欢迎来到学术参考网
当前位置:发表论文>论文发表

化工导论论文参考文献

发布时间:2023-12-08 14:16

化工导论论文参考文献

化学工程技术是支持各类有关化学工程的理论性基础,是一项十分复杂的科学研究。下面是我为大家整理的化学工程建设 毕业 论文论文,供大家参考。

《 能源化学工程专业建设研究 》

摘要:2010年 教育 部批准设置能源化学工程等首批战略性新兴产业专业。国内能源化学工程专业建设刚刚起步,课程体系建构、人才培养模式尚不完善。本文结合安徽理工大学能源化学工程专业建设中专业课程体系尤其是专业实践模块,以及能源化学工程专业建设中存在的一系列问题作一些探讨。以期为能源化学工程专业的发展提供一些借鉴。

关键词:能源化学工程;培养目标;课程体系;人才培养模式

1能源化学工程专业的产生

随着世界经济的不断发展,人类社会对能源的需求越来越多。能源问题成为21世纪人类面临的最基本问题。长远来看,在全世界范围内,一次能源仍将占主要地位。但随着时间的推移,一次能源逐渐消耗殆尽,煤、石油和天然气等含碳能源的洁净、高效利用,太阳能、风能、地热能、生物质能、潮汐能等具有清洁、低碳、可再生等优势的新能源的开发利用将成为未来世界经济可持续发展的关键[1]。能源化学工程(EnergyChemicalEngineering)作为一个全新的专业应运而生。安徽理工大学化学工程学院化学工程系根据自身化学工程与工艺(煤化工方向)专业优势,仅仅依托煤化工,但又不局限于煤化工,涵盖燃料电池、生物质能、电化学、生物柴油、环境化工等丰富内容,于2011年新增加能源化学工程专业。关于能源化学工程专业本科生课程体系建构、人才培养模式正处于不断探索和完善中。

2能源化学工程专业的培养目标

能源化学作为化学的一门重要分支学科,是掌握煤炭综合利用,了解非煤矿物能源,普及新能源和可再生能源知识、实现能源科学利用和可持续发展的重要科学技术基础。它利用化学与化工的理论与技术来解决能量转换、能量储存及能量传输问题,以更好地为人类经济和社会生活服务。化学变化都伴随着能量的变化,而能源的使用实质就是能量形式发生转化的过程。能源化学因其化学反应直接或者通过化学制备材料技术间接实现能量的转换与储存[2-8]。能源化学工程属于一个全新的专业,之前仅在化学工程与工艺专业里涵盖过一点,主要关注怎么利用能源、对大自然造成较少的伤害。主要研究方向:能源清洁转化、煤化工、环境催化、绿色合成、新能源利用与化学转化环境化工。

如今上升到一个全新的专业独立出来,可见其重要程度。专业人才培养目标的制定应建立在对专业深入分析和了解的基础上并结合国情、校情,能源化学工程专业人才培养目标也不例外[9-10]。考虑到安徽省淮南市是历史悠久的煤炭城市,再结合安徽理工大学化学工程学院化学工程系专业的办学特色,考虑专业发展与社会进步对人才的客观、合理的要求。我们在制定本专业的培养目标时,强调“厚基础、宽专业、高素质”,力求培养出具有良好科学素养、基础扎实、知识面宽,同时具有创新精神和国际视野的高级专门应用型人才[11-12]。

学生具有了扎实的化学化工基础知识和能源化学工程专业知识就能够快速适应涉及化学、化工、传统和新能源加工等领域的相关工作。具备在煤炭行业、电力行业、石油石化行业、生物质转化利用行业从事低碳能源清洁化、可再生能源利用以及能源高效转化、化工用能评价等领域进行科学研究、生产设计和技术管理等工作。我们培养的毕业生工作领域包括:煤化工行业、天然气化工行业、电厂化工综合利用行业、生物质能源化工行业、固体废物综合处理行业、石油加工行业、石油化工行业、催化剂生产和研发行业。可以在这些行业从事设计、科学研究、技术管理等工作或继续深造[13-16]。

3能源化学工程专业课程体系

除了公共基础课程、学科专业必修课程,立足能源城淮南市,依托安徽理工大学化学工程学院化学工程系的特色开设特色专业核心课程(如,能源化工导论、化学反应工程、化工热力学、化工分离工程、煤化学、工业催化I、能源化工工艺学、化工过程分析与合成、化工过程控制、化工设计基础)以及特色专业任选课(如,煤气化工艺学、煤基合成燃料、生物质能源及化工、燃烧工程、燃料电池、现代仪器分析、电化学工程、膜科学技术过程与原理、基本有机化工工艺、废弃物处理与资源化、环境化工、化工 专业英语 )。此外专业实践模块本系能源化学工程专业开设的专业基础实验-《煤化学及工艺学实验》,包含实验项目:煤样的制备、煤样的粒度分析、煤样堆积密度的测定;煤中水分、灰分、挥发分产率的测定及固定碳的计算;煤中硫元素的测定;煤的发热量测定;煤中碳氢元素的分析;煤气成分分析;烟煤坩埚膨胀序数的测定;烟煤奥亚膨胀度的测定;煤的粘结性指数的测定;煤灰熔融性的测定。这些实验项目以煤化工为特色,厚基础理论,意在培养学生扎实的理论基础。开设的专业实验-《能源化工专业实验》,包含实验项目:煤样的XRD分析;煤的热重分析;水煤浆的制备和性能评价;油品的常压蒸馏;生物柴油制备及性能评价;石油产品的性能测定1;石油产品的性能测定2;电化学-燃料电池电化学性质的测定;电化学-质子交换膜电化学性质的测定。这些实验项目不限于煤化工,设计生物柴油,电化学,燃料电池等,重在拓展知识面,培养宽专业,高素质人才。

4能源化学工程专业建设中存在的问题

安徽理工大学化学工程学院化学工程系根据自身化学工程与工艺(煤化工方向)专业优势,开设能源化学工程专业,经过这些年的不断摸索,至今已有一届毕业生,通过学生反馈,在专业建设上仍有一些不足:

(1)专业实践教学条件有待改善。就当前现状来看,本专业实验条件还相对落后,缺少大型分析仪器和设备,实验室建设相对滞后,现有实验器材台数还不能很好满足学生分组实验要求。

(2)师资队伍建设还需进一步加强。由于本专业办学历史较短,师资力量相对不足,专业结构也不近合理,一批青年教师还需逐渐成长,缺乏高水平科研项目和教学研究成果。

(3)部分课程设置不尽合理,同时,专业基础课、专业课开课的先后顺序还需进一步调整和完善。对于新开设的课程,有的授课教师对内容不太熟练,有必要加强教师的授课水平,有条件的话可以走出去,加强与兄弟院校和科研院所的交流合作。

(4)校外实习基地建设有待加强。现有实习基地以煤化工企业为主,与能源化学工程专业培养目标中强调的“宽专业”背景还有一定差距[17]。以煤化工行业为背景的院校能源化学工程专业建设是一个不断发展的过程。在开设该专业时仍需明确方向,吸收、借鉴相关院校办学 经验 ,不断摸索、改进、完善专业建设。不仅要办出自身专业特色,还要进一步解放思想,紧跟经济社会发展需要,培养出适应经济社会发展的高素质应用型人才。截止到目前为止,安徽理工大学能源化学工程专业建设经费陆续到位,新进大型设备招投标已完成,等待供货、安装调试。专业教师也正忙于实验室和实训基地的规划设计。结合应用型人才培养目标,学院领导带领专业教师通过广泛调研,集众家之长,具有专业特色的实践教学基地也逐步落实到位。相信安徽理工大学能源化学工程专业的明天会更加光辉灿烂。

参考文献

[1]刘淑芝,王宝辉,陈彦广,等.能源化学工程专业建设探索与实践[J].教育教学论坛,2014(06):209-210.

