欢迎来到学术参考网
当前位置:发表论文>论文发表

微积分论文《新方法》

发布时间:2023-12-07 11:49

微积分论文《新方法》

微积分是高等数学的一部分知识,关于微积分的论文有哪些?接下来我为你整理了数学微积分论文的 范文 ,一起来看看吧。

摘要:初等微积分作为高等数学的一部分,属于大学数学内容。在新课程背景下,几进几出中学课本。可见初等微积分进入中学是利是弊已见分晓,其重要性不言而喻。但对很多在岗教师而言,还很陌生,或是理解不透彻。这样不利于这方面的教学。我将对初等微积分进入中学数学背景,作用及教学作简单研究.

关键词:微积分;背景;作用;函数

一、微积分进入高中课本的背景及必要性

在数学发展史上,自从牛顿和莱布尼茨创建微积分以来,数学中的很多问题都得以解决。微积分已成为我们学习数学不可或缺的知识。其在经济、物理等领域的大量运用也使之成为解决生活实际问题的重要工具。但牛顿和莱布尼茨创建的微积分为“说不清”的微积分,也就是连他们自己也说不清微积分的理论依据,只是会应用。这使得很多人学不懂微积分,更不用说让中学生来学习微积分。

柯西和维尔斯特拉斯等建立了严谨的极限理论,巩固了微积分基础,这是第二代微积分,但概念和推理繁琐迂回,对高中生更是听不明白。近十年来,在大量的数学家如:张景中,陈文立,林群等的不懈努力下,第三代微积分出现了相比前两代说得清楚,对高中生而言,也更容易理解。这为其完全进入高中课本奠定了基础。从内容来看,新一轮的课改数学教材在微积分部分增加了定积分的 概念及应用(求曲边梯形面积,旋转体体积,以及在物理中的应用),可能考虑到中学生的认知能力,人教版新教材与北师大版在这方面有所不同。即利用定积分求简单旋转体体积在北师大版教材中出现了,但人教版没有。

从课标和考试大纲(参考2011年高考考试大纲)上看,初等微积分所占比重也是越来越重。回顾历届高考,微积分相关题型分值越来越高。但就我个人观点,初等微积分在中学数学中的作用还没有真正全面发挥。我认为,它是学生中学数学和教师教学的一条线索,它是我们研究中学函数问题的统一 方法 ,也是联系中学与大学数学知识的纽带!

二、微积分在中学数学中的作用

1.衔接性与后继作用。微积分本是大学高等数学范畴,是大学开设的课程。让现在中学生提前学习部分微积分知识,这便为其以后升入大学学习微积分打下良好的基础,这也使数学知识从小学到大学从内容上衔接得更加紧密。也不会再出现很多大学生认为的大学数学知识在高中数学教学中没有任何作用的观点.

2.解决数学相关知识的作用。高中数学函数在整个中学数学内容中,不论从高考所占比重还是自身难度来说都应该排在首位。对学生来说永远是最难学的,得分率也相对比较低。很多学生讨厌数学就是讨厌函数,提到数学中的函数就头晕。由于应试 教育 的关系,学生又不得不学习函数,而函数思想本身也是高中数学学习的一条线索。微积分的进入对学生学习函数问题找到了统一的方法。高中阶段我们所研究的函数问题一般是以一些基本初等函数为媒介研究函数的定义,图像和性质,当然也有应用。但随着课改的深入,函数应用问题逐渐在淡化。而初等微积分知识即研究函数的重要工具,如:微积分可以求函数的单调性,最值。最重要的是它可以画出函数的图像,其实,当函数图像画好后,几乎函数所有性质都可以解决。学生只要学好微积分便掌握了研究函数的统一方法,那么高中阶段的二次函数,指数函数,对数函数,三角函数等所有初等函数的学习就可以统一,既节约了教学时间又学习了先进的数学思想。对提高学生的数学修养打下坚实的基础。我相信还可以激发其学习数学的兴趣。另外,在高中阶段,初等微积分还可以解决不等式问题,求二次曲线的切线问题,求曲边梯形的面积等很多数学问题。利用微积分不仅可以使问题简化,并能使问题的研究更为深入、全面。

