欢迎来到学术参考网
当前位置:发表论文>论文发表

苏教版六年级数学小论文

发布时间:2023-12-08 01:32

苏教版六年级数学小论文

论文摘要:本文以递归的方法解决历史上著名的德�6�1梅齐里克砝码问题,并加以推广阐述了一种特殊的进制数方式,对此问题作出了一个普遍解:任意给定一个自然数,能够以最少的个数的项保证其和为给定数而又能遍历1到此数间的任意整数。
关键词 :进制数 ,遍历,基底,状态值;

一. 问题介绍
一位商人有一个40磅重的砝码,由于跌落在地而碎成4块,后来称得每块碎片的重量都是整磅数,而且可以用这4块来称从1至40磅之间的任意整磅数的重物,问这4块砝码碎片各是多少。 摘自《100个著名初等数学问题》
二. 问题解决
考虑这样一个用法码称重物的问题,实际上是通过在天平两端放不同砝码使各砝码值相加减得到目的值。
用递归的方法能很好的解决:
设前i块碎片的总质量为 ,由这 块能够称出1~ 之间所有整磅数,那么第 +1块碎片则为2 +1,。它依次减去前 块得到的各个磅数就能得到( +1)~(2 +1),它依次加上前 块得到的各个磅数就能得到(2 + 2)~(3 +1)
2 +1 — = +1 2 +1 + = 3 +1
2 +1 — ( —1) = +2 2 +1 + ( —1) = 3
2 +1 — ( —2) = +3 2 +1 + ( —2) = 3 —1
… … … … … …
2 +1 — 1 = 2 2 +1 + 1 = 2 + 2
2 +1自己当然能够称出来;
所以由这 +1块碎片能称出1~(3 +1)所有的整质量。
设第 块碎片重为 ,则有:
=2 + 1;
=2 1 +1;
两式相减得 =3 ;
=1,故各碎片的磅数分别为1,3,9,27.满足和为40的要求。答案补充 三、考虑
任给一个数分成特定数目的各值,使之能遍历1到此整数
A. 改变特定碎片的磅数那么照样能称出1到总磅数的所有整数值。
如果把总量为42的重物破碎成6块,此6块能称出1到42磅所有重物,它们可以是
1,1,4,4 ,16,16
由前面特殊进制数可以得到1,4,16与0, 1,2相组合能取到2(1 + 4 + 16 )。
B. 回到前面解题之初。 的取值不止有一种可能,若 ≦2 + 1,
① ≦ ,故由前 块能遍历1到 ,而 加上1,2,3,等就能得到 +1, +2, +3, +4,…, + 。于是能够从1取到 + 。
② ﹤ ≦2 + 1,
— ≦ + 1,由前 块能遍历1到 —
—( —1)= — +1
—( —2)= — +2;
… …
—(0) =
+ 1, +2,… … +
故这 块碎片能取到1~ + 所有磅数。答案补充 四.最少块数碎片完成遍历。
任何一整数在分成各项,其组合能遍历1至此数的所有值,那么其中以3进制即以 做为基底,与状态值的线性组合能够做到项数最少且满足题意。同时最后一项即零头可以不为3的各次幂。①在各种进制中,3进制是随着项数增多,它们的和增多最块的一个。②在各种其它情形中,要保证遍历中的每一个数都只用其中一种方式组合。否则构造组合的方式就会有重合。例如42可以分为:
1,3,6,27,2
也可以分为 1,1,4,4,16,16。
五.任意给定数的最少项数分法
1,按3进制数将给定数的各项依次写出,直到“零头“不是3的幂为止。这时项数就是该数最小的分解项数。2,利用 三 中的结论,我们可以不受K次幂数的限制,可以在写出每一 的值,只要保证 ≦2 + 1。各项数值丰富起来。
还举42的例子①三进制为各基底。1 + 3 + + +… + =
和依次是1 4 13 40 …留下零头2,故最少遍历分解项数是5分解方式:1 ,3 ,9 ,27 ,2 ②.1,2,7,21,11
1,2,7,20,12
1,2,6,18,15

苏教版六年级上册数学小论文

:《容易忽略的答案》
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
打得手都酸死了,多给些分哈!!!!!!

