生物分子论文1000字
生物分子论文1000字
微生物与环境
摘要:微生物在生物圈中无处不在,无时不在,微生物能够忍受的最极端的生活条件就是生命存在的极限。我们很容易地把高等植物、动物对我们人类生产生活的影响视为理所当然,然而,只有当某种微生物引起的灾害发生时(如瘟疫爆发、食物腐败或工农业产品受到侵蚀时)发生时,大多数人才想起微生物并把它们视为令人恐惧和怨恨的隐形敌人。事实上,我们这个有限的生物圈所进行的物质循环和能量流动、植物和动物所进行的各种有序高效的生命活动都离不开微生物,没有微生物,就没有我们这个生机盎然的生命乐园。
关键词:微生物 物质循环 环境治理
一、 微生物与物质循环
我们这个星球的大气、土壤和贆的组成经历了几千万年的逐渐变化才成为我们今天所知的这个生物圈。但就从今天看来,我们这个生物圈的组成在相当长的一段时期内已是恒定不变的了。生物圈中各种生命形式所需要的各种营养物质和元素的问题是有限的,而生物界的延续和发展是无限的,这一矛盾只有使地球上任何一种生命活动所引起的变化被其他的生命活动所逆转的情况下才能得到解决,换句话说,就是让各种营养元素循环往复地变化,由生物合成到非生物合成,然后再从非生物合成到生物合成。在这个过程中,动物植物无休止地向自然界索取营养元素并为己所用,然后它们又“大方”地向自然界排放废物垃圾(动物和植物的粪便、遗骸和残枝败叶),微生物却从事着最脏最累最为人不齿的垃圾处理工作,如果没有微生物,我们将会生活在一个到处充斥着有害气体的恶臭难耐的垃圾堆中。
氮素的生物循环离不开微生物的生命活动。排除非生物因素在外,将空气中游离的氮气变成化合态氮并随之进入生物合成的只有微生物,将氮素以氮气的形式还给大气的也只有微生物。在游离的不能被动植物直接利用的氮气和化合的可被植物吸收的氮素的相互转化过程中,微生物起到了纽带的作用。将氮气引入氮素循环的是是固氮微生物,固氮微生物将氮气将化为氨并在亚硝化细菌和硝化细菌的共同作用下转化为硝酸根离子,铵盐和硝酸盐均能被 植物和微生物吸收,并同化为有机氮。动植物死亡后的含氮有机残余物可在微生物的氨化作用下生成氨气,氨继续通过硝化作用和反硝化作用可转化成氮气回归大气。由此可见微生物在氮素循环中的重要作用。
另一个对生物圈至关重要的生物循环是碳循环。在碳循环中,微生物好像不像在氮循环中的作用那样的举足轻重。因为我们都知道,植物的逃命作用是二氧化碳生物合成的最主要途径,有机碳通过食物链在动植物间传递,动植物通过自己的呼吸作用将大败毒还原给生物圈。这似乎已经构成了一个完整的碳素循环从而将微生物排除在了这个循环之外。这样想的话,我们就忽略了两个基本的常识。第一,有哪种动物或者植物傻呼呼地把自己辛辛苦苦同化来的成果一点不剩地给呼吸掉,随着它们的衰亡,它们的枝体不断地凋零,它们体内的废物不断向处排泄,就算走到生命的尽头,还要把自己的一副残骸留给生物圈。这些无用的有机废物的分解转化还是要靠微生物来完成的,在这个过程中碳素以二氧化碳的形式回归大气。第二,我们的星球70%的面积是蔚蓝的海洋,海洋中有着极其丰富多彩的生命形式,它们所需的营养归根结底都来源于海洋中的生产者,而海洋中能够进行光合作用的微生物(藻类、蓝细菌等)充当了这一角色,海洋中二氧化碳的固定基本上都是有微生物来完成的。
硫作为生物体内某些氨基酸、维生素和辅酶的成分,也是生物的重要元素,而硫循环则完全领带于微生物的活动。在硫循环中,动植物蛋白质的硫是从植物而来的,而植物则是从土壤中获得硫酸根,且只能利用硫酸根。在死去的物质的腐烂分解过程中,细菌将硫以硫化氢形式释放,硫化氢可以在硫化细菌的作用下氧化成硫单质或硫酸根,硫酸根除了被植物利用外,还能被反硫化细菌还原成硫化氢。这些将硫元素不断还原和氧化的细菌几乎毫无生物学关系,它们的共同点只是代谢都离不开硫罢了。
其它元素如氢、铁、镁、硅和磷也是生物大分子结构的组成部分,它们有着类似的循环过程。在磷的循环中,并不存在磷的氧化还原过程,主要是磷酸根的有效化和无效化过程,微生物在磷酸根的有效化过程中发挥着关键的作用。微生物在这些营养元素的循环中的作用就不再赘述。
二、 微生物与环境治理
科学技术的应用促进了人类文明的发展,使人们得到了前所未有的物质享受。人类把从自然界拿各种物质加工、合成、转化成我们生活中的各种工艺品和奢侈品,当这些由橡胶、塑料、玻璃等制造的物品破旧不堪,难以再用的时候,我们又把它们重新堆集到自然界。与些同时,我们还在向这个行星的生物圈中抛弃衣服、食物残渣、残枝败叶、同伴遗体、宠物和家畜的粪便、生活污水等等。是什么东西才得以使我们避免生活在没过膝盖的垃圾臭粪中去的呢?是微生物。微生物代谢方式的多样性和易变异性使之具有多种多样的物质转化能力,它的这咱能力对污染环境的废物和有毒物质降解和清除有很好的效果,从自然界存在的天然化合物到人工合成的有机物都能找到能降解它们的微生物。
