应介质的开发和利用其中可包括水、超临界流体、近临界流体、离子液体等,以替代传统反应介质的研究。
4.可重复使用材料、可降解材料和生物质的利用以及生活中废弃物的再利用。
在我们的生活中,有机化学的身影无处不在。能否好好的利用和发展有机化学也将在一定程度上影响着我们生活水平的高低。相信随着科学理论的发展,更多的基础学科相互交融,将在更多的领域发挥更大的作用。
求一篇和有机化学有关的论文 1000字左右
有机化学的发展简史 “有机化学”这一名词于1806年首次由贝采里乌斯提出。当时是作为“无机化学”的对立物而命名的。由于科学条件限制,有机化学研究的对象只能是从天然动植物有机体中提取的有机物。因而许多化学家都认为,在生物体内由于存在所谓“生命力”,才能产生有机化合物,而在实验室里是不能由无机化合物合成的。
1824年,德国化学家维勒从氰经水解制得草酸;1828年他无意中用加热的方法又使氰酸铵转化为尿素。氰和氰酸铵都是无机化合物,而草酸和尿素都是有机化合物。维勒的实验结果给予“生命力”学说第一次冲击。此后,乙酸等有机化合物相继由碳、氢等元素合成,“生命力”学说才逐渐被人们抛弃。
由于合成方法的改进和发展,越来越多的有机化合物不断地在实验室中合成出来,其中,绝大部分是在与生物体内迥然不同的条件下合成出来的。“生命力”学说渐渐被抛弃了,“有机化学”这一名词却沿用至今。
从19世纪初到1858年提出价键概念之前是有机化学的萌芽时期。在这个时期,已经分离出许多有机化合物,制备了一些衍生物,并对它们作了定性描述,认识了一些有机化合物的性质。
法国化学家拉瓦锡发现,有机化合物燃烧后,产生二氧化碳和水。他的研究工作为有机化合物元素定量分析奠定了基础。1830年,德国化学家李比希发展了碳、氢分析法,1833年法国化学家杜马建立了氮的分析法。这些有机定量分析法的建立使化学家能够求得一个化合物的实验式。
当时在解决有机化合物分子中各原子是如何排列和结合的问题上,遇到了很大的困难。最初,有机化学用二元说来解决有机化合物的结构问题。二元说认为一个化合物的分子可分为带正电荷的部分和带负电荷的部分,二者靠静电力结合在一起。早期的化学家根据某些化学反应认为,有机化合物分子由在反应中保持不变的基团和在反应中起变化的基团按异性电荷的静电力结合。但这个学说本身有很大的矛盾。
类型说由法国化学家热拉尔和洛朗建立。此说否认有机化合物是由带正电荷和带负电荷的基团组成,而认为有机化合物是由一些可以发生取代的母体化合物衍生的,因而可以按这些母体化合物来分类。类型说把众多有机化合物按不同类型分类,根据它们的类型不仅可以解释化合物的一些性质,而且能够预言一些新化合物。但类型说未能回答有机化合物的结构问题。这个问题成为困扰人们多年的谜团。
从1858年价键学说的建立,到1916年价键的电子理论的引入,才解开了这个不解的谜团,这一时期是经典有机化学时期。
1858年,德国化学家凯库勒和英国化学家库珀等提出价键的概念,并第一次用短划“—”表示“键”。他们认为有机化合物分子是由其组成的原子通过键结合而成的。由于在所有已知的化合物中,一个氢原子只能与一个别的元素的原子结合,氢就选作价的单位。一种元素的价数就是能够与这种元素的一个原子结合的氢原子的个数。凯库勒还提出,在一个分子中碳原子之间可以互相结合这一重要的概念。
1848年巴斯德分离到两种酒石酸结晶,一种半面晶向左,一种半面晶向右。前者能使平面偏振光向左旋转,后者则使之向右旋转,角度相同。在对乳酸的研究中也遇到类似现象。为此,1874年法国化学家勒贝尔和荷兰化学家范托夫分别提出一个新的概念:同分异构体,圆满地解释了这种异构现象。
