欢迎来到学术参考网
当前位置:发表论文>论文发表

结构力学论文1500字

发布时间:2023-02-09 10:34

结构力学论文1500字

与关于时变结构的力学分析,目前还只有一些零散的研究成果,尚未形成体系,本文建议将时变结构力学分为三大领域:(1)快速时变结构力学,主要研究由于结构本身的急剧变化而引起的剧烈振动的力学分析和控制;(2)慢速时变结构力学,主要研究施工力学等问题,将结构的若干最不利工作状态冻结,在每个状态中按归不变结构分析;(3)超慢速时变结构力学,主要研究结构整个服役期间的变化及其安全度问题,即研究结构的时变动力可靠度有关的论文3000字
只要包含结构力学就行,字数3000字

生活中的结构力学

    结构力学这门课是很能启发我们去思考的。课上讲的很多问题都十分有趣。比如加约束、去约束的问题,实则充满了哲学意味。欲情故纵,以退为进,这是很耐人寻味的思维方法。还有平衡问题,生活中无处不在,门把手装在远端是利用力矩的概念而发展出的以四两拨千斤的奇妙方法,我们大家经常骑的自行车的行进也是利用了力矩。平衡在我们生活中处处发挥着重要的作用。以前我不太注意这些有趣的现象,跟这门课打交道这么一年之后,我也尝试利用力学的观点来剖析这个千奇百怪的世界,突然发现好多平凡普通的事物中都蕴含了深刻的力学原理,这样的发现让我对原本枯燥的结构力学有了兴趣,觉得多掌握一些了解世界的方法,多探究一些自然界的奥秘,确实是一件充满乐趣的事情。

    观察自然界中的天然结构,如植物的根、茎、叶,动物的骨骼,蛋类的外壳,可以发现他们的强度和刚度不仅和材料有关,而且和他们的造型有密切的关系,很多工程结构受到天然结构的启发而创新出来。结构设计不仅要考虑结构的强度与刚度,还要做到用料省、重量轻。减轻重量对某些工程尤为重要,如减轻飞机的重量就可以使飞机航程远、上升快、速度快、能耗低。

    生活处处皆学问。是否真正掌握了一门技术也好,知识也罢,唯一检测的标准就是我们是不是会用他。你会用学到的东西来解决问题,解释现象。

我搜集了世界上大楼坍塌的关于其结构的典型案例,整理如下:

花旗大楼(Citicorp Center):

位于纽约的花旗大楼(Citicorp Center),无论从建筑的美感、结构设计的专业角度、以及Engineering Ethics方面都值得一说。

先看看外形,远远看去花旗大楼最显眼的就是倾斜的顶部,45°角的大斜面也算是纽约街头比较有辨识度的了。

但是让我们往下看:

    底下的柱子,不在传统意义上的四角,而是在中点。原因是要从上图左下角的老房子说起。花旗大楼的选址,与旁边的教堂有一点的冲突,教堂不能动,但允许你在上面的空间盖楼。负责花旗大楼的建筑设计师是Hugh Stubbins,但更重要的角色是结构设计师William LeMessurier——一个天才结构师。

地面一角不让用,于是他把柱子设计在正方形四边的中间。然后设计出一套v字形的支撑体系。但这样的话就这栋楼就太轻了,扛不住风吹。因此,他又添加了一个400吨重的调谐质量阻尼器,这样就解决了高层建筑中普遍的抗风问题,以及减轻抖动。

    于是这个天才结构师这样一套设计,有新意的解决了小教堂所带来的一系列难题。总之一切相安无事一直到了1978年。

    这一年,普林斯顿的一名本科生写毕业论文,题目是“Implications of a Major Office Complex: Scientific, Social and Symbolic Implications”,准备用花旗银行这个楼做案例,向LeMessurier的团队要来了一些图纸和数据。测算后,发现这楼在45°的风向下,其无法承受风速为每小时112公里的大风侵袭。

    也就是说一阵台风这楼可能就塌了。学生百思不得其解之后,联系了LeMessurier团队的一个初级工程师,这名工程师否认了危险的存在。当然,这名初级工程师还是履行了自己的责任,将这件事告知了LeMessurier本人,但由于LeMessurier觉得设计之初已经考虑过了各个方向的风力负担,并没有发现什么异常,也没有引起足够的重视。