工农业生产向水体和土壤中排放了大量的包括化学农药在内的一大批人工合成物质,这些物质称为异生物质,它们是自然界本来没有的,一般不容易自行降解或降解过程异常缓慢。微生物一般都含有降解某种大分子有机物的降解性酶,编码这种酶的遗传因子一般位于质粒上,质料比较容易在不同的菌种之间转移,经过突变和适应后一些微生物往往可以获得其本身所不具备的降解能力,微生物的这种特性使得它在污染物处理中具有巨大的应用价值。
随着分子生物学的发展,基因工程、遗传工程、DNA重组技术已经用于构建有特殊降解代谢能力的工程菌,它们具有潜在的参与生物治理的能力。目前面临的问题是,这种转基因的工程菌会不会对原有的生态系统造成一些不可预知的影响。而且,经过定向操作培养来消耗像杀虫剂这类污染物的细菌,常优先摄取它们在土壤或水中发现的那些普通的营养成分,而随后出现的变种更是不把分解污染物当回事。如果这些定向培养的细菌能够在环境中旺盛生长并繁殖开来,而且土壤或水中的原生动物和掠食者会很快发现这一丰富的食物来源,并开始以这类细菌为食,导致生物修复过程的停滞。
因此,在微生物的环境治理中,还有很多问题亟待解决,我们对微生物的降解活动了解得还很模糊,对这些过程中的生物化学知识的掌握也实在有限。有很多研究成果目前还只停留在实验室里,要大规模应用,还有许多技术的瓶颈和经济因素的限制。
三、 综述
微生物在地球上的各种生命元素的循环变化中扮演着重要的角色,它还是我们人类活动所造成的污染的清洁者,它总是在最不起眼的角落默默地净化着我们的环境,维持着生物圈中各种生命活动有序高效地运转。可以用一句话来说,微生物完全不需要动物和植物,而动物和植物却时时刻刻离不开微生物。
分子生物学论文
字数可能有点超,你自己截取吧~~
分子生物学(molecular biology)
在分子水平上研究生命现象的科学。研究生物大分子(核酸、蛋白质)的结 构、功能和生物合成等方面来阐明各种生命现象的本质。研究内容包括各种生命过程如光合作用、发育的分子机制、神经活动的机理、癌的发生等。
从分子水平研究生物大分子的结构与功能从而阐明生命现象本质的科学。自20世纪50年代以来,分子生物学是生物学的前沿与生长点,其主要研究领域包括蛋白质体系、蛋白质-核酸体系 (中心是分子遗传学)和蛋白质-脂质体系(即生物膜)。
生物大分子,特别是蛋白质和核酸结构功能的研究,是分子生物学的基础。现代化学和物理学理论、技术和方法的应用推动了生物大分子结构功能的研究,从而出现了近30年来分子生物学的蓬勃发展。分子生物学和生物化学及生物物理学关系十分密切,它们之间的主要区别在于:①生物化学和生物物理学是用化学的和物理学的方法研究在分子水平,细胞水平,整体水平乃至群体水平等不同层次上的生物学问题。而分子生物学则着重在分子(包括多分子体系)水平上研究生命活动的普遍规律;②在分子水平上,分子生物学着重研究的是大分子,主要是蛋白质,核酸,脂质体系以及部分多糖及其复合体系。而一些小分子物质在生物体内的转化则属生物化学的范围;③分子生物学研究的主要目的是在分子水平上阐明整个生物界所共同具有的基本特征,即生命现象的本质;而研究某一特定生物体或某一种生物体内的某一特定器官的物理、化学现象或变化,则属于生物物理学或生物化学的范畴。
发展简史 结构分析和遗传物质的研究在分子生物学的发展中作出了重要的贡献。结构分析的中心内容是通过阐明生物分子的三维结构来解释细胞的生理功能。1912年英国 W.H.布喇格和W.L.布喇格建立了X射线晶体学,成功地测定了一些相当复杂的分子以及蛋白质的结构。以后布喇格的学生W.T.阿斯特伯里和J.D.贝尔纳又分别对毛发、肌肉等纤维蛋白以及胃蛋白酶、烟草花叶病毒等进行了初步的结构分析。他们的工作为后来生物大分子结晶学的形成和发展奠定了基础。50年代是分子生物学作为一门独立的分支学科脱颖而出并迅速发展的年代。首先是在蛋白质结构分析方面,1951年L.C.波林等提出了 α-螺旋结构,描述了蛋白质分子中肽链的一种构象。1955年F.桑格完成了胰岛素的氨基酸序列的测定。接着 J.C.肯德鲁和M.F.佩鲁茨在X射线分析中应用重原子同晶置换技术和计算机技术分别于1957和1959年阐明了鲸肌红蛋白和马血红蛋白的立体结构。1965年中国科学家合成了有生物活性的胰岛素,首先实现了蛋白质的人工合成。
