大学生人工智能论文英语
大学生人工智能论文英语
Intelligent processing tools is usually deal with uncertain, unstructured,
of no fixed algorithm, the process is a process of inference control processing,
the final results are often not sure, may be right, may be is not correct.
Natural speech understanding is mainly studied how to make the computer can
understand and raw or natural voice technology, natural speech understanding
process can be divided into three levels: lexical analysis, syntactic analysis
and semantic analysis, due to the natural voice is rich and colorful, so the
natural speech understanding is quite difficult, moving from words, we can find
some shortages at current levels of natural speech comprehension. Radio,
television and the Internet through the waves propagated, digital circuit,
newspapers need to typesetting printing, fast and slow step. Magazines, books,
movies, more slowly. Release speed of the tool, holds a large advantage in the
aspect of news release; Slow release tool that is used to release more to think
about and research materials, such as publishing a variety of social science and
natural science research, often in the form of magazines and books. In the
information society, the use of network to network communication has been
thought highly of by people more and more quickly, because the network has
provided a broad space to people, shorten the distance between people. In a
certain period of time, we can gather in different places, different age,
different education and different classes of people to communicate and discuss,
make people more broad vision, to know more comprehensive information,
experience more rich, therefore, with the further development of information
technology and the progress of the society, and believe that there will be more
and more people using the Internet the medium for communication and study, but
we should also see, there are also all kinds of problems on the network, such as
some people release some bad information on the Internet, trap set all kinds of
information. Contrast we should distinguish right and wrong, penetrative, taken
as true, let the Internet become our good place to study and communication.
Intelligent interface technology is the study of how to enable people to make
nature to communicate with the computer, in order to achieve this goal, for the
computer to read text, understand language, speech, and even be able to
translate between different languages, and the realization of the function of
these depend on the knowledge expression method of research, therefore, the
intelligent interface technology has made remarkable achievements, character
recognition, speech recognition, speech synthesis, image machine translation and
natural language understanding technology has practical application
智能处理工具通常处理的问题是不确定的,非结构的,没有固定算法的,处理的过程是推理控制的过程,最终得到的结果常常是不太确定的,可能是正确的,可能能是不正确。自然语音理解主要是研究如何使计算机能够理解和生或自然语音的技术,自然语音理解过程可以分为三个层次:词法分析,句法分析和语义分析,由于自然语音是丰富多彩的,所以,自然语音理解也是相当困难的,从话动中,我们可以发现目前水平的自然语音理解能力的一些不足。广播、电视和网络通过电波、数字线路进行传播,发布的速度快,报纸需要排版印刷,速度慢了一步。杂志、书籍、电影更慢。发布速度快的工具,在发布新闻方面占有很大的优势;发布速度慢的工具,则多用来发布需要思考和研究的材料,如发布各种社会科学和自然科学的研究成果,常采用杂志与书籍的形式。
在信息社会中,利用网络进行进行网络进行交流已经越来越快受到人们的重视,因为网络给人们提供了广阔的空间,缩短了人与人之间的距离。在一定的时间内,我们可以聚集不同地方、不同年龄、不同学历、不同阶层的人们进行交流和探讨,使人们的视野更加广阔,了解到信息更为全面,得到的经验更加丰富,因此,随着信息技术的进一步发展和社会的进步,相信会有更多的人利用网络这种媒介进行交流和学习,但是我们也应该看到,网络上也存在各种各样的问题,如有些人在网上发布一些不良的信息,设置各种信息陷阱。对比我们应该分辨是非,明察秋毫,劫为存真,让因特网成为我们学习交流的好地方。
智能接口技术是研究如何使人们能够方使自然地与计算机交流,为了实现这目标,要求计算机能够看懂文字、听懂语言、说话表达,甚至能够进行不同语言之间的翻译,而这些功能的实现又依赖于知识表达方法的研究,因此,智能接口技术已经取得显著成果,文字识别、语言识别、语音合成、图像机器翻译以及自然语言理解等技术已经实用化
全部家当求一篇人工智能的英文论文及翻译。
只是论文么?直接回答给你可以么?
Knowing How to Live Alone
Introduction
"Hook"
Connecting Information
Thesis statement
"Alone one is never lonely," says the poet and author Mary Sarton in praise of living along. Most people, however, are terrified of living alone. They are used to living with others -- children with parents, roommates with roommates, friends with friends, husbands with wives. When the statistics catch up with them, therefore, they are rarely prepared. Chances are high that most adult men and women will need to know how to live along, briefly or longer, at some time in their lives.
First Body Paragraph
Topic sentence
Background: Statistics
And how they relate to the thesis.
(The background paragraph is not always included in an academic essay.)