3.提高数学在其他学科的应用能力。作为自然学科的数学本身已应用于社会经济、技术等各个领域。而作为中学数学,它对中学 其它 学科的推动作用也是毋庸置疑的。如物理,化学,地理等学科也离不开数学。在高中阶段往往会因为数学的教学进度而影响其它学科的进度。如地理中要学习地球的经度,纬度等知识就需要先学习数学中球体相关知识和解三角形相关知识。当微积分进入中学数学后,数学这个学科的作用就更加重要了。特别像物理中匀加速直线运动位移,瞬时速度,加速度等问题利用微积分的导数求解起来更加简单,容易理解。新课程人教版数学教材选修2-2中专门加入了利用定积分求变速直线运动的路程一节。另外,微积分解决生活中的优化问题也进入中学课本。可见,微积分进入中学教材,对促进学科间知识的整合起到了至关重要的作用。

三、国际上一些教材对微积分知识的处理

以苏联中学为例,苏联中小学为十年制,从九年级(1)(相当于我国高中一年级)中讲了数学归纳法和排列组合以后,就介绍无穷数列和极限。然后介绍函数极限和导数,所有这些都在讲解三角函数,幂函数,指数、对数函数之前。随即介绍导数在近似计算,几何(求切线)和在物理中的应用(研究速度,加速度)以及导数在研究函数问题中得应用(求函数极值,最值,单调性等)。到九年级末及十年级(2)再讲三角函数, 利用导数可以研究三角函数的性质。然后介绍不定积分和定积分。接着在指数函数,对数函数和幂函数一章介绍指数函数的导函数,再利用反函数求得对数函数的导函数。在十年级(3)中利用微积分知识研究几何问题,用积分推导锥体,球体等的体积公式。还把球的表面积定义为球的体积V(R)对R的导数,从而立即求得球的表面积公式。可见,苏联课本中及早分散引入导数及积分的概念和计算,而不是到最后整块讲解。这样处理,可以使微积分知识结合研究函数问题,几何问题以及研究物理问题中都得到应用。

当然,还有比如台湾中学教材对微积分处理和我过现行教材区别不大,就不再介绍。而上诉对微积分的处理情况是一种在欧洲中学教材中较普遍的处理方式。其优点主要就是充分发挥了微积分在中学数学教学中的作用。使中学数学知识更加连贯,更加易懂!

摘 要:微积分是高等院校管理类专业的重要数学基础课,第一堂课是上好微积分的关键。通过三个方面就如何上好微积分绪论课做些探讨。

关键词:微积分;起源;内容;方法

微积分是门基础课,这门课的学习直接影响到今后专业课的学习,而绪论课对这门课的学习有着引导的作用,在整门课中有特殊的地位和作用。绪论课应包含下面几个部分的内容:

一、微积分起源的介绍

微积分包括两方面的内容:微分与积分。微积分的创立源于处理17世纪的科学问题。先引入微积分学的创始人之一费马研究的一个问题:假设一个小球正向地面落去,求下落后第5秒时小球的速度?若是匀速运动,则速度等于路程除以时间,然而这里的速度是非均匀的,那能不能把非均匀速度近似看成均匀速度?用什么方法?这就是微分学问题,再引入古希腊人研究的面积问题:计算抛物线y=x2与坐标轴x轴在0≤x≤1间所围成的面积。能不能将面积切割成n个小面积,再将小面积用小矩形来代替,由n个小矩形的面积得到所求面积?这里所用的方法就是积分问题。很早以前就有人研究过微分与积分,而微积分的系统发展是在17世纪开始的,从此逐渐形成了一门系统完整且逻辑严密的学科。微积分通常认为是牛顿和莱布尼茨创立的。这一系统发展关键在于认识到微分和积分这两个过程实际上是彼此互逆地联系着。