另一方面,M.德尔布吕克小组从1938年起选择噬菌体为对象开始探索基因之谜。噬菌体感染寄主后半小时内就复制出几百个同样的子代噬菌体颗粒,因此是研究生物体自我复制的理想材料。1940年G.W.比德尔和E.L.塔特姆提出了“一个基因,一个酶”的假设,即基因的功能在于决定酶的结构,且一个基因仅决定一个酶的结构。但在当时基因的本质并不清楚。1944年O.T.埃弗里等研究细菌中的转化现象,证明了DNA是遗传物质。1953年J.D.沃森和F.H.C.克里克提出了DNA的双螺旋结构,开创了分子生物学的新纪元。在此基础上提出的中心法则,描述了遗传信息从基因到蛋白质结构的流动。遗传密码的阐明则揭示了生物体内遗传信息的贮存方式。1961年F.雅各布和J.莫诺提出了操纵子的概念,解释了原核基因表达的调控。到20世纪60年代中期,关于DNA自我复制和转录生成RNA的一般性质已基本清楚,基因的奥秘也随之而开始解开了。
仅仅30年左右的时间,分子生物学经历了从大胆的科学假说,到经过大量的实验研究,从而建立了本学科的理论基础。进入70年代,由于重组DNA研究的突破,基因工程已经在实际应用中开花结果,根据人的意愿改造蛋白质结构的蛋白质工程也已经成为现实。
基本内容 蛋白质体系 蛋白质的结构单位是α-氨基酸。常见的氨基酸共20种。它们以不同的顺序排列可以为生命世界提供天文数字的各种各样的蛋白质。
蛋白质分子结构的组织形式可分为 4个主要的层次。一级结构,也叫化学结构,是分子中氨基酸的排列顺序。首尾相连的氨基酸通过氨基与羧基的缩合形成链状结构,称为肽链。肽链主链原子的局部空间排列为二级结构。二级结构在空间的各种盘绕和卷曲为三级结构。有些蛋白质分子是由相同的或不同的亚单位组装成的,亚单位间的相互关系叫四级结构。
蛋白质的特殊性质和生理功能与其分子的特定结构有着密切的关系,这是形形色色的蛋白质所以能表现出丰富多彩的生命活动的分子基础。研究蛋白质的结构与功能的关系是分子生物学研究的一个重要内容。
随着结构分析技术的发展,现在已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。
发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究现在很受重视。
蛋白质-核酸体系 生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×106碱基对。人体细胞染色体上所含DNA为3×109碱基对。
遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代 DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。
基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出子代 DNA链。转录是在 RNA聚合酶的催化下完成的。转译的场所核糖核蛋白体是核酸和蛋白质的复合体,根据mRNA的编码,在酶的催化下,把氨基酸连接成完整的肽链。基因表达的调节控制也是通过生物大分子的相互作用而实现的。如大肠杆菌乳糖操纵子上的操纵基因通过与阻遏蛋白的相互作用控制基因的开关。真核细胞染色质所含的非组蛋白在转录的调控中具有特殊作用。正常情况下,真核细胞中仅2~15%基因被表达。这种选择性的转录与转译是细胞分化的基础。
蛋白质-脂质体系 生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。
1972年提出的流动镶嵌模型概括了生物膜的基本特征:其基本骨架是脂双层结构。膜蛋白分为表在蛋白质和嵌入蛋白质。膜脂和膜蛋白均处于不停的运动状态。
生物膜在结构与功能上都具有两侧不对称性。以物质传送为例,某些物质能以很高速度通过膜,另一些则不能。象海带能从海水中把碘浓缩 3万倍。生物膜的选择性通透使细胞内pH和离子组成相对稳定,保持了产生神经、肌肉兴奋所必需的离子梯度,保证了细胞浓缩营养物和排除废物的功能。
生物体的能量转换主要在膜上进行。生物体取得能量的方式,或是像植物那样利用太阳能在叶绿体膜上进行光合磷酸化反应;或是像动物那样利用食物在线粒体膜上进行氧化磷酸化反应。这二者能量来源虽不同,但基本过程非常相似,最后都合成腺苷三磷酸。对于这两种能量转换的机制,P.米切尔提出的化学渗透学说得到了越来越多的证据。生物体利用食物氧化所释放能量的效率可达70%左右,而从煤或石油的燃烧获取能量的效率通常为20~40%,所以生物力能学的研究很受重视。对生物膜能量转换的深入了解和模拟将会对人类更有效地利用能量作出贡献。
