欢迎来到学术参考网
当前位置:发表论文>论文发表

数形结合的数学小论文

发布时间:2023-12-07 06:59

数形结合的数学小论文

数形结合就是运用图形来简化解题思路,
数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。
中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合,或形数结合。我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非。”“数”与“形”反映了事物两个方面的属性。我们认为,数形结合,主要指的是数与形之间的一一对应关系。数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。
作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系,即数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”。“以数解形”就是有些图形太过于简单,直接观察却看不出什么规律来,这时就需要给图形赋值,如边长、角度等等。
数形结合的思想方法是数学教学内容的主线之一,应用数形结合的思想,可以解决以下问题:
一、解决集合问题:在集合运算中常常借助于数轴、Venn图来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。
二、解决函数问题:借助于图象研究函数的性质是一种常用的方法。函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。
三、解决方程与不等式的问题:处理方程问题时,把方程的根的问题看作两个函数图象的交点问题;处理不等式时,从题目的条件与结论出发,联系相关函数,着重分析其几何意义,从图形上找出解题的思路。
四、解决三角函数问题:有关三角函数单调区间的确定或比较三角函数值的大小等问题,一般借助于单位圆或三角函数图象来处理,数形结合思想是处理三角函数问题的重要方法。
五、解决线性规划问题:线性规划问题是在约束条件下求目标函数的最值的问题。从图形上找思路恰好就体现了数形结合思想的应用。
六、解决数列问题:数列是一种特殊的函数,数列的通项公式以及前n项和公式可以看作关于正整数n的函数。用数形结合的思想研究数列问题是借助函数的图象进行直观分析,从而把数列的有关问题转化为函数的有关问题来解决。
七、解决解析几何问题:解析几何的基本思想就是数形结合,在解题中善于将数形结合的数学思想运用于对点、线、曲线的性质及其相互关系的研究中。
八、解决立体几何问题:立体几何中用坐标的方法将几何中的点、线、面的性质及其相互关系进行研究,可将抽象的几何问题转化纯粹的代数运算。

多做几个类似的题目啊....找本专题什么的强化一下就可以了

数学论文 急!!!!!给个例子

【初中】数形结合思想的初探
数形结合思想简而言之就是把数学中“数”和数学中“形”结合起来解决数学问题的一种数学思想。数形结合具体地说就是将抽象数学语言与直观图形结合起来,使抽象思维与形象思维结合起来,通过“数”与“形”之间的对应和转换来解决数学问题。在中学数学的解题中,主要有三种类型:以“数”化“形”、以“形”变“数”和“数”“形”结合。
下面我们就一些数学中的问题谈一下数形结合思想应用。
1、以“数”化“形”
由于“数”和“形”是一种对应,有些数量比较抽象,我们难以把握,而“形”具有形象,直观的优点,能表达较多具体的思维,起着解决问题的定性作用,因此我们可以把“数”的对应——“形”找出来,利用图形来解决问题。我们能够从所给问题的情境中辨认出符合问题目标的某个熟悉的“模式”,这种模式是指数与形的一种特定关系或结构。这种把数量问题转化为图形问题,并通过对图形的分析、推理最终解决数量问题的方法,就是图形分析法。数量问题图形化是数量问题转化为图形问题的条件,将数量问题转化为图形问题一般有三种途径:应用平面几何知识,应用立体几何知识,应用解析几何知识将数量问题转化为图形问题。解一个数学问题,一般来讲都是首先对问题的结构进行分析,分解成已知是什么(条件),要求得到的是什么(目标),然后再把条件与目标相互比较,找出它们之间的内在联系。因此,对于“数”转化为“形”这类问题,解决问题的基本思路: 明确题中所给的条件和所求的目标,从题中已知条件或结论出发,先观察分析其是否相似(相同)于已学过的基本公式(定理)或图形的表达式,再作出或构造出与之相适合的图形,最后利用已经作出或构造出的图形的性质、几何意义等,联系所要求解(求证)的目标去解决问题。