In the United States, circumstances often force people to live alone. For example, many high school and college graduates move away from their hometowns and continue their educations or take jobs. Most schools assign roommates, but employers usually expect people to take care of their own living arrangements. Also, married people might feel they will always be together, but currently one out of two marriages ends in divorce. An even sadder statistic concerns the death of a spouse. Estimates are that in the next twenty years eight out of ten married women will become widows, usually late in life. These facts show that most people have to live by themselves at least once in their lives whether they want to or not.
Second Body Paragraph
Topic sentence
support
One good way to prepare for living alone is to learn how to take care of practical matters. For example, some students and newly single people might not know how to do something as simple as opening a checking account. When making arrangements alone, they might be too tense to find out that they can compare banks as well as the benefits of various types of accounts. Similarly, making major purchases is something people living alone might have to handle. When divorced or widowed people were married, perhaps the other sopuse did the choosing or the couple make the decisions together. But how long can a person manage with a refrigerator that cannot be repaired or a car that will not run? After shopping around and making price comparisons, most people find that these decisions are much less complicated than they seem at first.
Third Body Paragraph
Topic sentence
support
The confidence that single people get from learning to deal with practical matters can boost their chances for establishing new friendships. When singles feel self-reliant, they can have an easier time getting out and meeting new people. For instance, some students are in the habit of always going to classes with a friend. When they break this dependency, they can be pleasantly surprised to find that they can concentrate better on the course and also have a chance to make some new friends. Likewise, the idea of going alone to the beach or to parties can paralyze some singles. Once they make the attempt, however, people alone usually find that almost everyone welcomes a new, friendly face.
Fourth Body Paragraph
Topic sentence
support
Probably the most difficult problem for people living alone is dealing with feelings of loneliness. First, they have to understand the feeling. Some people confuse being alone with feeling lonely. They need to remember that unhappily married people can feel very lonely with spouses, and anyone can suffer from loneliness in a room crowded with friends. Second, people living alone have to fight any tencendies to get depressed. Depression can lead to much unhappiness, including conpulsive behavior like overeating or spending too much money. Depression can also drive people to fill the feeling of emptiness by getting into relationships or jobs that they do not truly want. Third, people living alone need to get involved in useful and pleasurable activities, such as volunteering their services to help others.
Conclusion:
Call for awarness
People need to ask themselves, "If I had to live alone starting tomorrow morning, would I know how?" If the answer is "No," they need to become conscious of what living alone calls for. People who face up to life usually do not have to hide from it later on.
中文:
知道如何独自生活
景区简介
“钩”
连接信息
论文陈述
“一个人从不寂寞,说:”在生活在赞美诗人和作家玛丽萨顿。然而,大多数人,害怕孤独的生活。他们习惯于与他人的生活——儿童的父母,室友,室友,朋友的朋友,丈夫和妻子。当统计赶上他们,因此,他们很少会。机率很高,大多数成年男性和女性都需要了解如何相处,短暂或更长的时间,在一些时间在他们的生活。
第一段
主题句
背景:统计
和他们有关的论文。
(背景段并不总是包含在一个学术论文。)
在美国,情况往往迫使人们独自生活。例如,许多高中毕业生和大学毕业生的离开他们的家乡,继续他们的教育或工作。大多数学校分配的室友,但雇主通常期望别人来照顾自己的生活安排。同时,已婚的人可能会觉得他们会永远在一起,但目前一半的婚姻以离婚告终。一个更可悲的一方死亡的统计问题。据估计,在未来二十年八的十例已婚妇女成为寡妇,通常在生命的晚期。这些事实表明,大多数人都有自己过至少一次在他们的生活,不管他们是否愿意。
第二段
主题句
支持
一个准备独自生活的好方法是学习如何照顾的实际问题。例如,一些学生和单身的人可能不知道如何做开一个支票帐户一样简单。当一个人做出安排,他们可能太紧张,发现他们可以比较银行以及各类帐户的好处。同样,购买大件物品是独自居住的人可能要处理。当离婚或丧偶的人结婚,也许另做选择或sopuse夫妇一起做决定。但一个人多久可以有冰箱无法修复或一辆汽车,将不运行管理?购物和做价格比较后,大多数人发现,这些决定都比他们最初似乎不太复杂的多。
第三段体
主题句
支持
信心,从学习中获得单人处理实际问题可以提高自己的机会建立新的友谊。当光棍感觉自立,他们可以走出去,遇见新的人有更充裕的时间。例如,有些学生习惯于总是去上课,与朋友。当他们打破这种依赖,他们可以发现他们可以更好地集中于课程和也惊喜有机会结交一些新朋友。同样地,独自去到海边的想法或政党可以麻痹一些单打。一旦他们尝试,然而,人会发现,几乎每个人都欢迎一个新的,友好的脸。
第四段体
主题句
支持
可能是最困难的问题,独自居住的人是孤独的感觉。首先,他们必须了解的感觉。有些人会感到寂寞孤独。他们需要记住,婚姻不幸的人与配偶感到很孤独,和任何人都能承受在一个房间里挤满了朋友的孤独。第二,独自居住的人有打任何tencendies感到沮丧。抑郁症可以导致很不愉快,包括conpulsive行为如暴饮暴食或花费太多的钱。抑郁症也可以驱动的人来填补空虚的感觉进入关系或工作,他们并不真正想要的。第三,独自居住的人需要参与有用和愉快的活动,如志愿服务去帮助别人。