生物膜的另一重要功能是细胞间或细胞膜内外的信息传递。在细胞表面,广泛地存在着一类称为受体的蛋白质。激素和药物的作用都需通过与受体分子的特异性结合而实现。癌变细胞表面受体物质的分布有明显变化。细胞膜的表面性质还对细胞分裂繁殖有重要的调节作用。
对细胞表面性质的研究带动了糖类的研究。糖蛋白、蛋白聚糖和糖脂等生物大分子结构与功能的研究越来越受到重视。从发展趋势看,寡糖与蛋白质或脂质形成的体系将成为分子生物学研究的一个新的重要的领域。
理论意义和应用 分子生物学的成就说明:生命活动的根本规律在形形色色的生物体中都是统一的。例如,不论在何种生物体中,都由同样的氨基酸和核苷酸分别组成其蛋白质和核酸。遗传物质,除某些病毒外,都是DNA,并且在所有的细胞中都以同样的生化机制进行复制。分子遗传学的中心法则和遗传密码,除个别例外,在绝大多数情况下也都是通用的。
物理学的成就证明,一切物质的原子都由为数不多的基本粒子根据相同的规律所组成,说明了物质世界结构上的高度一致,揭示了物质世界的本质,从而带动了整个物理学科的发展。分子生物学则在分子水平上揭示了生命世界的基本结构和生命活动的根本规律的高度一致,揭示了生命现象的本质。和过去基本粒子的研究带动物理学的发展一样,分子生物学的概念和观点也已经渗入到基础和应用生物学的每一个分支领域,带动了整个生物学的发展,使之提高到一个崭新的水平。
过去生物进化的研究,主要依靠对不同种属间形态和解剖方面的比较来决定亲缘关系。随着蛋白质和核酸结构测定方法的进展,比较不同种属的蛋白质或核酸的化学结构,即可根据差异的程度,来断定它们的亲缘关系。由此得出的系统进化树,与用经典方法得到的是基本符合的。采用分子生物学的方法研究分类与进化有特别的优越性。首先,构成生物体的基本生物大分子的结构反映了生命活动中更为本质的方面。其次,根据结构上的差异程度可以对亲缘关系给出一个定量的,因而也是更准确的概念。第三,对于形态结构非常简单的微生物的进化,则只有用这种方法才能得到可靠结果。
高等动物的高级神经活动是极其复杂的生命现象,过去多是在细胞乃至整体水平上研究,近年来深入到分子水平研究的结果充分说明高级神经活动也同样是以生物大分子的活动为基础的。例如,在高等动物学习与记忆的过程中,大脑中RNA和蛋白质的组成发生明显的变化,并且一些影响生物体合成蛋白质的药物也显著地影响学习与记忆的能力。又如,“生物钟”是一种熟知的生物现象。用鸡进行的实验发现,有一种重要的神经传递介质(5-羟色胺)和一种激素(褪黑激素)以及控制它们变化的一种酶,在鸡脑中的含量呈24小时的周期性变化。正是这种变化构成了鸡的“生物钟”的物质基础。
在应用方面,生物膜能量转换原理的阐明,将有助于解决全球性的能源问题。了解酶的催化原理就能更有针对性地进行酶的人工模拟,设计出化学工业上广泛使用的新催化剂,从而给化学工业带来一场革命。
分子生物学在生物工程技术中也起了巨大的作用,1973年重组DNA技术的成功,为基因工程的发展铺平了道路。80年代以来,已经采用基因工程技术,把高等动物的一些基因引入单细胞生物,用发酵方法生产干扰素、多种多肽激素和疫苗等。基因工程的进一步发展将为定向培育动、植物和微生物良种以及有效地控制和治疗一些人类遗传性疾病提供根本性的解决途径。
从基因调控的角度研究细胞癌变也已经取得不少进展。分子生物学将为人类最终征服癌症做出重要的贡献。
[编辑本段]分子生物学的应用
1,亲子鉴定
近几年来,人类基因组研究的进展日新月异,而分子生物学技术也不断完善,随着基因组研究向各学科的不断渗透,这些学科的进展达到了前所未有的高度。在法医学上,STR位点和单核苷酸(SNP)位点检测分别是第二代、第三代DNA分析技术的核心,是继RFLPs(限制性片段长度多态性)VNTRs(可变数量串联重复序列多态性)研究而发展起来的检测技术。作为最前沿的刑事生物技术,DNA分析为法医物证检验提供了科学、可靠和快捷的手段,使物证鉴定从个体排除过渡到了可以作同一认定的水平,DNA检验能直接认定犯罪、为凶杀案、强奸杀人案、碎尸案、强奸致孕案等重大疑难案件的侦破提供准确可靠的依据。随着DNA技术的发展和应用,DNA标志系统的检测将成为破案的重要手段和途径。此方法作为亲子鉴定已经是非常成熟的,也是国际上公认的最好的一种方法。
急需一篇关于分子生物学的论文,不要所有百度,新浪 ,soso问上的现成的论文,悬赏 100分!!!
