半导体与集成电路论文
半导体与集成电路论文
半导体物理学的迅速发展及随之而来的晶体管的发明,使科学家们早在50年代就设想发明半导体激光器,60年代早期,很多小组竞相进行这方面的研究。在理论分析方面,以莫斯科列别捷夫物理研究所的尼古拉·巴索夫的工作最为杰出。在1962年7月召开的固体器件研究国际会议上,美国麻省理工学院林肯实验室的两名学者克耶斯(Keyes)和奎斯特(Quist)报告了砷化镓材料的光发射现象,这引起通用电气研究实验室工程师哈尔(Hall)的极大兴趣,在会后回家的火车上他写下了有关数据。回到家后,哈尔立即制定了研制半导体激光器的计划,并与其他研究人员一道,经数周奋斗,他们的计划获得成功。像晶体二极管一样,半导体激光器也以材料的p-n结特性为敞弗搬煌植号邦铜鲍扩基础,且外观亦与前者类似,因此,半导体激光器常被称为二极管激光器或激光二极管。早期的激光二极管有很多实际限制,例如,只能在77K低温下以微秒脉冲工作,过了8年多时间,才由贝尔实验室和列宁格勒(现在的圣彼得堡)约飞(Ioffe)物理研究所制造出能在室温下工作的连续器件。而足够可靠的半导体激光器则直到70年代中期才出现。半导体激光器体积非常小,最小的只有米粒那样大。工作波长依赖于激光材料,一般为0.6~1.55微米,由于多种应用的需要,更短波长的器件在发展中。据报导,以Ⅱ~Ⅳ价元素的化合物,如ZnSe为工作物质的激光器,低温下已得到0.46微米的输出,而波长0.50~0.51微米的室温连续器件输出功率已达10毫瓦以上。但迄今尚未实现商品化。光纤通信是半导体激光可预见的最重要的应用领域,一方面是世界范围的远距离海底光纤通信,另一方面则是各种地区网。后者包括高速计算机网、航空电子系统、卫生通讯网、高清晰度闭路电视网等。但就目前而言,激光唱机是这类器件的最大市场。其他应用包括高速打印、自由空间光通信、固体激光泵浦源、激光指示,及各种医疗应用等。晶体管利用一种称为半导体的材料的特殊性能。电流由运动的电子承载。普通的金属,如铜是电的好导体,因为它们的电子没有紧密的和原子核相连,很容易被一个正电荷吸引。其它的物体,例如橡胶,是绝缘体 --电的不良导体--因为它们的电子不能自由运动。半导体,正如它们的名字暗示的那样,处于两者之间,它们通常情况下象绝缘体,但是在某种条件下会导电。
求一篇集成电路芯片封装技术论文
集成电路芯片封装技术浅谈
自从美国Intel公司1971年设计制造出4位微处a理器芯片以来,在20多年时间内,CPU从Intel4004、80286、80386、80486发展到Pentium和PentiumⅡ,数位从4位、8位、16位、32位发展到64位;主频从几兆到今天的400MHz以上,接近GHz;CPU芯片里集成的晶体管数由2000个跃升到500万个以上;半导体制造技术的规模由SSI、MSI、LSI、VLSI达到 ULSI。封装的输入/输出(I/O)引脚从几十根,逐渐增加到几百根,下世纪初可能达2千根。这一切真是一个翻天覆地的变化。
对于CPU,读者已经很熟悉了,286、386、486、Pentium、Pentium Ⅱ、Celeron、K6、K6-2 ……相信您可以如数家珍似地列出一长串。但谈到CPU和其他大规模集成电路的封装,知道的人未必很多。所谓封装是指安装半导体集成电路芯片用的外壳,它不仅起着安放、固定、密封、保护芯片和增强电热性能的作用,而且还是沟通芯片内部世界与外部电路的桥梁--芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印制板上的导线与其他器件建立连接。因此,封装对CPU和其他LSI集成电路都起着重要的作用。新一代CPU的出现常常伴随着新的封装形式的使用。
芯片的封装技术已经历了好几代的变迁,从DIP、QFP、PGA、BGA到CSP再到MCM,技术指标一代比一代先进,包括芯片面积与封装面积之比越来越接近于1,适用频率越来越高,耐温性能越来越好,引脚数增多,引脚间距减小,重量减小,可靠性提高,使用更加方便等等。
下面将对具体的封装形式作详细说明。
一、DIP封装
70年代流行的是双列直插封装,简称DIP(Dual In-line Package)。DIP封装结构具有以下特点:
1.适合PCB的穿孔安装;
2.比TO型封装(图1)易于对PCB布线;