    直到LeMessurier参与一个位于匹兹堡的项目时,施工方提出用螺栓代替焊接时,LeMessurier突然联想到路人甲学生的质疑。他想到这里心里咯噔一下,就急急忙忙赶回纽约进行了演算。

    结果发现,当承受对角线方向的强风时,几个V字支撑钢梁所承受的力相当于设计值的两倍。这对于钢梁本身没什么,如果是焊接节点也没什么,但螺栓就受不了了。LeMessurier这下慌了,因为当时纽约飓风Ella即将登陆,人民群众的生命财产将会发生危险。

    经过慎重的决定,LeMessurier及其团队,联合花旗银行,NYPD,红十字会等组织,完善了一个救援方案。但这一切是秘密进行的,公众、尤其是花旗银行里面办公的所有人员都不知情。与此同时,修缮团队也进驻大楼,以常规改建的名义,开始了修补工作。好在LeMessurier团队及时做好了结构修补,并且Ella也绕道而行,并未真正到达纽约,因而安全度过了当年的大风天。

    所有这些,一直隐埋在秘密之中,直到一个叫 Joe Morgenstern的记者在一次聚会中无意听到,并且采访了LeMessurier本人。1995年,the New Yorker杂志刊登此事,让围绕在花旗银行的秘闻为外界知晓,并且BBC还特意做了一期纪录片来报道此事。

小贤思考:整个事件中诸多发展都是挺耐人玩味的:LeMessurier天才的设计方案避免了重新选址或者拆除教堂,让广大结构工程师开了眼,拍手叫好;然而建成之后,很快就被一个具有钻研精神的路人甲学生发现其无法承受大风侵袭;随后又被LeMessurier所重视,向所有市民隐瞒了这个消息,悄悄连续赶工多日完善了救援方案。

总之,花旗银行这个案例还是提醒我们一定要真正重视建筑结构,建筑师必须有一丝不苟的态度啊。所以对结构知识的掌握,也是成为一个好建筑师的必要条件。

——城工1班 秦兆贤 20154660131

初中物理力学论文1000字!!急啊!! 最好是初二的学生的思维写的!谢了

物理力学是力学的一个新分支,它从物质的微观结构及其运动规律出发,运用近代物理学、物理化学和量子化学等学科的成就,通过分析研究和数值计算,阐明介质和材料的宏观性质,并对介质和材料的宏观现象及其运动规律作出微观解释。主要包括静力学、动力学、流体力学、分析力学、运动学、固体力学、材料力学、复合材料力学、流变学、结构力学、弹性力学、塑性力学、爆炸力学、磁流体力学、空气动力学、理性力学、物理力学、天体力学、生物力学、计算力学
物理力学主要研究平衡现象,如气体、液体、固体的状态方程,各种热力学平衡性质和化学平衡的研究等。对于这类问题,物理力学主要借助统计力学的方法。
物理力学对非平衡现象的研究包括四个方面:一是趋向于平衡的过程,如各种化学反应和弛豫现象的研究;二是偏离平衡状态较小的、稳定的非平衡过程,如物质的扩散、热传导、粘性以及热辐射等的研究;三是远离于衡态的问题,如开放系统中所遇到的各种能量耗散过程的研究;四是平衡和非平衡状态下所发生的突变过程,如相变等。解决这些问题要借助于非平衡统计力学和不可逆过程热力学理论。
物理力学的研究工作,目前主要集中三个方面:高温气体性质,研究气体在高温下的热力学平衡性质(包括状态方程)、输运性质、辐射性质以及与各种动力学过程有关的弛豫现象;稠密流体性质,主要研究高压气体和各种液体的热力学平衡性质(包括状态方程)、输运性质以及相变行为等;固体材料性质,利用微观理论研究材料的弹性、塑性、强度以及本构关系等。
物质的性质及其随状态参量变化规律的知识,无论对科学研究还是工程应用都极为重要,力学本身的发展就一直离不开物性和对物性的研究。
近代工程技术和尖端科学技术迅猛发展,特别需要深入研究各种宏观状态下物体内部原子、分子所处的微观状态和相互作用过程,从而认识宏观状态参量扩大后物体的宏观性质和变化规律。因此,物理力学的建立和发展,不但可直接为工程技术提供所需介质和材科的物性,也将为力学和其他学科的发展创造条件。

物理学生论文力学

力学是力与运动的科学,它既是一门基础科学, 又是一门应用众多且广泛的科学。下文是我为大家整理的关于物理学力学论文的范文,欢迎大家阅读参考!