例1:已知:三角形的三边长分别为5、12、13,求此三角形的面积。
分析:该题是仅给出了三角形三边长5、12、13,而没有给出其中一边的高,似乎无法求其面积,虽然已知三边求三角形的面积也有一个海伦公式,但太麻烦了。这里如果我们能够分析这组数据,找出5、12、13它们之间的关系,很容易联想起来勾股定理的逆定理---若以a、b、c为三边的三角形满足a2+b2=c2;则此三角形为直角三角形。因为52+122=132,那么我们就能够判断出以5、12、13为三边所构成的三角形是以5、12为直角边、13为斜边的一个直角三角形。这样我们就把这组数据5、12、13通过勾股定理的逆定理变成了以5、12为直角边、13为斜边的一个直角三角形。实现了以“数”变“形”,把以5、12、13为三边所构成的三角形变成了直角三角形。那么这个三角形的面积就很容易求得了。这是一道典型的运用勾股定理的逆定理的数形结合题。
2、以“形”变“数”

虽然形有形象、直观的优点,但在定量方面还必须借助代数的计算,特别是对于较复杂的“形”,不但要正确的把图形数字化,而且还要留心观察图形的特点,发掘题目中的隐含条件,充分利用图形的性质或几何意义,把“形”正确表示成“数”的形式,进行分析计算。
解题的基本思路: 明确题中所给条件和所求的目标,分析已给出的条件和所求目标的特点和性质,理解条件或目标在图形中的重要几何意义,用已学过的知识正确的将题中用到的图形的用代数式表达出来,再根据条件和结论的联系,利用相应的公式或定理等,
例3:用一定长度的篱笆围成一个矩形区域,小明认为围成一个正方形区域时面积最大,而小亮认为不一定。你认为如何?(选自华东师大版数学八年级上册P30练习第3题)
分析:此题的关键是“周长一定,如何比较正方形面积和矩形面积的大小”即周长相等,怎样用数来表示正方形面积和矩形面积并能比较正方形面积和矩形面积的大小。我们设篱笆长为L=4a,则正方形的边长为a,根据矩形的对边相等则一组对边为a-x,另一组对边为a+x。(x>0)如下图。
a a+x

a a-x

正方形 矩形
由题意得S正方形=a2,S矩形=(a+x)(a-x)=a2-x2。因为x>0,所以x2>0。故a2>a2-x2即S正方形>S矩形。这是一个典型的由形构造数的实际应用题。
3、“形”“数”互变
“形”“数”互变是指在有些数学问题中不仅仅是简单的以“数”变“形”或以“形”变“数”而是需要“形”“数”互相变换,不但要想到由“形”的直观变为“数”的严密还要由“数”的严密联系到“形”的直观。解决这类问题往往需要从已知和结论同时出发,认真分析找出内在的“形”“数”互变。一般方法是看“形”思“数”、见“数”想“形”。实质就是以“数”化“形”、以“形”变“数”的结合。
例5:有一四边形地ABCD(如图),∠ABC=90,AB=4m,BC=3m,CD=12m,DA=13m,
求该四边形地ABCD的面积。(选自华东师大版数学八年级上册P63B组第7题)

分析:此题结果是求四边形地ABCD的面积,若该四边 C B
形ABCD是特殊四边形――直角梯形,那么我们
可以用公式S=(上底+下底)/2.若
∠BAD=90°则可用此公式,根据勾
股定理的逆定理需BD2=DA2+AB2 A
但BD的长度我们求不出来,
所以无法求出∠BAD的度数。
从已知出发∠ABC=90°, D
AB=4m,BC=3m,根据勾股定理可得AC=√AB2+BC2=√42+32=5m.在三角形ACD中,由AC=5m、CD=12m、DA=13m,得52+122=132即AC2+CD2=DA2根据勾股定理的逆定理可得∠∫ACD=90°。这样,我们就可以把求四边形ABCD的面积问题转化为求两个直角三角形ABC和直角三角形ACD的面积的和的问题。由题意我们很容易就解决了。
本题经过对结果和已知的分析得出,我们先通过直角三角形ABC运用勾股定理求得斜边AC的长度,这是看“形”思“数”;然后,根据AC=5m,结合已知CD=12m、DA=13m,想到52+122=132即AC2+CD2=DA2由勾股定理的逆定理可得三角形ACD为直角三角形,这属于见“数”想“形”。最终,把四边形ABCD的面积转化为求两个直角三角形ABC和直角三角形ACD的面积的和使问题得以解决。
数形结合思想是一种可使复杂问题简单化、抽象问题具体化的常用的数学思想方法。要想提高学生运用数形结合思想的能力,需要教师耐心细致的引导学生学会联系数形结合思想、理解数形结合思想、运用数形结合思想、掌握数形结合思想。