给楼主论文:
分子细胞基因组的研究
随着结构分析技术的发展,现在已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。
发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究现在很受重视。
蛋白质-核酸体系 生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×106碱基对。人体细胞染色体上所含DNA为3×109碱基对。
遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代 DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。
基因在表达其性状的过程中贯串着核酸与核酸、核酸与蛋白质的相互作用。DNA复制时,双股螺旋在解旋酶的作用下被拆开,然后DNA聚合酶以亲代DNA链为模板,复制出子代 DNA链。转录是在 RNA聚合酶的催化下完成的。转译的场所核糖核蛋白体是核酸和蛋白质的复合体,根据mRNA的编码,在酶的催化下,把氨基酸连接成完整的肽链。基因表达的调节控制也是通过生物大分子的相互作用而实现的。如大肠杆菌乳糖操纵子上的操纵基因通过与阻遏蛋白的相互作用控制基因的开关。真核细胞染色质所含的非组蛋白在转录的调控中具有特殊作用。正常情况下,真核细胞中仅2~15%基因被表达。这种选择性的转录与转译是细胞分化的基础。
蛋白质-脂质体系 生物体内普遍存在的膜结构,统称为生物膜。它包括细胞外周膜和细胞内具有各种特定功能的细胞器膜。从化学组成看,生物膜是由脂质和蛋白质通过非共价键构成的体系。很多膜还含少量糖类,以糖蛋白或糖脂形式存在。
高等植物的性状主要由核基因控制,其遗传遵循孟德尔规律。1900年Coorence和Baut等人就已发现影响质体表型的一些突变不符合孟德尔遗传规律;1962年里斯(Ris)和Plont证明植物叶绿体中存在遗传物质DNA。现已证明,植物细胞质中的叶绿体和线粒体都含有自己的DNA及整套的转录和翻译系统,能够合成蛋白质。高等植物的叶绿体和线粒体基因组,多数在有性杂交过程中表现为母性遗传。其机制有两种解释:一是认为雄配子不含有细胞质,因而没有胞质基因;另一种观点是雄配子含有少量的细胞质,其细胞器在受精前即已解体,失去功能。胞质基因组的母性遗传,大大限制了胞质基因的遗传研究,利用有性杂交方法难以知晓当胞质基因处于杂合状态时的遗传和生理效应及其对表型的影响。近年来发展起来的体细胞杂交技术为胞质基因的研究开辟了一条新途径。本文拟对植物体细胞杂交后代胞质基因重组的多样性,创制胞质杂种的可能途径及胞质基因组的传递等问题加以说明。
1 植物体细胞杂交后代胞质基因组重组的多样性
体细胞杂交时,核基因组、线粒体基因组和叶绿体基因组三者均既可以单亲传递又可以双亲传递,因而可以产生许多有性杂交难以产生的核-质基因组的新组合类型。Kumar等人根据已有的实验结果结合理论推导提出,植物体细胞杂交一代理论上可以产生48种类型,而相应的有性杂交一代只能产生两种类型。48种类型可分为亲型、核杂种和胞质杂种3类。胞质杂种即是具有一个亲本的细胞核和双亲细胞质的植株或愈伤组织,它是研究胞质基因组的好材料。
2 创制胞质杂种的方法
2.1 “供体-受体”原生质体融合技术 这是目前最为可行的方法,由Zelcer等(1987)提出。其原理基于生理代谢互补,利用高于致死剂量的电离辐射处理供体原生质体使其核解或完全失活,细胞质完整无损;再用碘乙酸或碘乙酚胺处理受体原生质体以使其受到暂时抑制而不分裂,这样双亲原生质体融合后,只有融合体能够实现代谢上的补偿,进行持续分裂,形成愈伤组织或再生植株,这些融合体就是各种各样的胞质杂种。此技术的优点是双亲不需任何选择标记,适用范围广,可行性强,缺点是适宜的辐射剂量难以掌握。
2.2 “胞质体-原生质体”融合法 所谓胞质体是指去核后的原生质体。该法由Maliga提出。优点是避免了电离辐射可能产生的不利影响,缺点是制备胞质体尚存在一些技术性的困难。最近Lesney等人提出了一种能够从悬浮系原生质体制备大量胞质体的方法。
2.3 其它的可能途径
(1)根据双亲原生质体形态上的差异或通过荧光染料标记来机械分离融合体,然后进行微培养。(2)利用分别由核基因组和质基因组编码的抗药性状,通过双重抗性选择获得胞质杂种。(3)原生质体直接摄取外缘细胞器。(4)通过显微注射或电激法实现细胞器转移。