结论:
称为意识
人们需要问自己,“如果我不得不独自生活,从明天开始,我会知道?”如果答案是“不,“他们需要意识到什么独自生活的要求。人面对生活通常没有躲避它后来。
这是一篇高材生的论文。请不要抄哦。是上了美国名校还得了奖学金的人写的。这是分掉解释过的 求采纳
关于人工智能方面的英文论文及其翻译
Artificial Intelligence (AI) is the intelligence of machines and the branch of computer science which aims to create it. Textbooks define the field as "the study and design of intelligent agents,"[1] where an intelligent agent is a system that perceives its environment and takes actions which maximize its chances of success.[2] John McCarthy, who coined the term in 1956,[3] defines it as "the science and engineering of making intelligent machines."[4]
The field was founded on the claim that a central property of human beings, intelligence—the sapience of Homo sapiens—can be so precisely described that it can be simulated by a machine.[5] This raises philosophical issues about the nature of the mind and limits of scientific hubris, issues which have been addressed by myth, fiction and philosophy since antiquity.[6] Artificial intelligence has been the subject of breathtaking optimism,[7] has suffered stunning setbacks[8] and, today, has become an essential part of the technology industry, providing the heavy lifting for many of the most difficult problems in computer science.[9]
AI research is highly technical and specialized, deeply divided into subfields that often fail to communicate with each other.[10] Subfields have grown up around particular institutions, the work of individual researchers, the solution of specific problems, longstanding differences of opinion about how AI should be done and the application of widely differing tools. The central problems of AI include such traits as reasoning, knowledge, planning, learning, communication, perception and the ability to move and manipulate objects.[11] General intelligence (or "strong AI") is still a long-term goal of (some) research.[12]
Thinking machines and artificial beings appear in Greek myths, such as Talos of Crete, the golden robots of Hephaestus and Pygmalion's Galatea.[13] Human likenesses believed to have intelligence were built in every major civilization: animated statues were worshipped in Egypt and Greece[14] and humanoid automatons were built by Yan Shi,[15] Hero of Alexandria,[16] Al-Jazari[17] and Wolfgang von Kempelen.[18] It was also widely believed that artificial beings had been created by Jābir ibn Hayyān,[19] Judah Loew[20] and Paracelsus.[21] By the 19th and 20th centuries, artificial beings had become a common feature in fiction, as in Mary Shelley's Frankenstein or Karel Čapek's R.U.R. (Rossum's Universal Robots).[22] Pamela McCorduck argues that all of these are examples of an ancient urge, as she describes it, "to forge the gods".[6] Stories of these creatures and their fates discuss many of the same hopes, fears and ethical concerns that are presented by artificial intelligence.
The problem of simulating (or creating) intelligence has been broken down into a number of specific sub-problems. These consist of particular traits or capabilities that researchers would like an intelligent system to display. The traits described below have received the most attention.[11]
[edit] Deduction, reasoning, problem solving
Early AI researchers developed algorithms that imitated the step-by-step reasoning that human beings use when they solve puzzles, play board games or make logical deductions.[39] By the late 80s and 90s, AI research had also developed highly successful methods for dealing with uncertain or incomplete information, employing concepts from probability and economics.[40]
For difficult problems, most of these algorithms can require enormous computational resources — most experience a "combinatorial explosion": the amount of memory or computer time required becomes astronomical when the problem goes beyond a certain size. The search for more efficient problem solving algorithms is a high priority for AI research.[41]
Human beings solve most of their problems using fast, intuitive judgments rather than the conscious, step-by-step deduction that early AI research was able to model.[42] AI has made some progress at imitating this kind of "sub-symbolic" problem solving: embodied approaches emphasize the importance of sensorimotor skills to higher reasoning; neural net research attempts to simulate the structures inside human and animal brains that gives rise to this skill.