初中数学教学中渗透数形结合思想的意义及途径论文

初中数学教学中渗透数形结合思想的意义及途径论文

在个人成长的多个环节中,大家都跟论文打过交道吧,借助论文可以有效训练我们运用理论和技能解决实际问题的的能力。那么你知道一篇好的论文该怎么写吗?下面是我帮大家整理的初中数学教学中渗透数形结合思想的意义及途径论文,希望对大家有所帮助。

摘要: 初中数学教学作为连接小学与高中数学知识的纽带,对于学生数学知识的学习与巩固具有重要的作用,并为学生日后进行高层次的数学学习奠定基础。因此,初中数学教师在进行教学时,要格外重视提高学生的数学学习效率,帮助学生全面掌握相关的数学知识及能力。数形结合思想是初中数学课堂教学中普遍使用的教学方式,其在提高学生数学学习能力以及教师课堂教学质量方面具有重要的促进作用。基于此,本文主要对数形结合思想在初中数学教学中的渗透路径进行探讨,并给出相关策略。

关键词: 数形结合思想;初中;数学教学;渗透路径;

在新课改不断推进以及新课标对初中数学教学提出更高要求的背景下,传统初中数学教学模式已经难以满足当前教育的需要。因此,教师在进行数学教学时也在不断改变传统的教学观念及模式,积极探索及创新的教学手段,以提高当下数学课堂教学效果,并取得了一定的收获。其中,数形结合思想因其能够帮助学生更好地理解数学理论知识,从而实现提高学生数学学习能力的作用,而受到初中数学教师的普遍应用。

一、数形结合思想在初中数学教学中的重要性

(一)有助于调动学生对数学课堂学习的兴趣

初中数学教材知识内容相较于小学数学知识有了很大的变化,其难度也有所增加。而该阶段学生的思维方式正处于过渡时期,也就是说,让学生理解抽象性数学理论知识是有一定难度的,加之数学教学氛围一般都普遍枯燥乏味,因而学生很难对数学课堂学习提起兴趣,更不要说调动学生数学学习的积极性了,以致学生学习效率低下。但是,数形结合思想在教学中的应用则可以有效地改善这种情况,借助数形结合的方式,教师可以将抽象化的理论知识变得更为具体可感,进而为学生的数学学习创设一个逼真的教学情境,这样有助于吸引学生的注意力,激发学生学习的兴趣与积极性,促使其自觉参与到学习中来[1]。

(二)有助于拓展学生的数学思维

理论源自实践,数学学科虽然是一门抽象性极强的科目,但是它与人们的`现实生活联系密切,尤其是有关数学与图形的知识是日常生活中经常涉及的,如温度计高低的变化、超市的收银以及舞蹈时的位置等都或多或少涉及数学知识。因此,数学教师在进行数学教学时,应当有意识的引导学生将数学理论知识与生活实际相结合,并在此基础上对数学问题及其现象进行分析与解答,从而提高学生解答问题的能力。总之,当学生学会懂得采用数形结合的思想分析问题时,学生自身的思维也会有很大的提升。

(三)有助于强化学生对知识的记忆以及提高其创造能力

之所以要学习知识,其最终目的还是为了解决生活中遇到的问题,但是学生要想运用理论知识解决现实问题,其首先就要充分理解以及掌握相关数学知识,也就是说,学生解决数学问题的前提是其要全面掌握数学知识[2]。而数形结合思想在教学中的应用,就可以很好的帮助学生记忆以及区分数学知识,进而指导学生进行实践。同时,数学问题所涉及的答案或许是唯一的,但其具体的解题思路及方式却是具有多样性的。换句话说,采用数形结合的思想分析及解答数学问题,那学生可以获得多种解题方法。总之,在初中数学教学中,采用数形结合的思想进行数学教学,有助于提高学生对抽象性数学知识的记忆,并让学生在解答数学问题的过程中,促进其发散思维及创新能力的提升。