[2]韩军,何选明,王世杰,等.《能源化学》教学团队多导师制的探讨[J].科教导刊(上旬刊),2011(09):72-73.

[3]龚启迪.浅析我国能源化学发展模式[J].化工管理,2015(24):4.

[4]2013年贵州大学新增专业介绍及就业方向[OL].高中频道-中国教育在线,,2013.

[5]2013年东北电力大学新增专业介绍及就业方向[OL].高中频道-中国教育在线,,2013.

[6]《能源化学》[OL].重庆创业资讯共享平台-重庆高技术创业中心,.

[7]能源化学工程专业-百度文库[OL]..c,2012.

[8]能源化学工程-百度文库[OL]..c,2012.

[9]孟广波,毕孝国,付洪亮.能源化学工程专业优化实践教学体系研究[J].中国电力教育,2014(03):145-146.

[10]钟国清.无机及分析化学课程改革的实践与思考[J].化工高等教育,2007(05):11-14.

《 能源化学工程人才培养模式改革思考 》

摘要:沈阳化工大学能源化学工程专业依据社会和行业的发展需求,确定了该专业的培养目标,专业建设紧密围绕培养目标进行。通过工程实践能力、实习实训、大学生科技创新等方面的培养,满足了培养具有较强创新意识与工程实践能力的工程技术应用型人才的培养要求,体现了科研促进教学的办学理念。

关键词:应用型人才;研究型教学模式;能源化学工程专业

依据沈阳化工大学"面向地方,服务辽宁,面向行业,服务全国,化工特色,应用特色,培养品德高尚、专业过硬、情商出众、强于实践、勇于创新的高素质应用型人才"的基本定位。能源化学工程专业的定位确定为满足国家战略性新兴产业发展和辽宁省老工业基地经济发展的需求,依据学校以OBE成果导向为目标和CDIO为人才培养的教育理念,突出化工特色和应用特色,培养具备能源化学工程相关专业知识,具有较强工程实践能力和创新意识的工程技术应用型人才。本文针对能源化学工程专业人才培养模式进行了改革创新与实践。

1注重学生综合素质培养

面向全体学生,坚持德育为先、坚持能力为重、坚持全面发展。把社会主义核心价值观融入教育教学全过程,全面加强和改进德育、智育、体育、美育,促进四育有机融合,着力提高学生综合素质,培养德智体美全面发展的社会主义建设者和接班人。

2完善能源化学工程专业应用型人才培养方案及培养模式,加强学生工程实践能力

培养方案的完善主要涉及到培养目标及要求、课程体系及课程修读要求、所含专业方向及特色、学时学分调整、专业课程体系设置等方面,每4年一次,由学校统一安排。人才培养方案体现了工程知识、工程素质和工程能力培养的综合特征。特别在实践教学环节的设计上,应与工程实际紧密结合。

3以工程能力培养为主线,构建课程体系,形成特色鲜明的专业核心课程群

(1)加强通识基础课教育,拓宽学生的学识基础,强化学生的素质教育。融合各门基础课、专业基础课以及专业课的授课内容,注重各门课程之间知识点的衔接,避免授课内容的重复,减少授课的理论学时数,确定简要但不失去知识点的授课方案;专业理论课授课提前,让学生尽早接触专业知识,增加对专业的认识;增加选修课的学时数,扩大选修课的内容、门类,使学生了解与化工相关学科的知识,拓宽知识面,适应社会的需求;采用案例教学的方式传授政治、人文素质等人文素质课程,激发学生的学习兴趣,在案例教学中培养学生的政治素质、人文素质、道德素质;改革狭窄的专业教育思想,强调对学生进行综合性和整体性的素质教育,增强学生对社会的适应能力。

(2)随着社会的发展,借鉴国内外先进课程的教学经验,及时调整课程体系,构建特色鲜明的专业核心课程群。根据社会的需求及时调整、补充授课内容;优化教学资源,增加专业选修课的开设的门数;按照课程内容的内在联系,将化工基础课中相关课程的教学内容重新进行整合、归并,形成若干新的课程体系,以优化智育结构,提高总体教学效率。

(3)充分发挥省级精品课的带头作用,健全课程管理制度,加大网络教育资源建设。以精品课程建设的经验和模式,全面、大力推进其他课程的改革,使各门课程适应学生能力的培养;进一步加强课程小组的建设,完善课程负责制的管理制度;加强网络教育资源开发和共享平台建设,加快专业课程的网络资源建设,为广大教师和学生提供免费享用的优质教育资源,完善服务终身学习的支持服务体系。

(4)选编结合,加快教材建设。根据新的课程体系内容,与企业的密切合作,以提高化工类专业自编教材的质量和水平为重点,大刀阔斧地摒弃陈旧的、脱离实际的课程和教材,开发、修订和编写出适应我校专业教育事业发展与改革需要的具有综合性、实践性、创新性和先进性的系列配套教材;同时要大力提高省部级以上优秀教材与重点教材的选用率,保证高质量教材进入课堂,建成具有鲜明特色的教材新体系;积极编写相应的专业教材。

4转变教学理念,改革教学方式,深化改革 教学 方法

(1)转变教学理念,增强“育才”的教学观念。把单纯传授知识、传授技能的思想转为“育才”的观念,因材施教,提供多种教育形式与机会;采用灵活的教学方式传授政治、人文素质等人文素质课程,减少课内学时,加强实践环节,在 社会实践 中培养学生的政治素质、人文素质、道德素质。

(2)以学生为中心,推行研究性学习。采用启发式、研讨式教学方式,教师根据确定的教学目标和教学要求,基于项目、课题或主题,通过问题探究形式,使学生在研究过程中主动地获取知识、运用知识解决问题的能力;减少课内授课学时,充分调动和发挥学生的主动性和积极性,引导学生自学,使学生具备创造思维、自我开拓、获取知识与技能的能力;完善各类课程的网络教学平台资源建设,为学生自主学习提供保障;充分利用多媒体教学的直观性,鼓励教师开发高质量的多媒体课件;提倡和鼓励教师采用双语教学,将专业课程的教学与专业英语的教学结合起来。