General intelligence
Main articles: Strong AI and AI-complete
Most researchers hope that their work will eventually be incorporated into a machine with general intelligence (known as strong AI), combining all the skills above and exceeding human abilities at most or all of them.[12] A few believe that anthropomorphic features like artificial consciousness or an artificial brain may be required for such a project.[74]
Many of the problems above are considered AI-complete: to solve one problem, you must solve them all. For example, even a straightforward, specific task like machine translation requires that the machine follow the author's argument (reason), know what is being talked about (knowledge), and faithfully reproduce the author's intention (social intelligence). Machine translation, therefore, is believed to be AI-complete: it may require strong AI to be done as well as humans can do it.[75]
[edit] Approaches
There is no established unifying theory or paradigm that guides AI research. Researchers disagree about many issues.[76] A few of the most long standing questions that have remained unanswered are these: should artificial intelligence simulate natural intelligence, by studying psychology or neurology? Or is human biology as irrelevant to AI research as bird biology is to aeronautical engineering?[77] Can intelligent behavior be described using simple, elegant principles (such as logic or optimization)? Or does it necessarily require solving a large number of completely unrelated problems?[78] Can intelligence be reproduced using high-level symbols, similar to words and ideas? Or does it require "sub-symbolic" processing?[79]
[edit] Cybernetics and brain simulation
Main articles: Cybernetics and Computational neuroscience
There is no consensus on how closely the brain should be the 1940s and 1950s, a number of researchers explored the connection between neurology, information theory, and cybernetics. Some of them built machines that used electronic networks to exhibit rudimentary intelligence, such as W. Grey Walter's turtles and the Johns Hopkins Beast. Many of these researchers gathered for meetings of the Teleological Society at Princeton University and the Ratio Club in England.[24] By 1960, this approach was largely abandoned, although elements of it would be revived in the 1980s.
How can one determine if an agent is intelligent? In 1950, Alan Turing proposed a general procedure to test the intelligence of an agent now known as the Turing test. This procedure allows almost all the major problems of artificial intelligence to be tested. However, it is a very difficult challenge and at present all agents fail.
Artificial intelligence can also be evaluated on specific problems such as small problems in chemistry, hand-writing recognition and game-playing. Such tests have been termed subject matter expert Turing tests. Smaller problems provide more achievable goals and there are an ever-increasing number of positive results.
The broad classes of outcome for an AI test are:
Optimal: it is not possible to perform better
Strong super-human: performs better than all humans
Super-human: performs better than most humans
Sub-human: performs worse than most humans
For example, performance at draughts is optimal,[143] performance at chess is super-human and nearing strong super-human,[144] and performance at many everyday tasks performed by humans is sub-human.
A quite different approach is based on measuring machine intelligence through tests which are developed from mathematical definitions of intelligence. Examples of this kind of tests start in the late nineties devising intelligence tests using notions from Kolmogorov Complexity and compression [145] [146]. Similar definitions of machine intelligence have been put forward by Marcus Hutter in his book Universal Artificial Intelligence (Springer 2005), which was further developed by Legg and Hutter [147]. Mathematical definitions have, as one advantage, that they could be applied to nonhuman intelligences and in the absence of human testers.
AI is a common topic in both science fiction and in projections about the future of technology and society. The existence of an artificial intelligence that rivals human intelligence raises difficult ethical issues and the potential power of the technology inspires both hopes and fears.
Mary Shelley's Frankenstein,[160] considers a key issue in the ethics of artificial intelligence: if a machine can be created that has intelligence, could it also feel? If it can feel, does it have the same rights as a human being? The idea also appears in modern science fiction: the film Artificial Intelligence: A.I. considers a machine in the form of a small boy which has been given the ability to feel human emotions, including, tragically, the capacity to suffer. This issue, now known as "robot rights", is currently being considered by, for example, California's Institute for the Future,[161] although many critics believe that the discussion is premature.[162]
Another issue explored by both science fiction writers and futurists is the impact of artificial intelligence on society. In fiction, AI has appeared as a servant (R2D2 in Star Wars), a law enforcer (K.I.T.T. "Knight Rider"), a comrade (Lt. Commander Data in Star Trek), a conqueror (The Matrix), a dictator (With Folded Hands), an exterminator (Terminator, Battlestar Galactica), an extension to human abilities (Ghost in the Shell) and the saviour of the human race (R. Daneel Olivaw in the Foundation Series). Academic sources have considered such consequences as: a decreased demand for human labor,[163] the enhancement of human ability or experience,[164] and a need for redefinition of human identity and basic values.[165]
Several futurists argue that artificial intelligence will transcend the limits of progress and fundamentally transform humanity. Ray Kurzweil has used Moore's law (which describes the relentless exponential improvement in digital technology with uncanny accuracy) to calculate that desktop computers will have the same processing power as human brains by the year 2029, and that by 2045 artificial intelligence will reach a point where it is able to improve itself at a rate that far exceeds anything conceivable in the past, a scenario that science fiction writer Vernor Vinge named the "technological singularity".[164] Edward Fredkin argues that "artificial intelligence is the next stage in evolution,"[166] an idea first proposed by Samuel Butler's "Darwin among the Machines" (1863), and expanded upon by George Dyson in his book of the same name in 1998. Several futurists and science fiction writers have predicted that human beings and machines will merge in the future into cyborgs that are more capable and powerful than either. This idea, called transhumanism, which has roots in Aldous Huxley and Robert Ettinger, is now associated with robot designer Hans Moravec, cyberneticist Kevin Warwick and inventor Ray Kurzweil.[164] Transhumanism has been illustrated in fiction as well, for example in the manga Ghost in the Shell and the science fiction series Dune. Pamela McCorduck writes that these scenarios are expressions of the ancient human desire to, as she calls it, "forge the gods."[6]
人工智能的毕业论文范文
人工智能是20世纪计算机科学发展的重大成就,在许多领域有着广泛的应用。以下是我整理的人工智能的毕业论文范文的相关资料,欢迎阅读!