二、数形结合思想在初中数学教学中的渗透路径

(一)培养学生数形结合意识,调动学生数学学习的积极性

为了激发学生数学学习的兴趣,促使学生积极投入到数学学习中,进而提高学生数学学习水平,初中数学教师在进行数学教学时,要合理地采用数形结合思想展开数学课堂教学,并让学生在分析与解答有关无理数与有理数相关知识的数学问题的过程中,帮助学生有效地使用该思想思考问题[3]。特别是在初中数学教学的早期,教师要有意识的培养学生学会采用数形结合的思想展开数学学习,并让学生在掌握该思想的运用方法的前提下,促使学生形成相关的数形结合意识,这样有助于学生在学习的过程中产生对数学知识学习的兴趣。例如,在进行“勾股定理”的教学时,数学教师就可以指导学生运用数形结合思想进行该知识点的学习,其可以让学生借助勾画图形的方式发现解决数学问题的关键,从而提高学生解决问题的能力。同样,在解答有关不等式组的数学问题时,学生也可以借助绘制图形的方式画出解集同数轴之间的关系,并以此算出答案。总之,借助数形结合思想,不仅有助于培养学生的数形结合意识,提高学生对数学问题的分析及解题能力,进而促进其数学学习能力的提升,而且也有助于降低学生数学学习的难度,提高学生数学学习的积极性。

(二)适当地引入教学案例展开课堂教学,强化学生数形结合思想

教师要想学生充分把握数形结合思想及其应用,就不能仅靠对学生的引导,其还需要在日常教学中强化对学生相关知识的训练,以帮助学生熟练地采用该思想解答问题。对此,初中数学教师在教学时,可适当地引入相关的案例展开课堂教学,通过向学生分析及讲解相关的案例,以及完善自身的教学设计等,以引导学生在实际动手操作的过程中发现其存在的问题,进而帮助学生在认识到自己错误的基础上进行针对性改进。当然,教师也可以有意识地在日常生活中收集一些富有趣味性的数学知识及故事,并将其作为案例融入数学教学中,以激发学生的求知欲和探究欲,从而促使其积极参与到数学教学中[4]。例如,在解答有关二次函数的数学问题时,教师要适当地引入案例对学生进行讲解,以便学生从中学会判断数学题目的根本意图,然后再让学生以绘图的方式,画出与之相匹配的图像,并求出相关的坐标,从而以此得出有关图像的开口方向及其定点位置等相关知识。

(三)创设有效的教学情境,引导学生进行探究性数学学习

学生的数学学习离不开对数学问题的解答,对数学问题的解答是提高学生数学学习能力、巩固已学知识以及检验学生对相关数学知识掌握程度的有效方法,因此,数学问题在学生数学学习的过程中占有很大的比重。同时,由于数学问题的题目普遍具有开放性、新颖性以及规律性等特点。所以,数学教师在向学生讲解如何解答数学问题时,其应当采用数学思维展开对知识的讲解,以便学生在教师的教授下全面地掌握数学解题方法及技巧,进而深化对数学理论知识的了解及应用,从而提高学生数学解题的效率及正确率[5]。此外,教师在教学时,也可以借助创设有效教学情境的方式,向学生提出相关数学问题,并引导学生采用小组合作或探究性方式进行数学学习,这样有助于学生在合作学习中总结相关的数学知识,如数学原理、规律及概念等,促使学生懂得灵活运用所学知识进行问题的解答。例如,在进行“多边形”的教学时,教师可以先让学生说说生活中由线段围成的图形形状,如长方形的菜园子、正方形的餐桌、六边形的地板等,以吸引学生对该节知识内容的学习兴趣。然后,教师可以让学生借鉴之前所学的有关三角形的概念意义,对多边形的概念下定义,并试着说出不同多边形的异同点。从而引出本节知识内容,如顶点、边、内角、外角、对角线间的关系等,进而让学生在分析知识点的过程中,了解多边形的基本概念及其性质以及相关原理。

三、结束语

总而言之,在新课改的背景下,初中数学教师在进行数学课堂教学时,要合理地采用数形结合思想展开对数学知识的讲解,以便在调动学生数学学习兴趣的同时,让学生掌握相关的数形结合方法,并引导学生将该方法运用到数学学习中,进而提高学生数学学习效率,提升其学习水平,促进初中数学教学质量的提高。

四、参考文献

[1]童琛菲.数形结合思想在初中数学解题教学中的渗透策略[J].数学学习与研究:教研版,2020(3):114.

[2]南旭辉.初中数学教学中数形结合思想的应用策略探究[J].新一代:理论版,2019(14):90.

[3]戴彦雪.相互渗透,交叉作用-论初中数学教学中数形结合思想的应用[J].数学大世界旬刊,2017(2).

[4]刘金方.数形结合思想在初中数学教学中的实践研究-以人教版初中数学教材为例[J].课程教育研究,2015(30):139.