3.操作方便。
DIP封装结构形式有:多层陶瓷双列直插式DIP,单层陶瓷双列直插式DIP,引线框架式DIP(含玻璃陶瓷封接式,塑料包封结构式,陶瓷低熔玻璃封装式),如图2所示。
衡量一个芯片封装技术先进与否的重要指标是芯片面积与封装面积之比,这个比值越接近1越好。以采用40根I/O引脚塑料包封双列直插式封装(PDIP)的CPU为例,其芯片面积/封装面积=3×3/15.24×50=1:86,离1相差很远。不难看出,这种封装尺寸远比芯片大,说明封装效率很低,占去了很多有效安装面积。
Intel公司这期间的CPU如8086、80286都采用PDIP封装。
二、芯片载体封装
80年代出现了芯片载体封装,其中有陶瓷无引线芯片载体LCCC(Leadless Ceramic Chip Carrier)、塑料有引线芯片载体PLCC(Plastic Leaded Chip Carrier)、小尺寸封装SOP(Small Outline Package)、塑料四边引出扁平封装PQFP(Plastic Quad Flat Package),封装结构形式如图3、图4和图5所示。
以0.5mm焊区中心距,208根I/O引脚的QFP封装的CPU为例,外形尺寸28×28mm,芯片尺寸10×10mm,则芯片面积/封装面积=10×10/28×28=1:7.8,由此可见QFP比DIP的封装尺寸大大减小。QFP的特点是:
1.适合用SMT表面安装技术在PCB上安装布线;
2.封装外形尺寸小,寄生参数减小,适合高频应用;
3.操作方便;
4.可靠性高。
在这期间,Intel公司的CPU,如Intel 80386就采用塑料四边引出扁平封装PQFP。
三、BGA封装
90年代随着集成技术的进步、设备的改进和深亚微米技术的使用,LSI、VLSI、ULSI相继出现,硅单芯片集成度不断提高,对集成电路封装要求更加严格,I/O引脚数急剧增加,功耗也随之增大。为满足发展的需要,在原有封装品种基础上,又增添了新的品种--球栅阵列封装,简称BGA(Ball Grid Array Package)。如图6所示。
BGA一出现便成为CPU、南北桥等VLSI芯片的高密度、高性能、多功能及高I/O引脚封装的最佳选择。其特点有:
1.I/O引脚数虽然增多,但引脚间距远大于QFP,从而提高了组装成品率;
2.虽然它的功耗增加,但BGA能用可控塌陷芯片法焊接,简称C4焊接,从而可以改善它的电热性能:
3.厚度比QFP减少1/2以上,重量减轻3/4以上;
4.寄生参数减小,信号传输延迟小,使用频率大大提高;
5.组装可用共面焊接,可靠性高;
封装仍与QFP、PGA一样,占用基板面积过大;
Intel公司对这种集成度很高(单芯片里达300万只以上晶体管),功耗很大的CPU芯片,如Pentium、Pentium Pro、Pentium Ⅱ采用陶瓷针栅阵列封装CPGA和陶瓷球栅阵列封装CBGA,并在外壳上安装微型排风扇散热,从而达到电路的稳定可靠工作。
四、面向未来的新的封装技术
BGA封装比QFP先进,更比PGA好,但它的芯片面积/封装面积的比值仍很低。
Tessera公司在BGA基础上做了改进,研制出另一种称为μBGA的封装技术,按0.5mm焊区中心距,芯片面积/封装面积的比为1:4,比BGA前进了一大步。
1994年9月日本三菱电气研究出一种芯片面积/封装面积=1:1.1的封装结构,其封装外形尺寸只比裸芯片大一点点。也就是说,单个IC芯片有多大,封装尺寸就有多大,从而诞生了一种新的封装形式,命名为芯片尺寸封装,简称CSP(Chip Size Package或Chip Scale Package)。CSP封装具有以下特点:
1.满足了LSI芯片引出脚不断增加的需要;
2.解决了IC裸芯片不能进行交流参数测试和老化筛选的问题;
3.封装面积缩小到BGA的1/4至1/10,延迟时间缩小到极短。
曾有人想,当单芯片一时还达不到多种芯片的集成度时,能否将高集成度、高性能、高可靠的CSP芯片(用LSI或IC)和专用集成电路芯片(ASIC)在高密度多层互联基板上用表面安装技术(SMT)组装成为多种多样电子组件、子系统或系统。由这种想法产生出多芯片组件MCM(Multi Chip Model)。它将对现代化的计算机、自动化、通讯业等领域产生重大影响。MCM的特点有:
1.封装延迟时间缩小,易于实现组件高速化;
2.缩小整机/组件封装尺寸和重量,一般体积减小1/4,重量减轻1/3;
3.可靠性大大提高。
随着LSI设计技术和工艺的进步及深亚微米技术和微细化缩小芯片尺寸等技术的使用,人们产生了将多个LSI芯片组装在一个精密多层布线的外壳内形成MCM产品的想法。进一步又产生另一种想法:把多种芯片的电路集成在一个大圆片上,从而又导致了封装由单个小芯片级转向硅圆片级(wafer level)封装的变革,由此引出系统级芯片SOC(System On Chip)和电脑级芯片PCOC(PC On Chip)。
随着CPU和其他ULSI电路的进步,集成电路的封装形式也将有相应的发展,而封装形式的进步又将反过来促成芯片技术向前发展。
半导体的半导体与集成电路的关系
半导体是指导电性能介于导体和绝缘体之间的材料。我们知道,电路之所以具有某种功能,主要是因为其内部有电流的各种变化,而之所以形成电流,主要是因为有电子在金属线路和电子元件之间流动(运动/迁移)。所以,电子在材料中运动的难易程度,决定了其导电性能。常见的金属材料在常温下电子就很容易获得能量发生运动,因此其导电性能好;绝缘体由于其材料本身特性,电子很难获得导电所需能量,其内部很少电子可以迁移,因此几乎不导电。而半导体材料的导电特性则介于这两者之间,并且可以通过掺入杂质来改变其导电性能,人为控制它导电或者不导电以及导电的容易程度。这一点称之为半导体的可掺杂特性。前面说过,集成电路的基础是晶体管,发明了晶体管才有可能创造出集成电路,而晶体管的基础则是半导体,因此半导体也是集成电路的基础。半导体之于集成电路,如同土地之于城市。很明显,山地、丘陵多者不适合建造城市,沙化土壤、石灰岩多的地方也不适合建造城市。“建造”城市需要选一块好地,“集成”电路也需要一块合适的基础材料——就是半导体。常见的半导体材料有硅、锗、砷化镓(化合物),其中应用最广的、商用化最成功的当推“硅”。那么半导体,特别是硅,为什么适合制造集成电路呢?有多方面的原因。硅是地壳中最丰富的元素,仅次于氧。自然界中的岩石、砂砾等存在大量硅酸盐或二氧化硅,这是原料成本方面的原因。硅的可掺杂特性容易控制,容易制造出符合要求的晶体管,这是电路原理方面的原因。硅经过氧化所形成的二氧化硅性能稳定,能够作为半导体器件中所需的优良的绝缘膜使用,这是器件结构方面的原因。最关键的一点还是在于集成电路的平面工艺,硅更容易实施氧化、光刻、扩散等工艺,更方便集成,其性能更容易得到控制。因此后续主要介绍的也是基于硅的集成电路知识,对硅晶体管和集成电路工艺有了解后,会更容易理解这个问题。除了可掺杂性之外,半导体还具有热敏性、光敏性、负电阻率温度、可整流等几个特性,因此半导体材料除了用于制造大规模集成电路之外,还可以用于功率器件、光电器件、压力传感器、热电制冷等用途;利用微电子的超微细加工技术,还可以制成MEMS(微机械电子系统),应用在电子、医疗领域。
芯片 半导体 集成电路三个概念的联系和区别
一、不同的分类
芯片:是电子技术中实现电路小型化的一种方法,通常是在半导体晶圆的表面制造。
半导体:是指在室温下导体和绝缘体之间具有导电性的材料。半导体广泛应用于消费电子、通信系统、医疗仪器等领域。
集成电路:是一种微电子器件或器件。利用一定的技术,将电路中所需的晶体管、电阻器、电容器、电感器等元器件和布线连接起来。
二、不同的特点
芯片:在半导体芯片表面制造电路的集成电路又称薄膜集成电路。另一种厚膜集成电路是由独立的半导体:半导体器件和无源器件集成在基板或电路板上的小型化电路。
集成电路:集成电路技术包括芯片制造技术和设计技术,主要体现在加工设备、加工技术、封装测试、批量生产和设计创新能力等方面。
三、不同的功能
芯片:芯片晶体管发明并量产后,二极管、晶体管等各种固态半导体器件得到广泛应用,取代了真空管在电路中的功能和作用。
半导体:是在室温下导电性介于导体和绝缘体之间的材料。半导体主要用于无线电、电视和温度测量。半导体是一种从绝缘体到导体具有可控导电性的材料。从
集成电路:具有体积小、重量轻、引线和焊点少、使用寿命长、可靠性高、性能好、成本低、便于大规模生产等优点。
参考资料来源:
百度百科-集成电路
参考资料来源:
百度百科-半导体
参考资料来源:
百度百科-芯片
什么是集成电路?