摘要:人工智能是20世纪计算机科学发展的重大成就,在许多领域有着广泛的应用。论述了人工智能的定义,分析了目前在管理、教育、工程、技术、等领域的应用,总结了人工智能研究现状,分析了其发展方向。
关键词:人工智能;计算机科学;发展方向
中图分类号:TP18
文献标识码:A
文章编号:1672-8198(2009)13-0248-02
1 人工智能的定义
人工智能(Artificial Intelligence,AI),是一门综合了计算机科学、生理学、哲学的交叉学科。“人工智能”一词最初是在1956年美国计算机协会组织的达特莫斯(Dartmouth)学会上提出的。自那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。由于智能概念的不确定,人工智能的概念一直没有一个统一的标准。著名的美国斯坦福大学人工智能研究中心尼尔逊教授对人工智能下了这样一个定义“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学。”而美国麻省理工学院的温斯顿教授认为“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。”童天湘在《从“人机大战”到人机共生》中这样定义人工智能:“虽然现在的机器不能思维也没有“直觉的方程式”,但可以把人处理问题的方式编入智能程序,是不能思维的机器也有智能,使机器能做那些需要人的智能才能做的事,也就是人工智能。”诸如此类的定义基本都反映了人工智能学科的基本思想和基本内容。即人工智能是研究人类智能活动的规律,构造具有一定智能的人工系统,研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。
2 人工智能的应用领域
2.1 人工智能在管理及教学系统中的应用
人工智能在企业管理中的应用。刘玉然在《谈谈人工智能在企业管理中的应用》一文中提到把人工智能应用于企业管理中,认为要做的工作就是搞清楚人的智能和人工智能的关系,了解人工智能的外延和内涵,搭建人工智能的应用平台,搞好企业智能化软件的开发工作,这样,人工智能就能在企业决策中起到关键的作用。
人工智能在智能教学系统中的应用。焦加麟,徐良贤,戴克昌(2003)在总结国际上相关研究成果的基础上,结合其在开发智能多媒体汉德语言教学系统《二十一世纪汉语》的过程中累积的实践经验,介绍了智能教学系统的历史、结构和主要技术,着重讨论了人工智能技术与方法在其中的应用,并指出了当今这个领域上存在的一些问题。
2.2 人工智能专家系统在工程领域的应用
人工智能专家系统在医学中的应用。国外最早将人工智能应用于医疗诊断的是MYCIN专家系统。1982年,美国Pittsburgh大学Miller发表了著名的作为内科医生咨询的Internist 2I内科计算机辅助诊断系统的研究成果,1977年改进为Internist 2Ⅱ,经过改进后成为现在的CAU-CEUS,1991年美国哈佛医学院Barnett等开发的DEX-PLAIN,包含有2200种疾病和8000种症状。我国研制基于人工智能的专家系统始于上世纪70年代末,但是发展很快。早期的有北京中医学院研制成“关幼波肝炎医疗专家系统”,它是模拟著名老中医关幼波大夫对肝病诊治的程序。上世纪80年代初,福建中医学院与福建计算机中心研制的林如高骨伤计算机诊疗系统。其他如厦门大学、重庆大学、河南医科大学、长春大学等高等院校和其他研究机构开发了基于人工智能的医学计算机专家系统,并成功应用于临床。
人工智能在矿业中的应用。与矿业有关的第一个人工智能专家系统是1978年美国斯坦福国际研究所的矿藏勘探和评价专家系统PROSPECTOR,用于勘探评价、区域资源估值和钻井井位选择等。20世纪80年代以来,美国矿山局匹兹堡研究中心与其它单位合作开发了预防煤矿巷道底臌、瓦斯治理和煤尘控制的专家系统;弗尼吉亚理工学院及州立大学研制了模拟连续开采过程中开采、装载、运输、顶板锚固和设备检查专家系统Consim;阿拉斯加大学编写了地下煤矿采矿方法选择专家系统。
2.3 人工智能在技术研究中的应用
人工智能在超声无损检测中的应用。在超声无损检测(NDT)与无损评价(NDE)领域中,目前主要广泛采用专家系统方法对超声损伤(UT)中缺陷的性质,形状和大小进行判断和归类;专家在传统超声无损检测与智能超声无损检测之间架起了一座桥梁,它能把一般的探伤人员变成技术熟练。经验丰富的专家。所以在实际应用中这种智能超声无损检测有很大的价值。