(3)进一步加强课内实践环节教育,全面提升学生的工程能力、动手能力、沟通能力。通过举办校内化工技能竞赛、化工设计竞赛、演讲、外语大赛等多种形式,增强学生的工程实践能力、表达能力、沟通能力;激励教师将科研内容转化为教学内容,鼓励教师指导大学生科技创新、 创业计划 等科技活动;在第7学期安排学生毕业论文、毕业设计的内容,使学生早进课题、早进实验室、早进团队。

5强化实践教学改革与实践基地建设

稳定和拓展基于企业的学生实践基地,拓宽学生的校外实践 渠道 。完善并实践适合应用型人才培养的实习与实践计划,积极与企业合作,建立良好的合作机制,以产学研互促共赢为目标,共同建设体现行业发展的实践教学环境,共同培养工程型教师,共同搭建人才培养平台,并建立明确的责任分担和成果共享制度。

6以各类大学生创新/创业竞赛活动为契机,大力开展大学生创新能力培养

以课外教学环节为突破口,充分利用国家、省市的各类大学生创新/创业竞赛,不断推进课外素质教育专项活动,将课内教学与课外教学相结合、创业教育与专业教育相融合,促进学生自主学习,锻炼学生综合能力。特别是近几年,我们针对高年级的学生具备一定专业知识基础的情况下,积极鼓励学生参加辽宁省、国家挑战杯大学生创新/创业竞赛、辽宁省化工设计大赛等活动,将大学生创业活动作为课外专业实践的延伸,逐步渗透创新教育理念,探索创新教育的有效形式,研究创新教育与专业教育融合的最佳模式,全面提升学生综合能力,实现应用型、创新型人才培养目标。综上,能源化工专业开展"教学理念教学改革",转变教育观念,改革现有的教学模式,培养适应社会需求的合格毕业生,是能源化工专业发展的关键。

参考文献

[1]__义.成果导向的教学设计[J].中国大学教学,2015(3):32-39.

[2]李冉,朱泓,__义.新工业革命背景下工程人才素质特征探析[J].煤炭高等教育,2015(3):26-30.

[3]__义.论地方高校发展中战略层面的五种关系[J].中国大学教学,2015(5):7-13.

[4]姜晓坤,朱泓,夏远景,等.我国高等工程教育发展的理性视角:从失衡走向回归[J].高等工程教育研究,2015(4):45-48.

[5]迟卫华,孟凡芹,__义,等.我国工业产业结构变迁与工程教育模式演变及发展趋势[J].重庆高教研究,2015(5):104-108.

[6]孟凡芹,朱泓,吴旭东,等.面向“新工业革命”工程教育人才培养质量标准体系构建策略[J].高等工程教育研究,2015(5):15-20.

[7]__义.论地方高校发展中战术层面的五种关系[J].中国大学教学,2015(7):9-14.

[8]__义.解析工程教育专业认证的持续改进理念[J].中国高等教育,2015(Z3):33-35.

有关化学工程建设毕业论文论文推荐:

1. 化学工程毕业论文

2. 化学毕业论文精选范文

3. 化学毕业论文范例

4. 化学毕业论文范文参考

5. 化学化工毕业论文范文

6. 化工专业毕业论文范文

化学工程应用毕业论文

随着科技负效应的显现,工程伦理越来越受的人们的重视。化学工程有着与其他工程不同的特点。下面是我为大家整理的化学工程应用 毕业 论文,供大家参考。

《 化学工程中计算流体力学应用分析 》

摘要:计算流体力学是以多种计算方程为基础,在多种化学反应设备中进行能量、质量和动量的综合计算,分析出不同守恒定律中,这些变量的主控形式和变化规律,从而优化工程设计和工艺设备,提高化学反应中正向变化的进行,提高热量交换和原材料的反应速率等。从化学工程经济效益的角度分析,有利于工程成本的节约,提升了经济回报。 文章 计算流体力学的基本原理进行分析,并 总结 了其砸你化学工程中搅拌、热交换、精馏塔和化学反应工程的具体应用。

关键词:计算流体力学;求解;基本原理;化学工程;应用

化学工程在我国具有较长的研究与应用历程,并在实际的生产与生活中取得到巨大的应用成效,不仅能够供给正常的生活需求,同时根据新材料的开发,能够满足现代型环保材料的使用。在化学工程中,较多的反映环境和反应机制都是在溶液中进行的,具有质量守恒和热量守恒定律的应用。而这种质量与能量的关系正是计算流体力学的主要原理。通过对实际应用环境和原理的分析,能够优化工程设计和工艺改进,提高化学工程的生产效率。

1计算流体力学在化学工程中的基本原理

计算流体力学简称CFD,是通过数值计算 方法 来求解化工中几何形状空间内的动量、热量、质量方程等流动主控方程,从而发现化工领域中各种流体的流动现象和规律,其主要以化学方程式中的动量守恒定律、能量守恒定律及质量守恒方程为基础。一般情况下,计算流体力学的数值计算方法主要包括数值差分法、数值有限元法及数值有限体积法,其也是一门多门学科交叉的科目,计算流体力学不仅要掌握流体力学的知识,也要掌握计算几何学和数值分析等学科知识,其涉及面广。

针对计算流体力学的真实模拟,其主要目的是对流体流动进行预测,以获得流体流动的信息,从而有效控制化工领域中的流体流动。随着信息技术的发展,市场上也出现了计算流体力学软件,其具有对流场进行分析、计算、预测的功能,计算流体力学软件操作简单,界面直观形象,有利于化学工程师对流体进行准确的计算。

2计算流体力学砸你化学工程中的实际应用

2.1在搅拌中的应用分析

在搅拌的化学反应中,反映介质之间的流动性比较复杂,依据传统的计算形式根本无法解决,并在化学试剂在搅拌中存在不均匀扩散的特点,在湍流的形式中能量的分布状况也存在着空间特点。若是依据实验手段测得反映中物质、能量和质量的变化规律,其得出的结构往往存在较差时效性,实验骗差加大。

通过对二维计算流体力学的应用,能够对搅拌中流体的形式进行模拟,并进行质量、能量等数据的验证。但是流体的变化,不仅与化学试剂的浓度、减半速度有关,还与时间、容器的形状等有着之间的联系,需要建立三维空间模拟形式进行计算流行力学。随着科学技术和研究水平的提高,在通过借助多普勒激光测速仪后,已经对三维计算形式有了较大的突破,这对于化工工程中原料的有效应用和工程成本的减低具有促进的作用,但是在三维计算流体力学中还存在一定的缺陷,需要在今后的研究中不断的完善。