[5]吴学军.数形结合引思激趣-论数形结合思想在初中数学教学中的渗透[J].数理化解题研究,2019(35):17-18.

有关七年级数学小论文?

初中学生的七年级数学学习随着我国新课程标准的实施以及素质教育的不断深入,初中七年级数学处于数学学习的过渡阶段,培养学生的自主学习能力对其未来的学习与发展具有重要意义。下面是我为大家整理的,供大家参考。

摘要:对刚进入七年级的学生来说,这个时段是适应中学数学教学、缩短小学学习与中学学习距离的过渡期。如果一开始学生就对数学不感兴趣,甚至害怕数学,那么会直接影响到今后的学习。要让七年级新生爱上数学课,就要求教师做学生喜欢的教师,要教给学生正确的学习方法,课堂教学要有更高的艺术性,在课堂上能吸引学生,让学生产生浓厚的兴趣,才能达到预期的教学效果。

关键词:生活教育;喜欢;第一节数学课;学习乐园

中图分类号:G633.6 文献标识码:A 文章编号:1992-7711***2014***01-0007

著名的人民教育家陶行知说:“治学以兴趣为主,兴趣愈多,则从事弥力,从事弥力则成效愈著。”《数学课程标准》也明确指出,数学教学要重视激发和培养学生学习数学的兴趣,学生一旦对数学产生浓厚的兴趣,就乐于接触它,变“苦学”为“乐学”。下面,结合工作实践,笔者就如何让七年级新生喜欢上数学课问题谈点浅见。

一、做一名学生喜欢的数学教师

陶行知先生说:“真教育是心心相印的活动,唯独从心里发出来,才能打动心灵的深处。”只有师生情感融洽,学生才会敢想、敢问、敢说,才会愿学,才会学有所成。在课堂教学中,笔者总是微笑地面对学生,从不板著脸上课,更不对学生大声训斥,把他们当成自己的朋友或孩子来看待,力求做到尊重每一位学生。

在数学教学中,笔者十分强调理论联络实际。例如,学习有理数加减混合运算,笔者举这样的例子:现在老师存摺上有100元,下午存入300元,明天取出50元,后天取出100元后,存摺上还有多少元?通过这道题的计算,你知道存摺上的余额是如何计算吗?若余额为负数说明什么?让学生去计算、去思考,培养他们的数学学习兴趣,激发他们的数学学习热情,让他们感受到生活中处处有数学知识,学习数学知识充满著无穷的乐趣。

陶行知先生说:“待学生如亲子弟”。教师要得到学生的爱,她必须爱她所教的每一位学生,将其当作自己的孩子;教师要有宽广的胸怀、积极的情绪、平易近人的态度、笑容可掬的表情,要善于营造一种和谐、愉快、亲切、友好的气氛;要爱学生成长过程中的每一微小“闪光点”,要爱他们具有极大的可塑性,要爱他们在教育过程中的主体能动性,要爱他们成长过程中孕育出来的一串串教育劳动成果。教师的爱要一视同仁,持之以恒;爱要以爱动其心,以严导其行;爱要以理解、尊重、信任为基础。只有这样的爱,才能爱出师生间的“师生谊”,才真正得到学生的喜爱。

二、上好开学的第一节数学课

俗话说:“良好的开端是成功的一半。”小学生进入中学后,数学不再是单纯的计算,而是数学进一步内容拓宽、知识更一步深化,加上部分学生还未脱离教师的“哺乳”时期,没有自觉“摄取”的能力,致使有些学生因不会学习或学不得法而成绩逐渐下降,久而久之失去学习信心和兴趣,开始陷入厌学的困境,因此设计好开学第一节数学课非常重要。

第一,课前,教师最好是修饰一下自己,着装大方得体,有亲和力。第一节课最好不要多讲正课,可以讲一些和正课相关联的知识及其生活实用性,让学生产生一种急切求知的欲望。若教师进入课堂就讲课,因为学生还不熟悉教师,对教师还有很多的神秘感,上来就讲课,学生也会因为对教师感兴趣的程度大于对教学内容的程度,导致教学效果不佳。上第一节课要做自我介绍,要有一个漂亮的出彩的亮相,可以介绍自己的过人之处和自认为是闪光点和值得骄傲的地方。这个开场白是最吸引学生的,有助于学生了解教师的过去、教师的长处,促进师生友谊的建立。让学生在你的自我介绍里,感受智慧之美,拼搏之美,进取之美。要让学生感觉教师是一个博学的教师,聪慧的教师,从心里敬佩的教师。