人工智能在电子技术方面的应用。沈显庆认为可以把人工智能和仿真技术相结合,以单片机硬件电路为专家系统的知识来源,建立单片机硬件配置专家系统,进行故障诊断,以提高纠错能力。人工智能技术也被引入到了计算机网络领域,计算机网络安全管理的常用技术是防火墙技术,而防火墙的核心部分就是入侵检测技术。随着网络的迅速发展,各种入侵手段也在层出不穷,单凭传统的防范手段已远远不能满足现实的需要,把人工智能技术应用到网络安全管理领域,大大提高了它的安全性。马秀荣等在《简述人工智能技术在网络安全管理中的应用》一文中具体介绍了如何把人工智能技术应用于计算机网络安全管理中,起到了很好的安全防范作用。
3 人工智能的发展方向
3.1 人工智能的发展现状
国外发展现状。目前,AI技术在美国、欧洲和日本发展很快。在AI技术领域十分活跃的IBM公司。已经为加州劳伦斯・利佛摩尔国家实验室制造了号称具有人脑的千分之一的智力能力的“ASCII White”电脑,而且正在开发的更为强大的新超级电脑――“蓝色牛仔(blue jean)”,据其研究主任保罗・霍恩称,预计“蓝色牛仔”的智力水平将大致与人脑相当。麻省理工学院的AI实验室进行一个的代号为cog的项目。cog计划意图赋予机器人以人类的行为,该实验的一个项目是让机器人捕捉眼睛的移动和面部表情,另一个项目是让机器人抓住从它眼前经过的东西,还有一个项目则是让机器人学会聆听音乐的节奏并将其在鼓上演奏出来。由于人工智能有着广大的发展前景,巨大的发展市场被各国和各公司所看好。除了IBM等公司继续在AI技术上大量投入,以保证其领先地位外,其他公司在人工智能的分支研究方面,也保持着一定的投入比例。微软公司总裁比尔・盖茨在美国华盛顿召开的AI(人工智能)国际会议上进行了主题演讲,称微软研究院目前正致力于AI的基础技术与应用技术的研究,其对象包括自我决定、表达知识与信息、信息检索、机械学习、数据采集、自然语言、语音笔迹识别等。
我国人工智能的研究现状。很长一段时间以来,机械
和自动控制专家们都把研制具有人的行为特征的类人性机器人作为奋斗目标。中国国际科技大学在国家863计划和自然科学基金支持下,一直从事两足步行机器人、类人性机器人的研究开发,在1990年成功研制出我国第一台两足步行机器人的基础上,经过科研10年攻关,于2000年11月,又成功研制成我国第一台类人性机器人。它有人一样的身躯、四肢、头颈、眼睛,并具备了一定的语言功能。它的行走频率从过去的每六秒一步,加快到每秒两步;从只能平静地静态不行,到能快速自如的动态步行;从只能在已知的环境中步行,到可在小偏差、不确定环境中行走,取得了机器人神经网络系统、生理视觉系统、双手协调系统、手指控制系统等多项重大研究成果。
3.2 人工智能发展方向
在信息检索中的应用。人工智能在网络信息检索中的应用,主要表现在:①如何利用计算机软硬件系统模仿、延伸与扩展人类智能的理论、方法和技术,包括机器感知、机器思维、机器行为,即知识获取、知识处理、知识利用的过程。②由于网络知识信息既包括规律性的知识,如一般原理概念,也包括大量的经验知识,这些知识不可避免地带有模糊性、随机性、不可靠性等不确定性因素,对其进行推理,需要利用人工智能的研究成果。
基于专家系统的入侵检测方法。入侵检测中的专家系统是网络安全专家对可疑行为的分析后得到的一套推理规则。一个基于规则的专家系统能够在专家的指导下,随着经验的积累而利用自学习能力进行规则的扩充和修正,专家系统对历史记录的依赖性相对于统计方法较小,因此适应性较强,可以较灵活地适应广普的安全策略和检测要求。这是人工智能发展的一个主要方向。
人工智能在机器人中的应用。机器人足球系统是目前进行人工智能体系统研究的热点,其即高科技和娱乐性于一体的特点吸引了国内外大批学者的兴趣。决策系统主要解决机器人足球比赛过程中机器人之间的协作和机器人运动规划问题,在机器人足球系统设计中需要将人工智能中的决策树、神经网络、遗传学的等算法综合运用,随着人工智能理论的进一步发展,将使机器人足球有长足的发展。
4 结语
由上述的讨论我们可以看到,目前人工智能的应用领域相当广泛。无论是学术界还是应用领域对人工智能都高度重视。人工智能良好的发展和应用前景,要求我们必须加大研究和投入力度,以使人工智能的发展能为人类服务。
下一页分享更优秀的<<<人工智能的毕业论文范文
人工智能结课论文
“人工智能”是大学本科自动化专业所开设的一门专业选修课,为了能够调动自动化专业的学生对本课程学习的积极性,对《人工智能》这门专业选修课程的 教学 方法 进行了探索和 总结 。以下是我整理分享的关于人工智能结课论文的相关 文章 ,欢迎阅读!