2.2CFD在化学工程换热器中的应用分析

换热器是化学工程中主要的应用设备,通过管式等换热器、板式换热器、冷却塔和再沸器等的应用,能够有效的控制化学试剂在反应中的温度变化。其中根据换热器的形式不同,计算流体力学的方式也就不同。在管式换热器中主要是通过流体湍流速度的改变,增加换热速率的。在板式换热器中是通过加大流体的接触面积,提高换热效率的。而在冷却塔和再沸器中,热量交换的形式更为复杂,但是却群在重复性换热的特点,增加了换热的时间,提高了换热的效果。从总体上分析,计算流量力学中,需要对温度变化、流体的速度变化、热交换面积变化和时间变化进行分析。通过CFD计算流体力学的应用,能够计算出不同设备的热交换效果,并根据生产的实际需求进行换热器的选择使用。

2.3在精馏塔中的应用

CFD已成为研究精馏塔内气液两相流动和传质的重要工具,通过CFD模拟可获得塔内气液两相微观的流动状况。在板式塔板上的气液传质方面,Vi-tankar等应用低雷诺数的k-ε模型对鼓泡塔反应器的持液量和速度分布进行了模拟,在塔气相负荷、塔径、塔高和气液系统的参数大范围变化的情况下,模拟结果和现实的数据能够较好的吻合。

Vivek等以欧拉-欧拉方法为基础,充分考虑了塔壁对塔内流体的影响,用CFD商用软件FLUENT模拟计算了矩形鼓泡塔内气液相的分散性能,以及气泡数量、大小和气相速度之间的关系,取得了很好的效果。在填料塔方面,Petre等建立了一种用塔内典型微型单元(REU)的流体力学性质来预测整塔的流体力学性质的方法,对每一个单元用FLUENT进行了模拟计算,发现塔内的主要能量损失来自于填料内的流体喷溅和流体与塔壁之间的碰撞,且用此方法预测了整塔的压降。

Larachi等发现流体在REU的能量损失(包括流体在填料层与层之间碰撞、与填料壁的碰撞引起的能量损失等)以及流体返混现象是影响填料效率的主要因素,而它们都和填料的几何性质相关,因此用CFD模拟计算了单相流在几种形状不同的填料中流动产生的压降,为改进填料提供了理论依据。CFD模拟精馏塔内流体流动也存在一些不足,如CFD模拟规整填料塔内流体流动的结果与实验值还有一定的偏差。这是由于对于许多问题所应用的数学模型还不够精确,还需要加强流体力学的理论分析和实验研究。

2.4CFD在化学反应工程中的应用研究

在化学反应工程中,反应物和生成物的化学反应速率与反应器、温度和压力等有着较大的联系,在实际的反应中可以利用计算流体力学进行数据的获取。但是这数据的获取具有一定的温度限制,当反应中温度过大,就会造成分子的剧烈运动,其运动轨迹的变化规律就会异常,在利用计算流体力学的模型计算中,计算数据与实际情况会发生较大的偏差。由于高温中分子的运动轨迹和运动速度难以获取,在计算流体力学的实际计算中,就要借助FLUENT进行三维建型,并利用测速反应器进行速度的测量,通过综合的比较分析,利用限元法进行数据的计算。可以得出不同环境下的反应器的流线、反应器内部的浓度梯度及温度梯度。通过CFD软件预测反应器的速度、温度及压力场,可以更进一步理解化学反应工程中的聚合过程,详细、准确的数据可以优化化学反应中的操作参数。

3结束语

计算流体力学对于化学工程的应用具有实际意义,并在经济效益的提高上具有重要的价值,在近几年,化学工程技术人员不断的计算流体力学中展开研究,以二维空间计算和模拟为基础,不断的完善三维空间的流量计算,并得出了一系列的流体流动规律。根据计算流体力学在化学工程中的广泛应用,在今后的化学工程发展中,应加强此类学科的教学与延伸,提供出更有效的反应设备和工艺操作。

参考文献

[1]余金伟,冯晓锋.计算流体力学发展综述[J].现代制造技术与装备,2013(06).

[2]舒长青,王友欣.计算流体力学在化学工程中的应用[J].化工管理,2014(06).

《 能源化学工程专业化工热力学教学思考 》

[摘要]《化工热力学》是能源化学工程专业一门理论性和逻辑性较强的专业基础课,文章阐述了作者在《化工热力学》课程教学过程中如何提高学生对学习本课程兴趣的教学实践和教学体会。通过明确教学内容和教学主线,改变传统的单一的课堂教学,将课堂教学与学科动态及工程实践密切结合,激发学生学习兴趣,培养学生自主学习能力和工程意识,以满足培养能源化学工程领域领军人物的要求。

[关键词]化工热力学;能源化学工程;教学实践;教学体会

化工热力学是化工类学生的专业必修课程之一,主要讲述热力学定律在化学工程领域的应用,包括化工过程中各种形式的能量之间相互转换规律及过程趋近平衡的极限条件等。它是培养学生分析和解决实际化工问题思维方法的重要专业理论基础课[1-3]。然而该课程的课程内容抽象、计算繁琐,学生感到非常难学又缺乏实际应用,在课程学习过程中学生产生恐惧和厌学心理,达不到良好的教学效果,因此,我们对该课程的教学内容和 教学方法 进行一些改革和尝试,希望激发学生学习的兴趣,进而更好地掌握这门课程,为后续专业课程的学习夯实基础。

武汉大学2013年新开设的能源化学工程专业是由1958年原武汉水利电力学院开办的“电厂化学”专业发展而来,主要面向电力行业及高效洁净能源领域(包括超临界火电、核电、生物质能、氢能、新型化学电源等),培养掌握化学与化工基础理论及能源化学专业知识和技能的未来行业发展的领军人物。

目前,本专业主要有水处理、材料腐蚀与防护、化学监督与控制、能源化学四个主要研究方向。为了适应学校对新专业发展和一流学科建设的要求,2015年在本专业大三学生中新增设了《化工热力学》这门化工类专业的专业基础课程。如何调动学生的课堂积极性,培养学生的创新能力,夯实学生的专业基础,使他们在54学时的学习过程中理解并掌握本门课程的基本概念,并且将抽象的理论与实际的能源化学过程联系起来是本课程的核心教学任务。本文结合我校能源化学工程专业的培养目标,浅谈《化工热力学》的教学体会,着重对教学方式进行了探索和实践,为培养能源化学工程领域的领军人物奠定基础。

1明确教学内容与课程主线

结合我校《化工热力学》课程以工程应用为中心、专业研究方向覆盖面广等特点,我们选用了朱自强等编著、化学工业出版社出版的《化工热力学》作为教材[4],同时,也鼓励学生使用部分参考教材(《化工热力学》,冯新等编,2008;《化工热力学(第二版)》,陈钟秀等编,2000;《化工热力学导论(原著第七版)》,J.M.史密斯等编,刘洪来等译,2007)[5-7]。化工热力学发展时间较长,已形成较完整的知识体系,如何在54学时内有效地把关键知识点教授给学生是本课程教学实践的关键。