3 胞质杂种中双亲胞质基因的传递遗传学
3.1 叶绿体基因组 胞质杂种中,叶绿体基因组的传递分为单亲传递和双亲传递两种。单亲传递是指胞质杂种愈伤组织及由之再生的植株只含有亲本之一的叶绿体基因组。这种分离机制目前尚不清楚。关于叶绿体基因组的分离是否随机的问题,由于研究者们采用的试验材料不同得出两种结论:一种是叶绿体基因组的随机分离,这在品种间、种间及属间原生质体融合中都被观察到;另一种是叶绿体基因组的非随机分离(即亲本之一的叶绿体基因组优先保留),如弗利克(Flick)和埃文(Evens,1982)在烟草的研究中表明,所有的N.nesophila和N.tabacum体细胞杂种都只具有N.nesophila叶绿体基因组,类似的例子很多。双亲传递是指胞质杂种中,同时含有双亲的叶绿体基因组,其在体细胞杂种以后的有性繁殖过程中能够保持稳定,既然双亲叶绿体能够共存,理论上二者就有可能发生重组。事实上,叶绿体基因组重组现象已被观察到,但频率很低。
3.2 线粒体基因组 胞质杂种中,线粒体基因组的传递方式是双亲传递,且发生活跃的重组,产生丰富的新类型。然而在分析线粒体基因组重组类型时不可忽视由于离体培养而诱发的线粒体基因组分子内重组(突变)的可能性,因为离体培养过程中不仅使核基因组产生大量变异,而且对于某些植物,也可诱发线粒体基因组发生变异。
4 植物胞质基因组控制的重要性状
目前已基本阐明的由叶绿体基因组编码的性状主要是一些抗药性状。如:链霉素抗性、林肯霉素抗性等。在与线粒体基因组有关的性状中,研究最多的是胞质型雄性不育性状。许多学者在不同植物上研究发现,雄性不育系与其同型保持系之间在线粒体DNA内切图谱或其编码的蛋白上存在明显差异。如在玉米上已发现T型雄性不育植株的线粒体基因组发生了多至7次重组,且主要发生于26s rRAN基因附近,产生一个嵌合基因,因此导致转录时阅读框架发生了改变,如果这个嵌合基因发生了缺失或小段插入,则阅读框架恢复正常,育性也随之恢复。
总之,植物体细胞杂交是胞质基因组及其所控制性状研究的有效途径,关于胞质性状的研究对于某些植物已从分子水平上深入到了与雄性不育相关的特异线粒体DNA片段及相应的特殊蛋白,但仍有许多问题有待深入研究。这些问题的阐明将会使得从分子水平上改良雄性不育性状成为可能。
1000字生物科学研究文章
本人学的是生物科学专业,写的综述可以吗?
植物细胞骨架的动态研究
摘要:植物细胞骨架由微管与植物的微丝和中间纤维共同组成,并参与众多的生命活动,如细胞形态建成、细胞器和囊泡运输、染色体迁移、细胞壁构建、细胞分裂与分化、信号转导等;并与其马达蛋白构成细胞内重要的动力系统,参与细胞内各种活动。本文主要从植物的微管骨架和微丝骨架两个方面,综述了植物细胞骨架的动态变化及功能特性。
关键词:植物细胞骨架 动态变化
1植物细胞骨架
细胞骨架(cytoskeleton,CSK)是位于细胞膜内侧面的蛋白质丝纤维网架系统。胞骨架由微管(microtubule)、微丝(mirofilament)和中间纤维(intermediate filament共同构成。微管是长而不分枝、直径在25nm左右的管状纤维。主要由a、p一微管蛋白(tubulin)和少量的微管结合蛋白(microtubule associated protein,MAP)构成。微管蛋白通过非共价结合形成异二聚体,异二聚体螺旋盘绕形成微管壁。微管结合蛋白是与微管特异结合并影响其结构与功能的一类微管辅助蛋白。它们可提高微管的稳定性,促使微管与其他细胞结构(如质膜、微丝、中间纤维等)交联,在细胞内沿微管转运囊泡和颗粒,通过与微管成核点的作用促进微管聚合。微丝是由肌动蛋白(actin)的亚单位组成的螺旋状结构,有极性。肌动蛋白以两种形态存在,聚合态纤维肌动蛋白(F-actin)及可溶性球状肌动蛋白(G-actin),两种形态的肌动蛋白之间存在着动态平衡,但只有聚合态肌动蛋白才具有生物学作用。中间纤维是一种直径介于微丝与微管之间的纤维状蛋白,在细胞核膜下形成一层坚固的核纤层,在胞质中形成网架结构,连接核膜、质膜及其他细胞骨架。微管蛋白和肌动蛋白在真核细胞中普遍存在,但植物细胞中是否存在类似动物细胞的中间纤维目前还无定论。
2 微管骨架
2.1 微管的结构及动态组装特性
微管(microtubule,MT)是真核生物中普遍存在的蛋白纤微结构,1963年最早发现于侧柏和水螅的细胞中,并被命名为微管[1-2]。微管的基本组成单位是微管蛋白(tubulin),包括α-微管蛋白、β-微管蛋白和r-微管蛋白。α-微管蛋白和β-微管蛋白通过非共价键头尾相连形成微管蛋白异二聚体,微管蛋白二聚体线性排列形成直径4~5nm、分子量约为100 kDa的原纤丝。原纤丝通过侧向连接形成微管壁。13条原纤丝平行排列构成中空管状的微管。