第二,要让学生掌握初中数学学习方法,首先,七年级学生往往不善于预习,也不知道预习起什么作用,预习仅是流于形式,粗略地看一遍,看不出问题和疑点。笔者要求学生预习时应做到:一粗读,先粗略浏览教材的有关内容,知道本节所要讲的内容。二细读,对重要概念、公式、法则、定理反复阅读、体会、思考,注意知识的形成过程,对难以理解的概念作标记,以便带着问题去听课。三做练习,通过练习检验预习效果。

其次,在小学,教师一般采用直观形象到抽象概括的教学方法,通过讲解、演示、操作等过程建构新知,节奏慢、坡度小。很多学生认为学数学就是做作业,多做练习,课本成了“习题集”。到初中后,由于学科的增加和学习内容的抽象,课堂知识容量增大,教学进度较快,演示、操作减少,抽象的思维活动增加,很多学生深感不适应。因此,要教会学生处理好课堂“听”、“思”、“记”的关系。“听”每节重点、难点剖析***尤其是预习中的问题***,“听”例题解法的思路和数学思想方法的体现。“思”是指多思、勤思,随听随思,并善于大胆提出问题。“记”就是记要点、记疑问、记解题思路和方法;记小结、记课后思考题。可以说“听”是“思”的基础,“思”是“听”的深层次掌握,是学习方法的核心和本质的内容,会思考才会学习,“记”是为“听”和“思”服务的。掌握好这三者的关系,就能使课堂这一数学学习主要环节达到较完美的境界。

三、让数学课堂变成学生学习的乐园

陶行知曾以《假如我重新做一个小孩》为题,阐明儿童教育应该包括的内容,其中有句发人深思的话,“我要多玩玩”。七年级学生活泼好动,不喜欢单调的重复和机械的练习。我们要传承陶行知先生的教育思想,尊重学生的年龄特点、心理特点,灵活地运用教法,把枯燥的数学学习变成了学生学习的乐园。

1. 在“做数学”中体验数学学习的乐趣。练习是使学生掌握知识,形成技能、发展智力的重要手段。课堂练习设计得好,不仅巩固新知识而且可以增添学生学习数学的兴趣。因此,在设计练习时,笔者力求设计各种情节有趣、形式新颖的练习形式。例如:引入负数后,七年级新生的计算出错,很多是符号出错,笔者就设计了如下快速抢答题,1×***-5***= ;1÷***-5***= ;1+***-5***= ;1-***-5*** = ;-1+***-5*** = ;-1-***-5*** = ;-1×***-5*** = ;-1÷***-5*** = ;***-3***= ;***-2***= -2= -2= 。要求回答对的,就通过。回答错的,教师点拨后,出题再做,对了,就编题给同学做,大受学生喜欢,学习的热情非常高涨。平时笔者还根据不同的教学内容设计不同型别、不同层次的练习题,满足学生不同层次的需求,照顾不同层次的学生,使学生始终保持高昂的学习热情。   2. 在合作交流中体验数学学习的乐趣。充满活力的数学课堂,应该是对学生具有吸引力、亲和力的“磁性”课堂。合作学习的情景来源于教师有目的地创造,在数学课堂教学中教师若能自然地创设合作学习的情境,不仅能让学生产生合作的冲动和交流的愿望,还能激发学生的学习兴趣。例如:在教学“数轴”时,让学生以小组为单位,讨论学校要在校门公路旁植树,每隔3米植一棵树,问在21米长的公路旁植树最多可植几棵树?有学生可能会得出:21÷3=7,可植树7棵;有学生结合数轴就很直观了,可植树8棵。经过大家讨论得到结论为:这类题要结合数轴,要注意考虑线段的端点,否则容易出错。再如,为让学生能找到正方体展开图的相对面,笔者让同桌合作将展开图折起来。在这个过程中,学生始终处于积极的探究性活动中,让同学们感到合作的力量,得到成功体验的机会。感受到学习过程的快乐,同时获得了数学思想和方法,产生学习数学的兴趣,树立学好数学的自信心。