集成电路的发明,是多项技术不断发展的综合结果。
最早提出制造半导体集成电路思想的,是从事雷达研究的英国科学家达默。他在1952年5月发表的一篇论文中提出:“由于现在晶体管的出现和半导体方面的研究成果,有可能制造单块形状的电子器件而省去连接线。这种器件由多层绝缘材料、通导材料、整流材料和放大材料构成,在各层中去掉某一部分就能使器件具有某种电功能。”
达默的上述设想很有意义,可惜他本人未能使之付诸实施。进入50年代以后,军事工业和宇航工业的迅速发展,迫切需要各种功能更强、能实现更加复杂功能的半导体器件,而且还希望这种器件越小巧越好。
在社会需要的刺激下,那些早期来到硅谷开创电子工业的一批年轻的微电子工程师们,很自然地把研究方向瞄准到上述目标上。他们设想把一些晶体管及一些元件在新的形式下组合成一种更复杂的线路,而不是简单地拼凑在一起,这种线路称为集成电路。从外形来看,它们就是小小的硅片,因此人们也把它们称为芯片。至今,在各种计算机、计算器及各种电器设备中处处都可以看到这种芯片。早在第二次世界大战期间,有人就已设法把油墨状的电阻材料和镀银金属片印在陶瓷基片上,做成电阻和连接线的组合体;而印刷电路工艺的发展和晶体管的发明,都为集成电路的发明做了必要的技术准备。
现在人们认为,世界上最早的集成电路,是1958年由美国物理学家基尔比和诺伊斯两人各自独立地研究发明的,为了认定这项发明的专利权,他们两人所属的公司之间曾为此引发了一场为时不短的争执,因此,回顾一下他们各自的发明过程,是很有意思的。
基尔比于1923年生于美国密苏里州杰斐逊市,1947年毕业于伊利诺大学,1950年在威斯康星大学获硕士学位。
1958年5月,基尔比进入得克萨斯仪器公司还只有3个月,他被安排去进行电子设备微型化的研究。当时电子设备应用了电子管,后来逐步使用晶体管,但体积庞大。
按照国防部的要求,基尔比的任务是研究如何通过采用较小的元件、更细密的接线,使电子设备体积缩小,更加紧凑灵巧。
在这一年夏天,当基尔比的同事都去度假时,他却在宁静的环境中,坐在办公桌前苦苦思索解决微型化问题的办法。他在想出新办法前,屡次碰壁,后来才想到,所需用的全部电路元件包括晶体管、电阻、电容在内,可以用同一种半导体材料制成;这些电路元件必须绝缘,因此能单独起作用,彼此没有干扰;而全部电路元件都焊接在半导体圆片的基片或附近,从而可以利用先进的半导体技术手段使电路相互连接,不必担心元件在连接的地方会出现短路。当时基尔比把这种电路称为固体电路(现在有人称为微型电路)。1958年9月,基尔比的第一个安置在半导体锗片上的电路——“相移振荡器”取得了成功。
诺伊斯于1927年出生于美国衣阿华州的一个小镇。他对现实世界充满了好奇心,在十二三岁时就同二哥先后制造过一架硕大的滑翔机,装配出一辆汽车。他在大学同时学习物理、数学两个专业,对晶体管及其应用也很感兴趣,在晶体管方面奠定了坚实的理论基础。在1949年考取博士研究生后,仍选修一些有助于晶体管基础研究的课程,而在学术活动中,又有机会见到晶体管领域著名的专家肖克莱等人。
诺伊斯在1953年取得博士学位后,宁愿到待遇低的小公司任职。他认为:“越是小地方,就越能得到多方面的锻炼,有利于发挥作用。这样既便于选择合适的课题进行研究,又能成为企业家。”