微管骨架具有不断解聚和聚合的动态特性,即单根微管在聚合态和解聚态之间随机转换。这一特性使得微管系统可以快速地重组以适应环境和生长发育的需要。动态的微管系统包括4种微管列阵,分别为间期周质微管列阵、早前期微管带、纺锤体、成膜体微管列阵。在植物活体细胞的各周期中,这些微管列阵都是高度动态的。动态微管与微管蛋白之间处于一个不断组装和去组装的转换中,微管的动态特性也称为微管解聚组装模型。目前微管的动态组装特性主要被描述为2种模型:踏车运动和动态不稳定模型。微管的动态和微管列阵的组织通常受微管结合蛋白(MAP)的调控。目前,微管骨架的动态特性越来越受到人们的关注。
2.2 微管参与植物细胞的形态建成及胞内物质转运
植物发育过程中,不同类型的细胞具有不同的细胞形态以适应不同的功能需要。这些细胞的形态建成与多种植物细胞骨架密切相关。微管在确定并保持细胞生长的方向性上发挥着重要作用,用微管特异性药剂处理植物叶片表皮铺板细胞,破坏微管列阵之后细胞形态出现异常[3]。Thitamadee等筛选出了微管蛋白α-tubulin的突变体left1和left2[4],突变体植株细胞的微管处于不稳定状态导致生长出的植株的根、下胚轴、叶片等器官均表现为螺旋生长。微管特异性药物处理还可导致各向异性生长的细胞改变原来的极性生长方向[5]。Collings等发现,促进微丝解聚的药物可加剧微管解聚,直接影响微管二聚体的状态,说明在调节细胞向异性生长过程中微管和微丝的动态对话起着非常重要的作用[6]。
在胞内运输和定位中,微管骨架也起着重要作用。参与细胞内物质运输的细胞骨架和马达蛋白质依赖于微管的驱动蛋白和动力蛋白以及微丝的肌球蛋白。通常认为,胞内物质的长途运输沿微管进行,而微丝在短途运输中发挥着重要作用,即微管在许多马达蛋白的辅助下起着胞内物质运输的轨道作用,破坏微管可影响细胞内的物质运输。在真核细胞内,mRNA必须运送到细胞质的特定部位才能进行翻译,RNA蛋白复合体就是沿着微管或微丝的轨道移动的[7,8]。
2.3 微管骨架的信号功能
微管参与植物细胞信号传递的功能成为近年来的研究重点。微管是植物细胞的重要组分,具有高度保守的动态特性,同时可与细胞中许多因子结合发挥传递运输的作用。当细胞受到内部或外部刺激后,细胞质会发生快速的动态重组,这些变化大多需要微管骨架的介导。周希明等研究发现,在细胞内添加药物破坏微管解聚、聚合的正常动态可显著抑制保卫细胞全细胞内向钾电流,说明微管的正常动态变化具有参与调节保卫细胞质膜上K+通道的活性,从而参与调节气孔运动[9]。
2.4 微管响应生物与非生物胁迫的动态变化
植物细胞微管受到外界环境刺激时也始终保持着动态特性,并响应外界生物或非生物胁迫发生相应的动态重排。微管的这种动态转换可参与或协助防卫物质形成天然防御屏障,从而抵抗病原菌的进一步入侵[10,11]。
拟南芥与卵菌纲病害oomycete互作中,菌丝侵染位点可附着在胞下发生细胞质聚集,微丝在侵染位点发生动态重组,呈放射状聚集;微管在侵染位点直接解聚,不形成放射状聚集[12,13]。Yuan等研究发现,拟南芥悬浮细胞在响应大丽轮枝菌毒素胁迫反应中,微管比微丝更快发生动态变化[14]。Wang等研究发现,拟南芥受到盐胁迫时周质微管发生重组,因此认为微管重组是植物耐盐的一种主动防卫机制[15]。
3 微丝骨架
3.1 微丝骨架的结构及动态变化
微丝又称肌动蛋白纤维(filamentactin,F-actin),是细胞骨架的主要成员,广泛存在于真核细胞中。肌动蛋白单体(global actin,G-actin)是构成微丝的基本单位,多个G-actin按照一定方式聚合形成微丝,二者处于聚合和解聚的动态平衡过程中。植物细胞内微丝骨架的功能是多种多样的,在胞质环流、花粉管萌发、气孔运动、物质运输、内吞和外分泌等过程中均起着重要作用。微丝骨架解聚和聚合的动态变化是实现这些功能的关键[16]。