3. 合理评价,让学生体验成功的乐趣。苏霍姆林斯基说过“你在任何时候也不要给学生打不及格的分数,请记住:成功的欢乐是一种巨大的情绪力量。”这启示我们教师在教学中应改变以往的评价方式,以鼓励性评价为主,让每一个学生都能抬起头来学习。例如,有一次笔者出示口算“3+***-6***”,一个学生,回答说:3+***-6***=3。笔者没有直接“宣判”对或错,而是说:“非常接近标准答案,你能再想一想吗?”这位学生放松地想了想,答:“3+***-6***=-3。”“你再编一编类似的题目,考考其他同学。”该生自己改正了自己的错误,体面地坐下了,自尊心得到了保护。每个孩子都有被人赏识的渴望,都希望得到别人的赞扬,宽容和鼓励。在教学中,要多鼓励表扬,让学生尝到成功的喜悦。教师的眼神、笑容、一个手势等对学生都是一种鼓励,让学生感受到自己被尊重,被信任。所以,每次学生回答后,笔者常用“你很聪明,你的回答对了!”“你真了不起,发现了同学出错的地方!”等这些充满 *** 、充满鼓励的语言来评价学生,保护了学生学习的积极性,使他们觉得学数学是快乐的,从而喜爱上数学课。

此外,教师还可以运用故事、比赛、表演等活动形式,保持学生学习数学的兴趣,陶冶学生情操,使学生愉快学习,从而形成稳定而持久的学习乐趣。

七年级数学是中学数学的基础,如果七年级新生能爱上数学课,就可以提高中学数学教学质量。为了使七年级学生尽快适应中学数学教学、顺利完成学习任务,必须从七年级学生的特点出发,让七年级学生对数学感兴趣,为以后学习奠定基础。

参考文献:

[1] 普天明,黄永明.数学教学方法的更新探索[J].课程教材教学研究***中教研究***,2005***Z1***.

[2] 陈芝红.初中数学教学方法新探[J].浙江教育科学,2007***6***.

【摘 要】常听家长说我的小孩小学数学都要考八十几分九十几分,现在上了初中孩子连及格都成问题。究其原因,学生没能适应初中阶段的学习.有些知识在成人看来很简单,在学生眼里却很难理解,所以我们做教师的,走进孩子的内心,从学生的角度思考问题,帮助孩子们搞好六七年级的衔接,以适应初中阶段的学习

【关键词】适应;衔接;策略

有关策略的含义,目前在学界有着多种不同的表述,其中“策略是旨在达到某种目的而对步骤与方法、技巧等所作的优化组合、精巧安排”。它点出了策略的本质属性,为帮助孩子们顺利度过六七年级的过渡期,根据个人经验,以生为本从孩子的角度出发展开教学,有利于帮助孩子们尽快适应初中阶段的学习.

一、上课适当放慢速度,帮助孩子们适应“课堂容量小到课堂容量大”的过渡

小学阶段教学内容较少,初中阶段教学内容较多,课堂容量显然加大.一般来说,小学老师教态较亲切,课内提问次数较多,有时一堂课内每位学生都可能有被问一次的机会,问题多半讲得较细,有时还可反复讲,反复练.,所以大部分的小学生在老师的帮助下是基本可以掌握好小学的有关知识的.,而初中阶段学习科目和每节课的授课内容都比小学多,课内外的时间都比较紧,课内提问,练习,辅导,讲解都不可能像小学那样频繁,那么细,初一新生基本上还具有小学生的学习心理,跟不上老师的步伐,导致学习掉队,所以我们初一教师开始一段时间不能操之过急,应顺应小学教师的教法,教学的内容少一些,进度慢一些,在具体讲授每节课知识时,做到形象、直观、对比、有趣等,课堂上尽可能多提问,但要提到要害处,,多启发、多表扬、多练习,引导学生逐步进入初中学习轨道。

二、做好翻译工作,帮助孩子们“学会对符号语言的理解认识”

由小学具体的数到初中用字母表示数这一飞跃,也是学生感到困难的地方。学生对表示数的字母作用产生片面认识,老师在教学中必须设法使学生真正理解用字母表示数的意义及目的,让学生知道字母表示数最本质的东西。由于负数的引入引出了绝对值等概念,数的运算出现了符号法则。成为学生学习的又一难点,如何让学生很自然地把有理数的运算与非负有理数的运算统一起来,是老师在教学中必须着力解决的。比如a>0,对七年级的学生不明白是什么意思,老师要具体翻译为字母a表示的是正数,a=a这个式子在七年级学生眼里有些茫然,老师要具体翻译为一个数的绝对值等于它的相反数,这样学生才明确原来这个数可以是0也可以是负数,诸如这样的符号语言式子较多,老师要不厌其烦的将他们翻译成中文语言让学生逐步学会认识理解,从而学会数学符号语言的认识与表述。