浅析物理力学的产生及其发展

摘 要:物理力学主要是研究宏观力学的微观理论学科。研究物理力学的主要目的是通过理解微观粒子性质的相互作用,找出介质的力学性质计算方法,进而使解决力学问题建立在微观分析的基础上。本文主要探讨了物理力学的产生和发展,为有关物理力学问题的解决提供理论基础。

关键词:物理力学;产生;发展

一、物理力学发展需要解决的问题分析

在物理力学的发展过程中,我们需要解决两方面的问题,一个是关于物性的问题,另一个是有关运动规律的问题。物理力学主要通过物性及其运动规律这两个方面的微观化而成为解决问题、建立微观分析的基础。关于物性的参数主要表现为运动方程组中的系数,例如弹性系数、热导率、粘性系数、声速、比热等。为了求解运动的方程组,需要知道它们相关的数值。

在传统力学中,物性参数的数值是需要试验测定的。而在我们研究的物理力学中,是通过微观的分析以及对宏观数据分析相结合的方法计算参数的数值。我们研究物理力学,不仅是为了能够找出物质性质的微观规律,而且还需要找能够预见新物质性质的方法。

针对物理力学发展中的相关问题,先了解一下有关激波结构问题的例子。物态在激波前后会有很大的变化,在波阵面一定的厚度之内,物质是处在远离平衡的状态的。这时,对于宏观物态的参数已经不适用了。因此,我们需要从分子运用的这一个角度进行描述。像从波尔兹曼方程的角度出发,进而直接进行求解。

在上世纪60年代,一对无内部自由度的影响激波结构的问题得到了进一步发展。其发展主要得力于计算机技术的发展,从而能够使波尔兹曼方程进而得到模型数学方程,求精确解。另外,还能够实现激波管与稀薄气体风洞在较高区域的分辨率的相关方面的测量。虽然对于这些问题的处理都是初步的,但是从物理力学微观运动规律上看,确是一个非常大的进步。

还有一个相似的例子就是对爆震波反应区结构方面的研究。对于这方面的研究是比激波结构更加复杂的,解决问题的困难在于理论的复杂性,也有实验经验的不足等原因。分子气体的动力激光器中非平衡流方面的问题,主要是因为分子内部自由度性质在不断膨胀的气流中产生的自身不平衡现象。在这种迅速膨胀的气流中,分子振动的自由度两方面是不平衡的,不能够采用统一的温度对其进行描述。因此,这也是一个远离平衡的问题。

二、新技术不断推动物理力学的发展

物理力学的产生及其发展即是力学学科发展的重要趋势,也是促进现代工程技术发展的重要手段。自上世纪40年代至今,由于尖端的技术以及基础科学的不断发展与进步,力学面临着大量的超高温和超高压等特殊条件下的问题。我国著名的力学家钱学森在上世纪50年代初提出应该建立物理力学这门学科,其真知灼见把握了力学发展的大趋势,并且预见了今后突飞猛进的结果。

人类社会科学技术的不断发展,给物理力学的研究提供了更多的条件。纵观近五十年间的物理力学的发展,值得一提的是液体理论的重大进步。1972年,麦克唐纳等人计算出等压线结果和多种液体实测数据等,促进了对液体理论的研究。1997年,威尔逊提出了采用重正化群理论解决临界现象,取得了重大的进展。近20年来,对于耗散结构理论是非平衡系统的研究也取得了突破性的进展。上世纪50年代之后,原子分子物理学才重新被重视,尤其是计算机的不断应用大大地促进了这门学科的发展。其他的像分子束技术、光散射技术、中子衍射技术等都成为了研究固体以及液体微观结构的有效手段。另外,高压技术能够产生千万大气压以上的高压条件,高倍电子显微镜能够用来观测原子尺的现象等。新技术以及新发明都为进一步研究物理力学提供了有利的条件。

本文对物理力学的产生及其发展进行了相关的探讨。通过本文的研究,我们了解到,在对物理力学进行研究时,我们应该明确物理力学研究的目的,还应该充分采用新技术、新发明,将其不断应用到研究中。只要我们不断探索和实践,一定能够进一步促进物理力学的发展。

参考文献:

[1]范继美.理论力学与普通物理力学的关系[J].云南师范大学学报(自然科学版),2009,(02).