由于本专业学生在大二《物理化学》课程中已经系统学习了理想气体相关的状态方程及其应用,因此在本课程教学中不再赘述,而是重点介绍工程实际应用较多的二参数状态方程、化工热力学分析、溶液热力学、流体相平衡和化学反应平衡等。在教学实践中,首先,详细分析《化工热力学》教材结构,围绕主线内容合理编排知识点;其次,建立好各知识点之间的逻辑关系,让学生在大脑中建立化工热力学框架图;最后,根据能源化学工程专业的需要,适当删减补充了教材内容,结合学科动态,增强化工热力学的应用能力,如燃料电池开路电压的计算、水/二氧化碳共电解制合成气过程中气体组成的计算等。

2改变单一课堂教学模式,培养学生自主学习能力

化工热力学课程设计的公式多而繁杂,学生在开始学习阶段容易产生恐惧厌学心理,传统的单一课堂教学模式具有“教师主导学生学习”的特点,与本课程“教师引导学生学习”的教学目的存在较大偏差。因此,应改变传统单一课堂讲授模式,充分采用“启发式”和“参与式”相结合的教学方法。

首先,教师在 课前预习 阶段设疑(提出问题),促使学生思考,复习旧知识,预习新知识;其次,教师在教学实践过程中采用多媒体和板书相结合的教学方式解疑(解决问题),并通过对例题和习题的讲解加深学生对化工热力学原理、方法和应用的理解,同时,教学过程中应避免陷于抽象的说教和枯燥的公式推导之中,重点讲述化工热力学知识点的应用条件和物理意义;最后,课堂教学结束后,教师主动与学生面对面交流答疑(探讨问题),并设置思考题让学生查阅相关资料。通过“设疑—解疑—答疑”的渐进式教学方法达到对关键知识点举一反三的目的,同时,吸引学生注意力,培养学生自主学习能力,提高学生学习的积极性和主动性。

3课堂教学与工程实践密切结合,培养学生初步的工程观点

化工热力学由于理论性较强、基本概念多且抽象,而且本科生在学习过程中接触科研课题及工程实践的机会较少,将课堂教学内容与科研课题及工程实践紧密结合起来,建立“以应用为中心”、“探究式”的特色教学模式,紧密联系我校在能源化学工程领域(特别是超临界火电、核电、生物质能、氢能、新型化学电源等方面)开发利用的化学工程实际问题,把学科前沿领域的科研成果带入课堂,可以使他们强化科研思想、激发听课兴趣、培养创新能力;同时,可以让学生获取利用化工热力学基本原理解决工程实际问题提供思路和方法,培养学生初步的工程观点。

4考核方式方法研究

传统的期末一张考卷为准的考试方式不利于学生能力的培养,也不能全面地体现学生对所学知识的掌握程度,为了更加系统全面地评价学生对课程内容的认识情况,我们对课程的考核方式方法进行了改革探索。目前,课程成绩总评包括平时成绩和期末成绩两部分,其中平时成绩包括学生的课堂综合表现、课程预习、作业三个部分,各占10%;期末考试采用开卷方式考试,考试的题目偏重于对知识点的理解和其在能源化学过程中的应用。然而由于该课程的课程内容抽象、计算繁琐,教学过程中发现仍有部分学生存在畏惧厌学心理,因此,在今后的教学实践中应考虑进一步激发学生的学习兴趣,增强学生的主观能动性,在课堂教学中引入分组讨论,开展导向性的专题研究,将课程内容与能源化学过程(特别是学科动态)相结合,培养学生查阅资料和分工协作的能力,为学生下一步学习专业课程夯实基础。

5结束语

在《化工热力学》课程的教学实践和尝试中,首先要明确教学内容与主线,打破单一的学生被动听讲的模式,理论联系实际应用,调动学生学习的积极性和主动性,激发学生对教学内容的兴趣,并且在教学的过程中对教学方法进行改革创新,因材施教,为学生下一步学习更专业的能源化学工程知识和从事新能源行业工作奠定扎实的基础。

参考文献

[1]陆小华,冯新,吉远辉,等.迎接化工热力学的第二个春天[J].化工高等 教育 ,2008,3:19-21.

[2]梁浩,刘惠茹,王春花.《化工热力学》教学实践与尝试[J].广东化工,2010,37(1):157-158.

[3]李兴扬,唐定兴,沈凤翠,等.化工热力学教学改革与体验[J].化工高等教育,2011,3:71-73.

[4]朱自强,吴有庭.化工热力学(第三版)[M].北京:化学工业出版社,2009.

[5]冯新,宣爱国,周彩荣,等.化工热力学[M].北京:化学工业出版社,2008.

[6]陈钟秀,顾飞燕,胡望明.化工热力学(第二版)[M].北京:化学工业出版社,2000.

[7]史密斯JM,范内斯HC,阿博特MM,等编;刘洪来,陆小华,陈新志,等译.化工热力学导论(原著第七版)(IntroductiontoChemicalEngineeringThermodynamics,SevenEdition).北京:化学工业出版社,2007.

有关化学工程应用毕业论文推荐:

1. 化学工程毕业论文

2. 化学毕业论文精选范文

3. 化工毕业论文范文大全

4. 化学毕业论文范例

5. 化学毕业论文范文

6. 化工毕业设计论文范文

征求一篇绿色化学方面的论文

绿色催化剂的应用及进展
摘要]对新型绿色催化剂杂多化合物的研究进展进行了综述,主要介绍了杂多化合物在催化氧化、烷基化、异构化等石油
化工领域的研究现状,并对其应用和发展前景做了总结和评述。
[关键词]杂多化合物;绿色化工催化剂;展望
随着人们对环保的日益重视以及环氧化产品应
用的不断增加,寻找符合时代要求的工艺简单、污染
少、绿色环保的环氧化合成新工艺显得更为迫切。20
世纪90年代后期绿色化学[1,2]的兴起,为人类解决化
学工业对环境污染,实现可持续发展提供了有效的手
段。因此,新型催化剂与催化过程的研究与开发是实
现传统化学工艺无害化的主要途径。
杂多化合物催化剂泛指杂多酸及其盐类,是一类
由中心原子(如P、Si、Fe、B等杂原子及其相应的无机
矿物酸或氢氧化物)和配位原子(如Mo、W、V、Ta等多
原子)按一定的结构通过氧原子桥联方式进行组合的
多氧簇金属配合物,用HPA表示[3-6]。HPA的阴离子结
构有Keggin、Dawson、Anderson、Wangh、Silverton、
Standberg和Lindgvist 7种结构。由于杂多酸直接
作为固体酸比表面积较小(<10 m2/g),需要对其固
载化。固载化后的杂多酸具有“准液相行为”和酸碱
性、氧化还原性的同时还具有高活性,用量少,不腐蚀
设备,催化剂易回收,反应快,反应条件温和等优点而
逐渐取代H2SO4、HF、H3PO4应用于催化氧化、烷基化、异
构化等石油化工研究领域的各类催化反应。
1杂多酸在石油化工领域的研究进展
随着我国石油化工工业的快速发展,以液态烃为
原料制取乙烯的生产能力在不断增长,而产生的副产
物中有大量的C3~C9烃类,其化工综合利用率却仍然
较低,随着环保法规对汽油标准中烯烃含量的严格限
制,如何在不降低汽油辛烷值的情况下,生产出高标
号的环境友好汽油已是我国炼油业面临的又一个技
术难题。目前,催化裂化副产物C3~C9烃类的催化氧
化、烷基化、芳构化以及C3~C9烃类的回炼技术已成
为研究的热点。因此,催化裂化C3~C9烃类的开发与
应用将有着强大的生产需求和广阔的市场前景。
1.1催化氧化反应
杂多酸(盐)作为一类氧化性相当强的多电子氧
化催化剂,其阴离子在获得6个或更多个电子后结构
依然保持稳定。通过适当的方法易氧化各种底物,并
使自身呈还原态,这种还原态是可逆的,通过与各种
氧化剂如O2、H2O2、过氧化尿素等相互作用,可使自身
氧化为初始状态,如此循环使反应得以继续。用杂多
酸作催化剂使有机化合物催化氧化作用有两种路线
是可行的[7]:①分子氧的氧化:即氧原子转移到底物
中;②脱氢反应的氧化。
将直链烷烃进行环氧化是生产高辛烷值汽油的
重要途径之一。Bregeault等[8]研究了在CHCl3-H2O
两相中,在作为具有催化活性的过氧化多酸化合物的
前体的杂多负离子[XM12O40]n-和[X2M18O62]m-以及同多
负离子[MxOy]z-(M=Mo6+或W6+;X=P5+,Si4+或B3+)的存在
下,用过氧化氢进行1-辛烯的环氧化反应时,负离子
[BW12O40]5-、[SiW12O40]4-和[P2W18O62]6-都是非活性的,并
且许多光谱分析法表明它们的结构在反应过程中没
有发生变化。[PMo12O40]3-表现出很低的活性,而
[PW12O40]3-、H2WO4和[H2W12O42]10-都表现出高活性。反应
中Keggin型杂多负离子[PW12O40]3-被过量的过氧化
氢分解而形成过氧化多酸{PO4[WO(O2)2]4}3-和
[W2O3(O2)4(H2O)2]2-,而这两种活性物种在环氧化反应
中起到了重要的作用。1.2烷基化反应
石油炼制工业上,烷烃烷基化、烯烃烷基化及芳烃烷基化反应是生产高辛烷值清洁汽油组分的环境
友好工艺。但以浓硫酸和氢氟酸作为催化剂的传统烷
基化工艺因氢氟酸的毒性和浓硫酸的严重腐蚀性受
到了很大的限制。
C4抽余液是蒸气裂解装置产生的C4馏份经抽提
分离丁二烯后的C4剩余部分,其中富含大量的1-丁
烯和异丁烯。如何利用C4抽余液中的异丁烯和1-丁
烯是C4抽余液化工利用的关键。异丁烯是一种重要
的基本有机化工原料,主要用于制备丁基橡胶和聚异
丁烯,也用来合成甲基丙烯酸酯、异戊二烯、叔丁酚、
叔丁胺等多种有机化工原料和精细化工产品。1-丁
烯是一种化学性质比较活泼的a-烯烃,其主要用途
是作为线性低密度聚乙烯(LLDPE)的共聚单体,也用
于生产聚丁烯、聚丁烯酯、庚烯和辛烯等直链或支链
烯烃、仲丁醇、甲乙酮、顺酐、环氧丁烷、醋酸、营养药、
农药等。特别是自20世纪70年代LLDPE工业化技术
开发成功以来,随着LLDPE工业生产的蓬勃发展,国
内外对1-丁烯的需求与日俱增,已成为发展最快的
化工产品之一。
刘志刚[9]等用浸渍法制备了Cs+、K+、NH4+的SiPW12
杂多酸盐类和SiO2负载的SiPW12杂多酸,在超临界
条件下评价了它们对异丁烷和丁烯烷基化的催化作
用。结果表明,它们的活性和选择性大小顺序是当阳
离子数相同时,Cs+盐>K+盐>NH4+盐。
(NH4)2.5H1.5SiW12O40尽管催化活性不高,但对C8产物的
选择性达到83.48%;Cs2.5H1.5SiW12O40具有很高的催化
活性,但其对C8产物的选择性却只有62.47%。
1.3异构化反应
汽油的抗爆性用异辛烷值表示,直链烃异构化是
生产高辛烷值汽油的重要手段。C5~C6烷烃骨架异构
化旨在提高汽油总组成的辛烷值,反应受平衡限制,