三、用数形结合思想帮助孩子适应“形象思维到抽象思维的过渡”

小学几何中对图形的性质和位置关系没有深入的研究,而初中几何就是通过研究几何图形的性质来研究物体的形状、大小和位置的,几何图形是研究几何命题的必需的直观工具,对于初中生来说,图形的形象思维比抽象思维更容易接受。因此,在几何教学中,要充分利用图形帮助学生克服抽象思维的困难。例如:已知a>0,b<0,a>b,比较a,-a,b. -b的大小。学生认为没告诉具体数值无法比较,聪明一点的孩子可以用特值法,但对结论的正确与否自己没把握,这是一个代数问题,数形结合仍然适用。教师指导学生画出数轴,在数轴上根据a、b的位置标出-a、-b的位置,再根据“数轴上的数从左往右越来越大”进行比较,在直观图形下,学生一目了然,进一步加深了对相反数和有理数比较大小的理解,同时通过具体的例子感受数形结合思想可以转化问题的难度。

刚进入七年级学习的学生,对知识的理解更多地停留在感性认识的层面上,因此,更要重视学生由感性认识向理性认识的过渡。在数学知识的形成与应用上,不要对学生的理解持较高的要求,要尽可能地让学生经历整个知识的发生过程,理解知识的形成过程。有时要动手画图,有时还要让孩子们动手操作拼图,苏霍姆林斯基说“儿童的智慧在他们的手指尖上。”通过动手操作把抽象的东西转化为具体的,学生就理解了,这样就能使学生学习变得自然、轻松、高效。

四、教师规范书写的展示帮助孩子们适应“单纯的数字运算到规范书写”要求的过渡.

小学数学多是单纯的数字运算,对学生的书写格式要求不高,而重庆市近些年的数学中考150分的题目,有80分需要过程表述,可见随着年级的增高对书写格式的要求也在不断增加。初一学生很多时候做解答题只写答案,要么就是几个数字摆在那儿,没有必要的叙述和步骤,只满足于写对答案,而不苛求于解题过程的合理性与逻辑性。所以教师要一步一步把过程详细的展示给学生看,让学生在观摩中逐步学会规范的过程书写。从学生的实际出发,加强对学习困难生的个别辅导,作业的检查和批改做到及时评价,及时矫正。讲课时要有意放慢进度,概念应从学生的生活实际引入,深入浅出地讲,同时,针对七年级学生的注意力不能长时间集中,不适应单一的教学法的特点,方法上要讲练结合,严格统一书写格式。让学生通过感知―---概括―---应用的思维过程加强对知识的理解,从而引导学生发现真理,掌握规律,学会运用,学会书写。

五、进行学法指导,引导学生逐步学会自主学习,帮助孩子们适应“知识难度加大”的过渡

初中生活对七年级新生具有新鲜感,在心理上普遍存在着一种上进的愿望,教师应抓住这个契机,激发学生的学习热情。在学习能力方面,他们的记忆力较强,但理解力较差,习惯于具体思维而不习惯于抽象思维,不善于独立思考,对老师有依赖心理。教师要根据学生的实际认识水平,尽量做到按基本知识、基本技能和基本思想方法三个方面考察学生,使大多数学生学习数学能变被动为主动。首先要指导学生如何听课做笔记,如何搞知识小结,习题归类,以及作业的书写格式,做题规范等等。其次要引导学生学会读数学书,课前读书能使学生找出疑点,抓注重点;课后读书能弥补课堂上探索知识时的不足,还能深化所学知识。再次要教会学生如何订正错题,逐步在较高的层次上学会知识概括等等。通过实际例子的思维过程引导,让学生感悟转化思想。让学生感悟在研究数学问题时,将未解决的问题转化成已解决的问题,将复杂的问题转化成简单的问题,将数量问题转化成图形问题或将图形问题转化成数量问题等等。

作为教师从学生实际出发,了解每个学生的基础知识、学习方法、性格特点和心理活动等多方面的情况,在中、小学数学知识间架起衔接的桥梁,以生为本从学生的角度展开教学,帮助学生顺利过渡。

上一篇:风度杂志2006年9月

下一篇:本科生可以发表的期刊