苏教版六年级上册数学论文怎么写

数学小论文
篮球场上的数学
一个星期天的早晨,我和我的朋友一起去打篮球。
过了一会儿,我们俩打累了,就到观众席上去休息。突然间,我想到了一个问题,我就禁不住说出来:“小明一分钟投8个球,小红一分钟投6个球,他们一起投了8分钟之后,小红提高命中率一分钟投8个球,小明由于体力不支减少投球只数一分钟投6个球,问多少分钟后小红和小明投进的只数相同?”
大概是我朋友太累的缘故,这么简单的问题他都答不上来,他想了一会儿没做出来,过了好长时间他还是没想出来。时间一分一秒的过去了,他实在想不出来,只得不好意思地说:“没了草稿本,我做不出来。”我知道,就算他有草稿也未必做得出来。
我自豪地说:“原来小明一分比小红多投进2个,一共投了8分钟,也就是8×2=16(个),后来小红反过来每分比小明多投4个,那么16个球要多投几分钟呢?16÷4=4(分),要4分钟才能追上。”他说:“你真厉害!”“我是天才嘛!”我开玩笑说。我俩都笑了。
通过这件事,我发现生活中的数学是无处不在,生活中、学习中、还有工作中到处都有。从此,我就更加喜欢数学了

如何学写数学小论文

“写什么?怎样写?”这是每个学写小论文的同学都会碰到的问题。一篇好论文的产生,对于它的作者来说是一次创造性的劳动。创造性的劳动对劳动者的要求是很高的。其创作的素材、水平,乃至创作的灵感……,绝不是轻易可以得到的,它们需要作者在自己的学习与生活实践中,去进行长期的积累与思考。从我校征集的论文来看,作者中有的是在平时十分注意对课本知识进行归纳整理、拓展延伸,学习中有许多意想不到的收获;有的是从课外阅读中得到收获与启发后,获得灵感、得以选题;……更有甚者是,有的作者在生活中发现问题注意观察、探究,并与自己的数学学习相联系,对观察、探究的结果进行思考、归纳、总结,升华为理论,写出了令人叫绝的好论文。综观获奖论文的小作者们,他们大多是数学学习的有心人。好论文的作者不仅要有较好的数学感悟,还要有良好的文学修养、综合素养。
(1) 写什么
写小论文的关键,首先就是选题,大家的选题要从自己最熟悉的、最想写的内容入手。
下面我结合我校同学部分获奖论文的选题,进行一点简单的选题分析。
论文按内容分类,大概有以下几种:
①勤于实践,学以致用,对实际问题建立数学模型,再利用模型对问题进行分析、预测;
如:探究大桥的热胀冷缩度
②对生活中普遍存在而又扰人心烦的小事,提出了巧妙的数学方法来解决它;
如: 一台饮水机创造的意想不到的实惠
③对数学问题本身进行研究,探索规律,得出了解决问题的一般方法
如: 分式“家族”中的亲缘探究
如: 纸飞机里的数学
④对自己数学学习的某个章节、或某个内容的体会与反思
如: “没有条件”的推理
如: 小议“黄金分割”
如: 奇妙的正五角星
(2) 怎样写
① 课题要小而集中,要有针对性;
② 见解要真实、独特,有感而发,富有新意;
③ 要用自己的语言表述自己要表达的内容
(四) 评价数学小论文的标准
什么样的数学小论文算是好的论文呢?标准很多,但我以为一篇好的数学小论文必须有以下三个特征——新、真、美。“新”,指的就是选题要有独特的视角,写的内容不是简单地重复别人的东西、不是单纯地下载一段。文字,最好是自己原创的,至少要有自己的创造、自己的观点,属于自己的思想;“真”,指的就是内容要实在、言之有理,既不能空洞无味、也不能冗长拖沓,文章要紧扣主题,力求做到准确、精练,尽量地体现数学的严谨性与科学性;“美”,指的就是语言通顺、文笔流畅,文章要给人以美的享受。当然,从第二届时代数学学习“时代之星”实践与创新论文大赛的名称来看,既有实践又有创新的论文肯定更容易受到评委们的亲睐,所以,我希望同学们更加贴近生活、注意观察、去寻找、去发现,把生活与数学联系起来,把学习撰写论文、争取写出好的论文,作为对自己数学学习的一种评价、一种补充、一种提高,这样你学写小论文的目的就对了,你就会将数学小论文越写越好。
“梅花香自苦寒来”,只要肯下大工夫、只要肯吃的起苦,不断地去思考、去揣摸,去学习,好的数学论文就一定会在你的手中诞生。总之,学习撰写论文、争取写出好的论文,对于我们每一位同学来说,始终是一个锻炼自己、提高能力的极好的方式。我相信我校初一、初二的同学们一定会在老师的组织与指导下积极参与第二届《时代数学学习》“时代之星”实践与创新论文大赛的活动与交流,并取得好成绩。祝愿今后有更多更好的数学小论文,在同学们的手中诞生;愿有更多的同学从学写数学小论文开始起飞,在今后的人生之路上书写出更多的高水平、高质量的论文。
例子:《容易忽略的答案》
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
打得手都酸死了,多给些分哈!!!!!!

上一篇:本科论文摘要怎么写模板

下一篇:数学论文1000字发表