低温有利于支链异构化热动力学平衡。为达到最大的
异构化油产率,C5~C6烷烃异构化应在尽可能低的温
度和高效催化剂存在下进行。烷烃骨架异构化是典型
的酸催化反应,最近发现有较多的固体酸材料(其酸
强度高于H-丝光沸石)可用于轻质烷烃骨架异构化,
其中,最有效的有基于杂多酸(HPA)的催化材料和硫
酸化氧化锆、钨酸化氧化锆(WOx-ZrO2)。
2绿色催化剂
绿色化学对催化剂也提出了相应的要求[1,2]:(1)
在无毒无害及温和的条件下进行;(2)反应应具有高
的选择性,人们将符合这两点的催化剂称之为绿色催化剂。
由于一些杂多酸化合物表现出准液相行为,极性
分子容易通过取代杂多酸中的水分子或扩大聚合阴
离子之间的距离而进入其体相中,在某种意义上吸收
大量极性分子的杂多酸类似于一种浓溶液,其状态介
于固体和液体之间,使得某些反应可以在这样的体相
内进行。作为酸催化剂,其活性中心既存在于“表相”,
也存在于“体相”,体相内所有质子均可参与反应,而
且体相内的杂多阴离子可与类似正碳离子的活性中
间体形成配合物使之稳定。杂多酸有类似于浓液的
“拟液相”,这种特性使其具有很高的催化活性,既可
以表面发生催化反应,也可以在液相中发生催化反
应。准液相形成的倾向取决于杂多酸化合物和吸收分
子的种类以及反应条件。正是这种类似于“假液体”的
性质致使杂多酸即可作均相及非均相反应,也可作相
转移催化剂。陈诵英[10]等用二元杂多酸为催化剂,双
氧水为氧化剂,醋酸为溶剂,催化氧化三甲基苯酚
(TMP)合成三甲基苯醌(TMBQ),这与传统方法先用发
烟硫酸磺化TMP,然后在酸性条件下用固体氧化剂氧
化得到TMBQ相比,能减少排放大量废水以及10 t以
上的固体废物,且其摩尔收率可达86%,大大提高了
原子利用率。刘亚杰[11]等采用一种性能优良的环境友
好的负载型杂多酸催化剂(HRP-24)合成二十四烷基
苯。HR-24属于一种大孔、细颗粒、强酸性的固体酸
催化剂,大孔和细颗粒有利于大分子烯烃的扩散,且
不容易被长链烯烃聚合形成的胶质堵塞孔道,而强酸
性可使催化剂在较低温度下就具有较高的催化活性。
实验表明,在反应温度和压力较低的情况下(120℃
和0.1~0.2 MPa),烯烃的转化率和二十四烷基苯的
选择性都接近100%。Furuta等[12]采用Pd-H3SiW12O40
催化乙烯在氧气和水存在下氧化一步合成了乙酸乙
酯,简化合成工艺,与绿色化学相适应。刘秉智[13]以活
性炭负载磷钼钨杂多酸为催化剂,用30%双氧水催化
氧化苯甲醇合成苯甲醛,苯甲醛收率可达74.8%。与
国内同类产品的生产工艺相比,其具有催化活性好,
反应条件温和,生产成本低廉,催化剂可重复使用,对
设备无腐蚀性,不污染环境,是一种优良的新型合成
工艺路线,具有一定的工业开发前景。
3展望
虽然绿色化工催化剂理论发展逐渐得到完善,但
大多数催化剂仍停留在实验阶段,催化剂性能不稳
定,制备过程复杂,性价比低是制约其工业化应用的
主要原因,但从长远角度考虑,采用绿色化工催化剂
是实现生产零污染的一个必然趋势。环境友好的负载
型杂多酸催化剂既能保持低温高活性、高选择性的优
点,又克服了酸催化反应的腐蚀和污染问题,而且能
重复使用,体现了环保时代的催化剂发展方向。今后
的研究重点应是进一步探明负载型杂多酸的负载机
制和催化活性的关系,进一步解决活性成分的溶脱问
题,并进行相关的催化机理和动力学研究,为工业化
技术提供数据模型,使负载型杂多酸早日实现工业化
生产,为石油化工和精细化工等行业创造更大的经
济、社会效益。
[参考文献]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
王恩波,胡长文,许林.多酸化学导论[M].北京:化学工业出版社,
1997,170-195.
夏恩冬,王鉴,李爽.杂多酸氧化-还原催化应用及研究进展
[J].天津化工,2007,21(3):20-23.
Aubry C,Chottard G,Bregeault J,et stigation
of epoxidation using tungsten-based precursors and
hydrogen peroxide in a biphase medium[J].Inorg Chem.,
1991,30(23):4 409-4 415.
刘志刚,刘植昌,刘耀芳.SiW12杂多酸盐在C4烷基化反应中应用的
研究[J].天然气与石油,2005,23(1):17-19.
陈诵英,陈蓓,王琴,等.环境友好氧化催化剂杂多酸的应用
[J].宁夏大学学报,2001,(2):98-99.
刘亚杰,温朗友,吴巍,等.负载型杂多酸催化剂合成二十四烷
基苯[J].石油炼制与化工,2002,33(12):18-21.
Futura M,Kung H d Catalysis A:General[J],
2000,201:9-11.
刘秉智.固载杂多酸催化氧化合成苯甲醛绿色新工艺[J].应用化
工,2005,(9):548-549.
Anastasp,Will Chemistry Theoryand
Practice[M].Oxford:Oxford University Press,1998.
atom economy:a search for synthetic effi 2
ciency[J].Science,1991,254(5037):1 471-1 477.
Misono M,Okuhara ch[J],1993,23(11):23-29.
Rev-Sei Eng.[J],1995,37(2):311-352.
温朗友,闵恩泽.固体杂多酸催化剂研究新进展[J].石油化工,
2000,(1):49-55.