在体外,肌动蛋白聚合成微丝的动力学过程可以分为3个阶段,即成核期(nucleation phase)、生长期(growth phase)及平衡期(equilibrium phase)。肌动蛋白在成核期开始聚合,该时期也是整个组装过程的关键时期。起始时,G-actin缓慢聚合形成一个较短的由3~4个亚基组成的寡聚体,以此作为微丝组装的“种子” 或“核心”(nucleus),进入快速生长期[17]。生长期肌动蛋白聚合成微丝片段时,形如箭头,其一端被称为负端(pointed end),另一端被称为正端(barded end)。微丝正端的聚合速度明显快于负端,因为微丝的生长延长主要受ATP的调节,一分子G-actin可结合一分子ATP,形成ATP-actin,它对微丝的正端有更高亲和力,使正端生长聚合速度快于负端。ATP-actin聚合到微丝纤维上,成为F-actin后,ATP随后水解为ADP,ADP-actin则容易发生脱落、解聚。最终,整个体系会达到一个稳定状态,即平衡期。此时,G-actin加到微丝上的聚合速率与微丝解聚速率相等,微丝的总长度维持相对稳定[18]。
肌动蛋白的解聚并不是简单的聚合的逆过程,这是因为肌动蛋白不能简单地由ADP-actin结合Pi转变成ATP-actin。取而代之的是,游离的ADP-actin在溶液中将结合的ADP迅速交换成ATP,而这个过程可以由肌动蛋白结合蛋白(actin binding proteins,ABPs) profilin加速其进行(Dos Remedios等2003)。很多ABPs对微丝的聚合和解聚过程有着重要的调节作用。此外,由于微丝的聚合需要在高于一定的G-actin浓度(临界浓度)条件下才能发生,因此,细胞中G-actin的浓度对于微丝骨架也有一定作用[19]。
3.2 植物微丝骨架与信号转导
植物微丝骨架与信号转导的研究还不深入,但也有许多实验推断微丝骨架与信号转导有关。1993年Sohesson A和Susanne Widell[20]用生化方法证明了微丝骨架与质膜紧密相连。他们以花椰菜为研究材料,用二相分配法提纯质膜囊泡,用免疫标记鉴定肌动蛋白,研究了膜连细胞骨架。当质膜囊泡内翻外时,肌动蛋白仍与膜紧密相连。用TritonX-100抽提质膜囊泡,产生一些不溶的颗粒沉淀,在不溶物中仍存在肌动蛋白和少量其它蛋白。这些结果说明微丝骨架与质膜共同被提纯,微丝骨架与质膜息息相关。这就暗示着微丝骨架可能参与信号转导过程。
近年来又有研究证明在植物细胞中存在细胞壁(CW)-质膜(PM)-细胞骨架(CTK)的连续体[21]。虽然这一连续体的结构组分与动物细胞有一定差异,但根据进化的保守性,人们认为在植物细胞间及细胞与外界环境的信息交换中它们类似于动物细胞中的ECM-PM-CTK连续体,有着同等的功能,并通过相似的机制起作用。植物细胞可以通过这一连续体成为紧密的线连结构,即细胞质骨架将细胞核、染色体、细胞溶质组分与细胞表面相连接,甚至通过细胞表面和细胞壁网络与相连细胞连接[22]。
动物细胞ECM-PM-CTK连续体中,存在层粘连蛋白(VN)、纤粘连蛋白(FN)。在植物的细胞壁中也发现了与VN、FN及整合素抗体起交叉反应的蛋白。显示植物分子与动物基质粘连分子有同源性的第一证据来自大豆种子一个多肽的研究,它与FN相似,多肽序列中包括Arg-Gly-Asp(RGD)花边序列(motif)。[20]这个短短的氨基酸序列在大部分基质粘连分子中出现,而且被整合素识别。已在西红柿的培养细胞壁中检测到了hVN和hFN免疫相关的蛋白,盐胁迫下类VN、FN蛋白含量更高。许多免疫学和功能研究的证据显示植物与动物系统粘连分子相似。
3.3 微丝骨架与细胞质流动的关系
对高等植物萌发花粉管的研究证明,花粉管中原生质的流动是肌动蛋白和肌球蛋白相互作用的结果,并且是花粉管生长的动力[23]。通过电镜观察、重酶解肌球蛋白的标记及肌动蛋白的分离等多方面的测试,发现绿豆、玉米及花椰菜等植物线粒体中确实存在肌动蛋白的微丝结构,揭示肌动蛋白和肌球蛋白的结合体系可能是线粒体膨胀与收缩运动的分子基础[24]。
4 展望
植物细胞骨架在细胞的生命活动中扮演着十分重要的角色。随着细胞生物学与生物物理、生物化学、遗传学、分子生物学、生物信息学等其他学科的交叉,细胞骨架的动态特性研究及微管功能将日益受到关注。微管蛋白与微管结合蛋白是微管骨架系统结构和功能的必需组分,与微管的组装、去组装动态特性密切相关。随着研究的不断深入,人们对植物微管的结构、组织、行为和相关蛋白的生化特性及蛋白或微管的调控等都将有更深的了解。人们对植物微丝的研究还落后于动物微丝的研究,但是对于植物细胞内的这一重要成分的了解已经越来越深刻。当今分子生物学的发展也为进一步从分子水平上揭示它的结构与功能起了极大的推动作用,因此很多问题最终会得到解决。
上一篇:财务会计档案管理论文
下一篇:教育教学期刊版面费多少