介绍提及的人物牛顿和莱布尼茨的相关轶事,例如创建微积分优先权的争论。牛顿于1665~1687年把研究出的微积分相关结果告诉了他的朋友,并将短文《分析学》送给了巴罗,但期间没有正式公开发表过微积分方面的工作。莱布尼茨于1672年访问巴黎,1673年访问伦敦时,和一些知道牛顿工作的人通信。1684年莱布尼茨正式公开发表关于微积分的著作。于是有人怀疑莱布尼茨知道牛顿具体的工作内容,莱布尼茨被指责为剽窃者。在两个人死了很久后,调查证明:牛顿很多工作是在莱布尼茨前做的,但是莱布尼茨是微积分思想的独立发明者。

二、介绍微积分内容及方法

微积分学研究的对象是函数,极限是最主要的推理方法,它是微积分学的基础。微积分内容有四类:一是已知物体移动的距离是时间的函数,怎样由距离得到物体在任意时刻的速度和加速度;反过来,已知物体的加速度是时间的函数,怎样求速度和距离。二是求曲线的切线。三是求函数的最大最小值问题。四是求曲线的长度、平面曲线围成的面积、曲面围成的体积、物体的重心。

三、为什么要学习高等数学

微积分在自然科学、经济管理、工程技术、生命科学等方面都有应用,是各门学科强有力的数学工具。学好微积分,可以增加语言的严密性、精确性,可以从中锻炼人的 理性思维 ,并感受到美的艺术。例如黄金分割,无理数的■与π的表达式:

微积分的绪论课是整个教学的第一课,绪论教学能使学生对这门课有个快速大致的认识与了解,好的绪论课可以引导学生主动、积极地学习。

前 言

21世纪,科学、技术和社会都发生了巨大的变化。高等数学作为高等院校的基础课程之一,在其他各个领域及学科中发挥出越来越大的作用。尤其是微积分教学,是目前数学教育的一大课题。

一、我国微积分教学改革的现状

目前的数学实验中,微积分教学改革的现状中仍然存在一些主要问题。

首先,优秀人才的培养重视不够。在微积分教学中,重视的是教育大众化的人才,而一些顶尖的、优秀的人才的培养却重视不够。

其次,过度应试化。过度重视应试教育在微积分教学中越来越明显,轻能力重考试已成为一种倾向。

再次,学生差异大,素质下降。学生人数的激增带来学生差异的强化,面对这一情况,如何规划班级,如何区别对待学生是微积分教学面临的问题。

二、微积分课改的必要性

随着高等数学改革的不断深入,微积分教学的改革成为其中的重要部分。微积分教学的改革并不是空穴来风,而是一种必然。

(1)社会高度发展提出的要求

微积分作为高等数学的一部分,对技术文明的推动有重要作用,许多数学细想和数学的建树都离不开微积分。可以说,微积分在推进数学思想,推进社会进步,推进科学发展上有举足轻重的作用,是不可或缺的,它是人类思维的伟大成果,不仅是高等数学。而且是其他行业,其他专业,在不同范围和不同程度上对微积分的认识都是必要的。设想一下,如果取消对微积分的学习,那么技能的进步只是一句空谈,社会不会发展,智慧不会被充分开掘。所以,微积分教学的改革是十分必要的。

(2)科技的发展提出的需要

当今世界,是一个科学技术突飞猛进的时代,军事、贸易等激烈的竞争和市场经济,如果没有科技的推进,则会落后于他人。如何促进科学的发展呢?微积分起着重要的作用,它不仅为科学提供了精密的数学思想,也为科学的提供了理论支撑,它不但改变了数学面貌,还是其他学科的工具和方法,微积分在自然学科的各个方面都有运用。随着科技发展的时代,提高微积分教学的质量是势在必行的。

(3)人类思维发展的需要

微积分中蕴藏着很多重要思想,比如辩证的思想,常量与变量,孤立与发展,静止变化,有限与无限等,还有“直”与“曲”,“局部”与“整体”的辩证关系,其实。哲学最处就是与数学密切相关的,所以,数学,尤其是微积分思想充满了逻辑与辩证,微积分的学习。不仅是知识、理论的学习,更是一种思维的训练。因此,微积分教学的完善有利于培养人类思维,使人类思维获得一个飞跃,更有效地解决问题。