对《人工智能》专业选修课教学的几点体会
摘要:“人工智能”是大学本科自动化专业所开设的一门专业选修课,为了能够调动自动化专业的学生对本课程学习的积极性,提高《人工智能》专业选修课的教学效果,我们结合近几年的实际教学 经验 ,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学等方面对《人工智能》这门专业选修课程的教学方法进行了探索和总结。
关键词:人工智能 优选教材 考核方式内容 手段 实践
人工智能(Aritificial Intelligence,英文缩写为AI)是一门综合了应用数学、自动控制、模式识别、系统工程、计算机科学和心理学等多种学科交叉融合而发展起来的的一门新型学科,是21世纪三大尖端技术(基因工程、纳米科学、人工智能)之一。它是研究智能机器所执行的通常与人类智能有关的职能行为,如推理、证明、感知、规划和问题求解等思维活动,来解决人类处理的复杂问题。人工智能紧跟世界社会进步和科技发展的步伐,与时俱进,有关人工智能的许多研究成果已经广泛应用到国防建设、工业生产、国民生活中的各个领域。在信息网络和知识经济时代,人工智能现已成为一个广受重视且有着广阔应用潜能的前沿学科,必将为推动科学技术的进步和产业的发展发挥更大的作用。因此在我国的大中专院校中开展人工智能这门课的教学与科研工作显得十分紧迫。迄今为止,全国绝大多数工科院校中的自动控制、计算机/软件工程、电气工程、机械工程、应用数学等相关专业都开设了人工智能这门课程。南京邮电大学自动化学院自2005年成立至今,一直将“人工智能”列为自动化专业本科生的选修课程,到目前为止已经有八年的历史了。由于南京邮电大学是一所以邮电、通信、电子、计算机、自动化为特色的工科院校,因此,学校所开设的许多专业都迫切需要用人工智能理论和方法解决科研中的实际问题。在问题需求的推动下,南邮人经过多年的努力工作,在人工智能科研方面取得了丰硕的成果,如物联网学院所开发的现代智能物流系统、自动化学院所开发的城市交通流量控制与决策系统,为本课程的开设提供了典型的教学案例。我们结合近几年的实际教学经验,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学等方面对人工智能课程教学方法进行了总结归纳。
一、优选教材
目前,国内有关人工智能课程的中英版教材种类非常多,遵循实用、简单、够用的原则,再经过授课老师和学生们的共同调研,我们选用由中南大学蔡自兴教授主编的《人工智能及其应用》第三版作为南邮本课程的授课教材。本书覆盖的人工智能知识体系比较全面,包含知识表示、搜索推理、模糊计算、专家系统等。本书主要针对计算机、自动化、电气工程等本科专业的学生所编写,内容基础,难度适中。蔡教授所编写的这本教材全面地介绍了人工智能的研究内容与应用领域,做到了内容新颖、简单易懂、兼顾基础和应用,受到了全国广大师生们的一致好评,多年的教学实践证明我们所选择的教材是恰当的、正确的。
二、考核方式
在全国大部分高等院校,“人工智能”这门课大都选择开卷考试的方式来进行考核。为了强化学生对人工智能这门课基础知识的掌握,南京邮电大学自动化学院选用闭卷考试的方式来进行考核。为了打消部分学生想在期末闭卷考试中通过作弊手段来完成人工智能这门课考核的侥幸心理,我们加强了对学生平时考勤成绩、课下作业成绩和实验成绩的考核,从而杜绝了“一纸定成绩”的现象。我们对人工智能这门课的最后期末成绩是按如下权重来划分的:平时考勤成绩占10%、课下作业成绩占10%、实验成绩占20%、最后的期末考试卷面成绩只占60%。为了克服国家现行 教育 体制的弊端,避免学生“机械式”地的应对教学和考试,我们对考试题型进行了调整,不再是以往的填空、选择、简答等题型,而是改为以解决实际问题为导向的应用题型为主,这样学生只需要在理解授课内容的基础上利用自己的思维来解题就可以了,这也体现了国家目前正在提倡的应用型教学导向。
三、教学内容调整
对于本科生而言,人工智能这门课程所需要讲授的内容实在太多,由于课时所限,我们必须精简教学内容,让学生在掌握基础知识的同时,也能够了解它的具体应用。因此,我们将人工智能这门课程的教学内容分为两个部分:第一部分是基本理论和方法,包括人工智能的概述、知识表示方法、确定性推理方法等;第二部分为人工智能研究成果的具体应用,包括神经元网络计算、模糊智能计算、专家知识库系统、机器语言学习等。通过对教材内容的合理调整和安排,使得授课计划能够比较全面地覆盖了人工智能这门课程的基本知识点,从而满足了学生们的求知需求。