当1955年肖克莱在硅谷创建“肖克莱半导体公司”时,诺伊斯就是其中被聘请来的优秀科技人才之一。在肖克莱半导体实验室成立的第一年内,诺伊斯和他的同事们竭力鼓动肖克莱把研究重点转向硅晶体管,但肖克莱执意要搞四层二极管的研究。由于认识上的分歧,1957年,诺伊斯和公司的另外7名年轻人一起离开了肖克莱公司,自己成立了“仙童半导体公司”,成为硅谷的第一家专门研制硅晶体管的公司。从这个意义上来说,诺伊斯早年想当企业家的愿望果真实现了。
当时,仙童公司在生产晶体管中首先使用一种“平面工艺”。主持技术工作的是赫尔尼,他是当时硅谷最有才干的科学家之一。他提出的平面工艺法,是通过各种措施把硅表面的氧化层尽量挤压,直到压成一张扁平的薄片为止,使器件的各电极在同一个平面上。因此,只要预先设计出晶体管的电极结构图,通过照相制版的方法,把它精缩成掩模板,就可使立体形状的晶体管制作成平面形状的晶体管。于是,结构无论怎样复杂和精密的晶体管,都可以用这种平面工艺压缩在一片小小的半导体硅片上。
平面工艺法的提出,使仙童公司科学家的思路豁然开朗,他们一下子看到了令人振奋的应用前景,他们意识到,不只是几个晶体管可以放置在一块硅片上,几十个、几百个甚至几百万个晶体管都可以放到一块硅片上。
平面工艺后来很快就应用到集成电路的制造上。仙童公司的科学家发现,运用照相平板印刷技术,可以在硅的表面上,把同样的晶体管按照一定的规律重复地排列,同时又使这些晶体管彼此相连。仙童公司的副经理诺伊斯与他人共同提出了制造集成电路的平面工艺法,并主持制造出世界上第一块用半导体硅制成的集成电路。
得克萨斯仪器公司的基尔比当然也认识到平面工艺法的重大价值。在诺伊斯之前半年就在制造“相移振荡器”时成功地实现了把电子线路安放在锗片上的设想。但诺伊斯制成的硅集成电路比基尔比的锗集成电路更实用,更容易生产。
当后来回忆自己在32岁发明集成电路的情况时,诺伊斯风趣地说:“我发明集成电路,那是因为我是一个‘懒汉’。当时曾考虑,用导线连接电子元件太费事,我希望越简单越好。”
而基尔比在得克萨斯仪器公司发明了后来称为集成电路的“固体电路”后,立即得到该公司负责人的重视,他们意识到这种新电子器件的重要性,并预计它将会得到广泛的应用,因此必须大力推广。
1959年2月,基尔比为他本人的“固体电路”申请了专利。不久之后,得克萨斯仪器公司宣布,他们已生产出一种比火柴头还小的半导体固体电路。而仙童公司的诺伊斯,虽然在此之前已使用平面工艺制造出半导体硅片集成电路,但并没有及时申请专利,直到1959年7月,诺伊斯才想到要去办专利申请手续,但时间已比基尔比晚了半年。
此后上述两家公司为集成电路的发明权长期争执不休,就是因为基尔比比诺伊斯申请专利的时间要早一些。基尔比先取得专利,但他的设计思想未能实现;而诺伊斯的平面工艺技术后来成为微电子革命的基础,但他却是在基尔比之后才申请专利的,更何况这一项技术在仙童公司并不是由他一人独自发现并加以完善的。
最后经法庭裁决,集成电路的发明专利权属于基尔比,而关键的有关集成电路的内部连接技术专利权属于诺伊斯。从1961年起,两人的专利使各自所在的公司都得到很大的经济效益,而他们两人也都因此成为国内外知名的发明家及微电子学的创始人,两人还一起获得美国科技人员最渴望得到的“巴伦坦奖章”。
上一篇:计算机教育杂志论文模板
下一篇:计算机学报属于什么期刊