三、微积分课改的内容

根据新的教学大纲的修改,微积分教学重新设计了课程内容、教学理念、 教学方法 等,以学生为主体,更直观形象,而且在教学方法上也进行了革新。全面促进了微积分教学的改革。

1、课程基本理念的改革

微积分教学的改革能否成功关键在于观念的转变,过去是偏重理论,现在则要注重应用激发初学者的学习兴趣,尽早把握微积分的基础知识,把抽象难懂的微积分理论转变为学生容易接受、容易理解的微积分教学方式,比如说,极限是微积分知识中的难点,极限概念、运动、辩证思想等对于学生来说是十分抽象,不容易理解,从而没有激发学生的学习兴趣,课堂变得枯燥无味,理论严谨,逻辑性很强,学生上手难。微积分教学大纲的修订也体现出教学理念的更新,新的微积分教学中,适当降低了难点知识。重视对微积分本质的认识,以直观、实例来提高学生的微积分学习兴趣和学习效率,使学生学习的主动性回归到自身,体现以人为本的思想,重视学生的情感态度、生活价值的培养,根据学生自身的特点因材施教,为学生提供更好的学习条件和基础。

2、课程内容的改革

根据《标准》大纲的修订,微积分教学首先是对课程内容和教学大纲的精简、增加、删改。修订后的教学内容比原来的教学大纲更精练,更科学。比如,原来12学时的“极限”在修订大纲中被大面积的删减。并在修订大纲中,引入导数这一很有判断意义的概念,因为导数是微积分初步了解的第一个概念,对导数概念的理解起到基础性的作用。而且,修订的课本内容中,对导数的讲解时直观形象的,应用性很强,又有许多实例来帮助学生加深理解。因此,微积分教学的新课改减轻了学生的学习负担,降低了概念的理解难度。

3、课程设计的改革

原来的课程是从极限、连续、导数、导数应用,再到不定积分、定积分这样的次序设计的,并在“导数和微分”的前面一章给“极限”设计了许多定义,以及对“极限”的求法和运算做了讲解。修订后的大纲对课程设计做了调整,尤其是微积分讲解的路线,发生了变化,从瞬间速度,变化率,导数、导数应用再到定积分。对人文社科方面的高校微积分课程的设置,则多数是作为选修课来处理的,并与生活十分贴近,应用性很强,使非数学专业也对数学有一定的基础了解和学习兴趣。

4、教学方法的革新

(1)数学思想方法的渗透与运用。数学思想方法是多种多样的,在生活中也取得有效地运用。微积分耶是高等数学的一个方面,因此,在微积分教学中引入数学思想方法是科学的。其中,数学分析,也叫微积分,是17世纪出现的十分重要的数学思想,不仅在17世纪有非常重要的地位,即使是在今天,这种思想方法在成功解决无限过程的运算方面,即极限运算有很大的帮助。数学思想的运用已成为各国比较重视一项革新项目。

(3)加强实例分析和应用性。数学是一种逻辑推理。但也是来源于生活的,也最终给应用于生活,因此,数学的教学不能和现实相脱离。修订后的微积分教学大纲明显注重了实际应用性。即使是书上一个很简单的概念,也时刻穿插一些实用性的图片,在习题的练习中,也是紧密结合生活实际,不是空中楼阁。比如说,用指数函数来看银行存款和人口问题,还有对数函数中涉及放射性、分贝、地震级的问题。微积分数学应用于生活中实际问题的解决。

5、教学工具的革新。

现代教育技术,尤其是多媒体技术在微积分教学中的应用,对很好的实现教学理念,完善教学思想和教学方法很有意义,例如,作为重点和难点的“极限”概念和理论一直是教学中难以攻克的,因为它的抽象,所以老师再怎么讲解也难免有学生不理解,而多媒体教学的应用解决了这一难题,教师可用直观形象的动画来表现比如“无限逼近”的理论,给学生一个直观、感性的认知,还可运用多媒体设计可变参数的动画,让学生积极参与,自己动手设计,加深理解。又如导数概念的理解需要借助曲线来表现其某个点在某个时刻的瞬时速度,可以充分利用多媒体技术,画具有艺术性的示意图,设计动画,让学生在动画中领悟微积分的实质和导数的概念。值得注意的是,在运用多媒体技术时,要遵循学科本身的规律,反复渗透,循序渐进,结合教材,积极引导。

四、小结

大学微积分?