四、教学手段的改进
(一) 激发学生的学习兴趣
经过长时间的教学我们发现,在选修“人工智能”这门课程时,每个学生的心中所想各有不同,这些学生在刚开始学习时兴趣还比较强烈,但随着教学内容变得越来越抽象,学生逐渐对这本课的学习失去了信心,甚至上课时间不去听课,使授课教师对教学也渐渐失去了信心,导致恶性循环,严重影响了教学质量。针对这种现象,我们认为,在开课前充分激发学生的学习兴趣是很有必要的。我们要结合学校的实验条件,开课前给学生演示“机器人医疗服务”实验,通过该实验的演示,让学生们看到机器人能够给病人提供多项人性化的服务,理解人工智能技术在开发医疗服务机器人多项关键技术中的应用,让学生在开课前能够对本课程的学习产生极大的兴趣,实践证明这种方法是有效的。
(二) 借助多媒体教学
多媒体教学是现代教学过程中一种非常重要的形式,它往往根据教学目的和学生们的特点,通过合理的设计、选择教材内容,应用公式、图形、文字、视频等多种媒体信息进行有机组合并通过电脑和投影机显示出来,与传统教学手段相结合,形成合理的教学过程结构,达到最优化的教学效果。人工智能这门课具有针对性强、内容抽象、公式繁琐等特点,学生学习起来比较困难,为了让学生生动、形象地学习该课程,我们在教学过程中充分利用了多媒体技术来组织教学。例如在课堂教学过程中播放南邮自动化学院梁志伟博士带领学生所开发的“智能 足球 机器人”比赛片段;让学生在线观看北京大学工学院谢广明博士带领学生所开发的“自主视觉机器鱼”录像片段等。在讲解某些重要的求解算法时,借助Matlab软件和投影机,直接展现该算法的求解过程,从而改善了课程教学的形式,提高了教学质量。 (三)提倡课堂 辩论
我们在教学过程中打破了传统的“老师讲课学生听课”的教学模式,多次组织课堂辩论,辩论的主题包括人工智能研究过程中出现的技术困惑、人工智能研究成果转化中的市场前景等。如组织了“电脑PK人脑”“电脑是否让电视消失”“电脑的未来发展方向在哪里”等一系列 辩论会 。经过激烈的辩论,无论正方还是反方都感觉自己收获很大,增长了知识,开阔了眼界。在教学过程中通过将学生由“被动听课”角色变换为“主动参与”角色,大大地调动了学生的学习积极性,从而提高了课堂教学质量。
五、实践教学
实践教学是课堂教学不可缺少的重要组成部分,通过让学生亲自动手实验来对理论知识进行检验和应用是目前国内外各个大学提高学生综合素质、增强学生市场竞争力的重要手段。人工智能实验教学的目的是让学生通过亲自动手体会授课中的各种智能控制算法,从而使学生能够更加形象地掌握课本知识。人工智能教学计划安排了4学时实验课,设置了“传教士和野人过河”“机器人路径规划”这两个人工智能问题,要求学生独立完成这2个实验题目的编程,并书写实验 报告 。通过实验,学生动手实践了课堂上所掌握的理论知识,加深了对智能算法的理解。
人工智能是一门实用性较强的课程,我们总结了近几年来的教学经验,从优选教材、考核方式、教学内容调整、教学手段的改进和实践教学五个方面对人工智能课程教学进行了总结。从学生的反馈来看,我们所总结的教学经验对于指导新教师讲授“人工智能”这门课程具有积极的作用,需要指出的是,我们仍有很多不足之处,需要在以后的教学过程中不断努力完善,提高自己的教学能力,争取更好的教学效果。
参考文献
[1]蔡自兴,徐光佑.人工智能及其应用[M].北京:清华大学出版社,2003.
[2]路小英,周桂红,赵艳等.高等农业院校《人工智能》课程的教学研究与实践[J].河北农业大学学报:农林教育版,2007,9(4):66-68.
[3]马建斌,李阅历,高媛. 人工智能课程教学的探索与实践[J].河北农业大学学报:农林教育版,2011,13(3):330-332.
[4]赵海波.人工智能课程教学方法的探讨[J].科技信息,2011,(7):541.
[5]张廷,杨国胜.“人工智能”课程教学的实践与探索[J].课程与教学,2009(11):133-134.
本研究得到了江苏省2011年度研究生双语授课教学试点项目—“模式识别与智能系统”项目经费的资助。
下一页分享更优秀的<<<人工智能结课论文
上一篇:怎么给中国摄影报投稿
下一篇:《中文科技期刊数据库》