化学与环境论文

1引言
环境化学(environmental chemistry)是研究化学物质,特别是化学污染物在环境中的各种存在形态及特性、迁移转化规律、污染物对生态环境和人类影响的科学,主要研究有害化学物质在环境介质中的存在、化学特性、行为和效应及其控制的化学原理和方法。它是环境科学研究和环境科学的基础内容之一。
2概述
造成环境污染的因素可分为物理的、化学的及生物学的三方面,而其中化学物质引起的污染约占80%-90%。环境化学即是从化学的角度出发,探讨由于人类活动而引起的环境质量的变化规律及其保护和治理环境的方法原理。就其主要内容而言,环境化学除了研究环境污染物的检测方法和原理(属于环境分析化学的范围)及探讨环境污染和治理技术中的化学、化工原理和化学过程等问题外,需进一步在原子及分子水平上,用物理化学等方法研究环境中化学污染物的发生起源、迁移分布、相互反应、转化机制、状态结构的变化、污染效应和最终归宿。随着环境化学研究的深化,为环境科学的发展奠定了坚实的基础,为治理环境污染提供了重要的科学依据[1]。
从学科研究任务来说,环境化学的特点是要从微观的原子、分子水平上来研究宏观的环境现象和变化的化学机制及其防治途径,其核心是研究化学污染物在环境中的化学转化和效应。它所研究的环境本身是一个多因素的开放性体系,变量多、条件较复杂,许多化学原理和方法则不易直接运用。
3主要研究领域和内容
3.1研究污染物(主要是化学污染物)在环境(包括大气圈、水圈、土壤岩石圈和生物圈)中的迁移、转化的基本规律,形成环境污染化学这一介于环境科学与化学之间的一门新兴的边缘分支学科。
3.2研究环境中污染物的种类和成分及其定量分析方法,形成环境分析化学(常简称环境分析)。它是环境化学的分支学科。
3.3研究环境中天然的和人为释放的化学性质的迁移、转化规律及其与环境质量和人类健康的关系,形成环境地球化学。它是介于环境与地球化学之间的一门新兴的边缘分支学科。
4环境概况及解决方法
4.1有害化学品的污染危害
有害化学品是指任何已经被确认为对人类健康和环境有危害性的化学品。
随着工农业迅猛发展,有毒有害污染源随处可见,而给人类造成的灾害要属有毒有害化学品为最重。化学品侵入环境的途径几乎是全方位的,其中最主要的侵入途径可大至分为四种,
4.11人为施用直接进入环境;
4.12在生产、加工、储存过程中,作为化学污染物以废水、废气和废渣等形式排放进入环境;
4.13在生产、储存和运输过程中由于着火、爆炸、泄漏等突发性化学事故,致使大量有害化学品外泄进入环境;
4.14在石油、煤炭等燃料燃烧过程中以及家庭装饰等日常生活使用中直接排入或者使用后作为废弃物进入环境。
进入环境的有害化学物质对人体健康和环境造成了严重危害或潜在危险。
以农药这一有害化学品为例,随着农药科技和农业的迅速发展,农药的使用越来越普遍,从不使用农药的自然农业发展到使用农药的现代农业,对于我国这样一个人口众多,耕地面积紧张的大国,农药在解决农作物的自然灾害,促进粮食增产方面发挥了重要作用。但由于农药是一类有毒化学物质,而且是人为主动投加到环境当中,长期大量使用,对环境生物安全和人体健康,必将产生较大的不利影响。这就给人们提出了一个不容回避的现实问题,在充分肯定农药的有利作用的同时,需要充分认识农药对生态环境和人体健康产生的危害[2]。
同时工业废水也是对环境最大的污染源之一,譬如工业废水中的氰化物等有害物质严重污染了全国主要江河湖泊,使水质恶化,特别是淮河、海河、辽河、滇池、巢湖和太湖(简称“三河三湖”)水污染问题更为突出,给当地经济发展和人民生活带来严重影响。工业废水中排放的氰化物对鱼类危害更甚,含苯酚废水可抑制水中细菌、藻类和软体动物生长。用含酚废水灌溉农田能抑制光合作用和酶的活性,破坏农作物生长素的形成,造成减产。生活污水和某些工业废水中常含有一定量的氮和磷,进入水体后会使封闭性湖泊、海湾形成富营养化,造成浮游藻类大量繁殖、水体透明度下降、溶解氧降低、威胁鱼类生存、水质发臭出现“赤潮”。化学废弃物的不适当处置,会造成土壤板结和地下水污染,直接威胁人体健康和人类生存。目前癌症已成为严重威胁人类健康和生命的疾病之一。据世界卫生组织估计,全世界每年有癌症患者600万人,每年因癌症死亡约500万人,占死亡总人数的1/10。我国每年癌症新发病人有150万人,死亡110万人,而造成人类癌症的原因10%~15%与化学因素有关。
再则冷冻与空调设备释放出的氯氟烃气体造成大气平流层的臭氧层破坏,引起地球表面紫外线辐照增强,使人群皮肤癌发病率上升。燃煤发电厂等排放的二氧化硫引起的酸雨导致河流湖泊酸化,影响鱼类繁殖甚至种群消失。土壤酸度增高可使细菌种类减少,肥力减退,影响作物生长。酸雨还使土壤中锰、铜、铅、镉和锌等重金属转化为可溶性化合物,转移进入江河湖泊引起水质污染。
有害化学品对人体健康和环境的危害是我国环境保护中亟待解决的重要问题,必须引起全社会高度重视。
4.2化学品的环境污染控制
我国是化工生产量较大的国家,化工产业已形成一个比较完善的体系。要想控制或减少对环境的污染,应从化学品的生产过程中的污染控制方面加以考虑,首先应了解化工厂的污染情况,包括:污染源种类、主要污染物、排放情况、环保措施以及周围环境敏感性等。特别应对污染源分布进行调查和污染物排放量的统计、同时应了解污染影响类型,如是属于一次污染或二次污染、长期污染或短期污染、可逆污染或不可逆污染、局部污染或大面积污染、单因素污染或多因素复合污染等等。化学品的污染危害控制,应采取以下主要措施:
4.21制定和健全环境立法,加强环境执法力度
我国于1979年已经颁布了《中华人民共和国环境保护法》,该法是我国有关环境保护的综合性法规,也是环境保护领域的基本法律,主要规定了国家的环境政策、环境保护的方针、原则和措施等;国务院还制定了《水污染防治法实施细则》、《大气污染防治法实施细则》和《固体废物污染环境防治法》等环境保护法律、国务院颁布了《化学危险物品安全管理条例》和《农药管理条例》等化学品管理行政法规。国家还专门制定了环境保护标准、污染物排放标准、环保基础标准和环保方法标准。如已颁布的环境质量标准有《环境空气质量标准》、《地面水环境质量》等;污染物排放准有《工业"三废"排放标准》、《污水综合排放标准》等等;同时地方性环境保护法规、环境保护部门规范性文件都作了明确规定等。这些法律法规的颁布实施对加强有害化学品的安全管理,防止化学物质污染环境和保障人民群众身体健康发挥了重要作用。但是,我国尚未建立起完整的化学物质环境管理法规体系,对化学物质的生产、储存、运输、销售、使用和进出口实行全过程有效管理[3]。
我国现行化学品环境立法需要针对当前化学品管理法律法规中的薄弱环节加以补充完善,并与国际化学品管理体制接轨。此外,当前迫切需要加强的是对化学品管理法律法规的执法力度。对环境保护造成严重污染的企业,应依法给予追究,对人身由环境污染造成危害的应依据法律给予处罚和赔偿。这在日本等工业发达国家早已实行了的法律管理制度。我们还应通过宣传教育提高从事化学危险品生产、贮存、经营、运输和使用的单位和个人的遵法守法意识,加强对有害化学品的安全和环境管理。特别是应按着我国环境保护法来严格管理有害化学品。
4.22加强对重点有害化学品的环境管理
建立相应登记管理制度,对那些已知或怀疑对人类有致癌、致畸、致突变物质或者对环境有严重危害化学品采取禁止或严格限制使用和淘汰、替代措施,以有效减少这些化学物质的污染危害。
4.23推行清洁生产,严格控制有害化学物质向环境中排放
化工污染之所以严重,一个重要原因是一大批老企业长期以来没有进行技术改造,资源、能源消耗太高,排污量太大。全面推行清洁技术改造,通过改革工艺设备,尽可能把"三废"消除在生产过程之中,减轻末端治理的负担,是改变化工生产消耗高、污染大的落后局面的根本途径。积极推行清洁生产,就要选用清洁原料,采用无毒无害物质替代有害原材料、设计清洁工艺、生产清洁产品。同时改善和加强企业内部安全管理等措施,在污染的源头削减污染物和废物产生量并回收利用废物。最大限度消除或削减有害物质的排放。对通过预防不能解决的污染物,应采取源控制措施进行安全处理处置,使污染物达到国家或地方规定的排放标准。
4.24强化危险废物管理
危险废物是指具有易燃性、腐蚀性、反应性、爆炸性、急性毒性、传染性等危险特性之一的废弃物。根据《固体废物污染环境防治法》的规定,从事危险废物的收集、贮存、处置经营活动的单位,必须经环境保护行政主管部门批准并领取经营许可证。
4.25公众监督
通过建立和实行危险化学品的安全标签和安全技术说明书制度,在企业员工和化学品使用者中普及化学品安全和环境保护知识。并在全社会积极宣传有关化学品安全与环境保护知识,提高社会公众对有害化学品的危害、安全防护措施和环境保护的认识,大力鼓励公众参与监督有害化学物质的污染防治。
5结论
要时刻关注生态系统的表现,尽早发现失调的信息,及时扭转不利的情况。积极提高生态系统的抗干扰能力,保护生态系统,预防生态失调。

参考文献
[1]袁加程.环境化学.化学工业出版社,2010
[2]张瑾.环境化学导论.化学工业出版社,2008
[3]周启星,李培军.污染生态学,科学出版社,2001

上一篇:中山大学学报发表难度

下一篇:mina杂志模特名字