关于大学微积分,阐述微积分与多项式的连结,从而导出讨论极限的动机,并指出微分和积分为物理观念提供的模型,经由此模型直觉的认识微积分基本定理。推荐先观看每个小节下链接里视频, 再看整理后的笔记内容.

微积分是什么

图片中间仙女后背的彩带写着拉丁文"算数", 左边一位正在使用刚传入欧洲的阿拉伯数字进行计算, 而右边那位正在用计算板算着什么, 其中上面用来做辅助计算的小石头就是 Calculus .

其实 Calculus 是单数.

它的复数是 Calculi, 现在又译为结石.

Calculus: 名词, 计算方法

Calculate: 动词, 计算

1684年,莱布尼茨在汉诺威担任图书馆馆长期间,发表了论文《一种求极大值、极小值和切线的新方法》, 这是世上第一篇公开发表的微分学论文.

Calculus 透过对"无穷"的理解与掌握发展出来的一套计算方法.

Calculus 分为两大类:

Differential Calculus(微分)

Integral Calculus(积分)

函数 vs 微分

瞬时的速度究竟在数学用极限来表示.

"导数测量的是瞬时变化率"这样的表述其实是有问题的,因为总是需要拿出两个时间点来做比较才能求出变化量. 所以函数在某点的导数还是视为在该点附近变化率的最佳近似好了.

面积 vs 积分

积分和导数已成为高等数学中最基本的工具,并在自然科学和工程学中得到广泛运用. 积分的一个严格的数学定义由波恩哈德·黎曼给出,称为“黎曼积分”. 黎曼的定义运用了极限的概念,把曲边梯形设想为一系列矩形组合的极限.

多项式函数

二次多项式函数

任意的 2 次多项式都可以经过配方转换为下面的形:

二次函数必有极值, 且图形都是简单二次函数图形 a x^2 平移的结果

三次多项式函数

它的图形是三次函数 y=a x^3+b x 的平移, 下面是一个示例, 这样的函数是奇函数,拐点(Inflection point, 台:反曲点)在(0,0)处, 而经过向左平移2, 向上平移 3 后的函数拐点在(2,3)处.

三次函数与二次函数不同之处:

三次函数一定会有拐点;

二次函数一定会有极值, 三次函数不一定有极值;1684年,莱布尼茨在汉诺威担任图书馆馆长期间,发表了论文《一种求极大值、极小值和切线的新方法》, 这是世上第一篇公开发表的微分学论文.

微分中d的运算法则

不定积分计算的是原函数(得出的结果是一个式子) 定积分计算的是具体的数值(得出的借给是一个具体的数字) 不定积分是微分的逆运算 而定积分是建立在不定积分的基础上把值代进去相减 积分 积分,时一个积累起来的分数,现在网上,有很多的积分活动。象各种电子邮箱,qq等。 在微积分中 积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。 一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数把第一个括号里的微分算子分配,最后两边同乘r^4
=f''''+(1/r)f'''-(4/r^2)f''
+[(-1/r^2)f'+(1/r)f'']' + (1/r)[(-1/r^2)f'+(1/r)f'']-(4/r^3)f'
-4[(1/r^2)f'-(2/r^3)f]'-(4/r)[(1/r^2)f'-(2/r^3)f]+(16/r^4)f
=f''''+(1/r)f'''-(4/r^2)f''
+[(2/r^3)f'-(1/r^2)f''-(1/r^2)f''+(1/r)f'''] + (1/r)[(-1/r^2)f'+(1/r)f'']-(4/r^3)f'
-4[(-2/r^3)f'+(1/r^2)f''+(6/r^4)f-(2/r^3)f']-(4/r)[(1/r^2)f'-(2/r^3)f]+(16/r^4)f
两边同乘r^4,并项即得。