他们认为:分子是个三维实体,碳的四个价键在空间是对称的,分别指向一个正四面体的四个顶点,碳原子则位于正四面体的中心。当碳原子与四个不同的原子或基团连接时,就产生一对异构体,它们互为实物和镜像,或左手和右手的手性关系,这一对化合物互为旋光异构体。勒贝尔和范托夫的学说,是有机化学中立体化学的基础。
1900年第一个自由基,三苯甲基自由基被发现,这是个长寿命的自由基。不稳定自由基的存在也于1929年得到了证实。
在这个时期,有机化合物在结构测定以及反应和分类方面都取得很大进展。但价键只是化学家从实践经验得出的一种概念,价键的本质尚未解决。
现代有机化学时期 在物理学家发现电子,并阐明原子结构的基础上,美国物理化学家路易斯等人于1916年提出价键的电子理论。
他们认为:各原子外层电子的相互作用是使各原子结合在一起的原因。相互作用的外层电子如从—个原了转移到另一个原子,则形成离子键;两个原子如果共用外层电子,则形成共价键。通过电子的转移或共用,使相互作用的原子的外层电子都获得惰性气体的电子构型。这样,价键的图象表示法中用来表示价键的短划“—”,实际上是两个原子共用的一对电子。
1927年以后,海特勒和伦敦等用量子力学,处理分子结构问题,建立了价键理论,为化学键提出了一个数学模型。后来马利肯用分子轨道理论处理分子结构,其结果与价键的电子理论所得的大体一致,由于计算简便,解决了许多当时不能回答的问题。
求一篇原创的有机化学小论文
中国期刊网有找原创的有机化学小论文卤烃在无水乙醚中与镁作用生成有机金属镁化合物。这一产物叫做格利雅试剂,简称格氏试剂。
格氏试剂是一个极性分子:R—MgX,R可以进行亲核取代反应。格氏试剂的结构一般以RMgX表示。NMR谱中显示出格氏试剂为双分子化合物,它的真实结构可能是:
生成格氏试剂的难易与卤烃的结构及卤素的种类有关。就反应性和产率来说,一级卤烃>二级卤烃>三级卤烃;RI>RBr>RCl。
例如:
由于碘代烷最贵,而氯代烷的反应性最差,所以,实验室中常采用反应性居中的溴代烷来合成格氏试剂。单质碘对反应有催化作用,因此常常加入少量碘来促进反应。烯丙基型及苄基型卤烃非常活泼,很易生成格氏试剂。生成的格氏试剂又与未作用的卤烃偶合。因此,在合成此类格氏试剂时,要严格控制反应在较低温度下进行。乙烯型卤烃和卤素直接连在芳环上的芳香卤烃在无水乙醚中不能与镁形成格氏试剂。改变溶剂如采用四氢呋喃作为溶剂可以顺利进行反应。例如:
据认为,这是由于环醚中氧比直链醚中的氧更为暴露在外,容易和镁配合而加速反应。
格氏试剂非常活泼,可以和空气中的氧、水、二氧化碳发生反应。因此,在制备时,除保持试剂的干燥外,还应隔绝空气。
格氏试剂是有机合成中非常重要的试剂之一。制得的格氏试剂不需分享即可直接用于有机合成。
利用格氏试剂合成烃、醇、醛、酮、羧酸等一系列有机化合物的这些反应称格利雅反应,简称格氏反应。
①与活泼氢的反应。格氏试剂遇水、醇、羧酸、氨、胺等具有“活泼”氢的化合物都生成烷烃。例如:
本反应可用于活泼氢的定量反应。通过测定生成的烷烃体积,可计算出每分子有机物所含的活泼氢数目,称为活泼氢测定法。
②与活泼卤代烷反应。格氏试剂与烯丙型、苄基型卤烃偶合生成烃类。
格氏试剂与烯丙基型卤烃的偶合反应是合成末端烯烃的一种方法。三级卤烃也可反应,但产量较低。
③与金属卤化物的反应。格氏试剂与还原电位低于镁的金属卤化物作用,格氏试剂中的烃基取代了金属卤化物中的卤素,生成新的有机金属化合物,这是合成有机金属化合物的一种重要方法。
一些金属的还原电位:
有机镉化合物是合成酮的一个重要试剂。例如:
格氏试剂与三氯化铝作用生成有机铝化合物。
RMgX+AlClRAlClRAlClRAl
有机铝化合物是烯烃聚合反应的一种重要催化剂。
④与具有极性的双键或叁键化合物的加成。
上一篇:征文投稿邮件怎么写
下一篇:关于心理障碍的论文