割圆术对微积分的起源

自发明解析几何以后,变量就登上了数学的舞台。函数概念提出以后,描述物体运动规律便有了相应的数学方法。然而在处理变量规律这个问题上,当时的科学家并没有找到强有力的方法,这极大地阻碍了科学研究。然而自牛顿和莱布尼茨两位科学大师创立微积分这一强有力的工具之后,这些问题都迎刃而解,一场属于数学的盛宴便开始了。

背景

关于“无穷”的思想,无论在古代西方还是中国,都有萌芽。“割圆术”就是这一思想的提现,阿基米德利用圆内正96边形得到圆周率π的值在223/71到22/7之间,而我国魏晋时期的著名数学家更是以惊人的圆内正3072边形将π的值精确到了3.1416。这些方法都体现了“无限分割之后再无限求和”的微积分数学思想。然而限于低下的生产实践水平,这些思想难以进一步发展完善。

时间很快到了16世纪,社会生产实践活动水平已经上了一个新台阶。天文学和物理学的快速发展带来了许多数学问题,例如如何求时候瞬时速度和加速度,如何计算曲边三角形的面积。进入17世纪之后,科学家们的注意力逐渐聚焦到了四大类问题上:1.已知物体的位移-时间关系函数,求其在任意时刻的速度与加速度;反过来,已知物体的加速度-时间函数,求速度与位移。2.求已知曲线的切线。3.求已知函数的最大值与最小值。4.求曲线长、曲线围成的面积、曲面围成的体积、物体的重心位置、物体(比如行星)作用于另一物体上的引力等。在这些问题的探索中,笛卡尔、巴罗(牛顿在剑桥大学的老师,微积分早期先驱之一)、开普勒、卡瓦列里(意大利数学家,“祖暅原理”的西方发现者)等科学家做出了开创性贡献。然而仍然没有形成完整的理论。在大量知识和方法的积累下,一门崭新的学科已经呼之欲出了。

巨人与大师:牛顿和莱布尼茨

牛顿(1642-1727)出生于一个纯粹的农民家庭,父亲早亡之后母亲又迫于生计改嫁给一个牧师,之后牛顿便和祖母一起生活。残酷的家庭处境造成了牛顿沉默寡言又倔强的性格。中学时代的牛顿成绩并不出众但好奇心和求知欲都相当旺盛,慧眼识人的中学校长和牛顿的叔父都十分鼓励牛顿去读大学,于是牛顿便以减费生的身份进入了剑桥大学三一学院,开始了他的科学巨人之路。

根据记载,牛顿对微积分问题的研究开始于1664年,此时他十分认真地研读了笛卡尔的巨著《几何学》,并且对书中求曲线切线的方法十分着迷,求知欲旺盛的牛顿迫切寻求一种更有效更一般的方法来解决这一问题。

思索了两年之后,在1666年10月,牛顿撰写了数学史上第一遍微积分论文《流数短论》,历史性地提出了“流数”这一概念。牛顿将“流数”对应与速度,即位移函数对时间的微商,然后又以速度对时间的微商来作为加速度。深思熟虑三年之后,牛顿又完成了第二篇论文《运用无穷多项方程的分析学》,此文给出了因变量对自变量求瞬时变化率的一般方法,而且还证明了面积可以通过求变化率的逆过程得到,这实际上已经非常接近微积分基本定理(即牛顿-莱布尼茨公式)。1671年,牛顿在第三篇论文《流数术与无穷级数》中完善了第一篇论文的内容,使得论述与方法都更加清晰。又过了5年,牛顿写出了他最成熟的微积分论文《曲线求积论》,进一步完善了对流数的理解并清晰叙述了微积分基本定理,还给出了他自己发明的一系列记号。

至此,一代巨人完成了创立微积分的伟大壮举。然而由于自己保守内敛的性格,牛顿长期没有公开发表自己的论文,仅为他少数好友所知。直到1687年,在好友哈雷的鼓励与要求之下,牛顿才出版了巨著《自然哲学的数学原理》,直到这时,牛顿关于微积分的工作才公诸于世。正是牛顿的迟疑,引发了牛顿和莱布尼茨谁才是“微积分之父”的百年之争,更是造成了英国科学界和欧洲大陆科学界的长期分隔。

莱布尼茨(1646-1716)出生于德国莱比锡,他的研究领域遍及数学、物理、哲学、历史、生物学、机械、神学等,是人类历史上罕见的天才和全才。同时,莱布尼茨也是中国文化的狂热信徒。在莱布尼茨的时代,德国相对于英国,无论是科学教育还是科学发展水平,都很落后。

1672年,莱布尼茨来到了巴黎,在惠更斯的鼓励下开始研究起了数学。一年之后,莱布尼茨访问了伦敦,得到了一本巴罗的《几何讲义》,并从一些数学家那里听闻了牛顿的一些工作。回到巴黎之后,若有所思的莱布尼茨大量研究了帕斯卡、笛卡尔、卡瓦列里等人的著作。早于牛顿三年,他公开发表了历史上第一篇微积分论文,仿佛为了印证论文的划时代意义,莱布尼茨取了一个非常长的名字:《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》。在这篇论文中,莱布尼茨给出了接近于现代的微分符号和法则。在1677年的一篇手稿中,莱布尼茨也粗略地给出了微积分基本定理的表述。9年之后,莱布尼茨又发表了《深奥的几何与不可分量及无限的分析》一文,再次论述了积分和微分的关系。

同时,莱布尼茨非常热衷于寻求简单的记号符号以便于简化计算,如今的微积分符号大部分出自莱布尼茨之手。

牛顿对微积分的研究更早,但莱布尼茨发表成果更早,但一场争论已经不可避免。孤悬海外的英国为此在相当长一段时间几乎断绝了和欧洲大陆的来往,造成了英国数学乃至科学落后的局面。

然而无论是牛顿还是莱布尼茨,对“无穷小”这一概念的描述和使用都是含糊不清的,时而看做不确定量,时而又当成定性的“0”,所以在很长的一段时间内,微积分理论都饱受批评和质疑。

分析的严格化

微积分的横空出世,迅速催生了一系列崭新的数学分支,如微分方程,微分几何,函数论,变分分析等。数学界属于分析的时代悄然来临,然而微积分理论的严格化仍是摆在无数数学家面前的一大难题。

第一个在这方面做出大胆尝试的数学家是波尔查诺(1781-1848),他给出了连续函数定义的现代表述,同时他也指出:dy/dx只是一个记号,并不应理解为比值。

而贡献最大的当属柯西(1789-1857)无疑。1821年,柯西连续出版了《分析教程》、《无穷小计算讲义》、《无穷小计算在几何中的应用》这三本重要著作,给出了微积分的一系列严格定义。首先,他把无穷小量看做极限为0的变量,从而一举解决了长期以来无穷小量“似0又非0”的模糊状况。在此基础上,他给出了连续、微分、积分、导数等一系列概念的严格定义。然而他对极限定义的描述仍使用大量文字性的东西,这是不符合数学家的追求的。

如今我们熟知的关于极限的“ε-δ”语言是由半个世纪之后的德国数学家魏尔斯特拉斯(1815-1897)提出的。19世纪后,实数理论和集合论得到了空前发展,魏尔斯特拉斯、戴德金(1831-1916,高斯学生)和康托(1845-1918,魏尔斯特拉斯学生)等人看到了终结对微积分理论质疑的机会。经过几十年的努力,分析学严格化的历史任务终于画上了圆满的句号,终结了长达三百年的“各方混战”,使得分析学成为了像欧式几何一样是拥有坚实牢固基础的严密科学。分析的时代也达到了空前的高潮,各分支的发展也愈加繁荣。

牛顿和莱布尼茨创立的微积分有什么异同?

上一篇:内部期刊准印证是什么

下一篇:祝你幸福杂志牛淑娟