[2]钱学森.从原子分子物理出发,经由物理力学的思路和方法搞发明创造[J].原子与分子物理学报,2007,(02).

[3]干洪.力学学科的发展现状与21世纪展望[J].安徽建筑工业学院学报(自然科学版),2001,(02)。

[4]陈卫平.现代力学发展趋势及研究课题[J].台州师专学报,2007,(06).

浅析力学在机械中的应用

[摘 要]力学是力与运动的科学,它既是一门基础科学, 又是一门应用众多且广泛的科学。本文立足于力学,简要论述了力学的内涵及其发展历程,并对力学在机械中的应用进行了较为深入的探讨与分析。

[关键词]力学 弹性力学 断裂力学 工程力学 机械

力学是力与运动的科学,它的研究对象主要是物质的宏观机械运动,它既是一门基础科学,又是一门应用众多且广泛的科学。力学与天文学和微积分学几乎同时诞生,在经典物理的发展中起关键作用,推动了地球科学的发展进步,如大气物理、海洋科学等,同时力学也在机械中起着越来越重要的作用,且应用广泛。

一、力学

力学是一门独立的基础学科,主要研究能量和力以及它们与固体、液体及气体的平衡、变形或运动的关系,可粗分为静力学、运动学和动力学三部分。

力学的发展历史悠久,古希腊时代力学附属于自然哲学,后来成为物理学的一个大分支,1687年,牛顿三大定律的提出标志着力学作为一门独立的学科开始形成。此后,随着资本主义生产的发展,到18世纪末,以动力学和运动学为主要特征的经典力学日益完善。19世纪,大机器生产促进了力学在工程技术和应用方面的发展,推动了结构力学、弹性固体力学和流体力学等主要分支的建立。19世纪末,力学已是一门相当发展并自成体系的独立学科。

二、力学在机械中的应用

力学在机械中的应用广泛,其典型应用主要有以下几种:

1.弹性力学在机械设计中的应用

弹性力学也称弹性理论,是固体力学的重要分支,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。机械运动当中,许多机械运转速度较高、承载很大,机械的弹性变形对系统的影响不容忽视,必须将机械系统按弹性系统进行分析和设计。由此可见,弹性力学在机械设计中应用广泛。一般情况下,弹性力学在凸轮机构设计、齿轮机构设计、轴设计中应用较为广泛。

齿轮机构在设计时运用了弹性力学的知识,渐开线作为齿廓曲线存在诸多优点,但用弹性力学知识加以分析便可得出它存在的一些固有缺陷,即当两齿轮啮合传动时,根据弹性力学中的赫兹公式分析可得,在其它条件相同的情况下,要想降低两齿轮在接触处的最大接触力,就必须增大两轮齿廓在接触点处的综合曲率半径,对于渐开线齿轮传动来说,由于要增大两轮齿廓在接触点处的综合曲率半径,就需要增大齿轮机构的尺寸,而两轮齿廓在接触点处的综合曲率半径增大的范围是有限的,所以难以进一步达到齿轮机构尺寸小、而承载能力大幅度提高的目的。同时,弹性力学在轴设计中也有众多应用。为避免共振现象,对高转速的轴,如汽轮机主轴、发动机曲轴等设计时振动计算尤其重要,此时必须运用弹性力学知识。

2.断裂力学在机械工程中的应用

断裂力学,是固体力学的一门新分支,主要研究含裂纹构件的强度与寿命,是结构损伤容限设计的理论基础。断裂力学主要可分为线弹性断裂力学与弹塑性断裂力学两大类,前者适用于裂纹尖端附近小范围屈服的情况;而后者适用于裂纹尖端附近大范围屈服的情况。断裂力学发展迅速,在机械工程中应用广泛,并占据重要地位。断裂力学在机械工程中的有效应用,不仅可以提高机械的性能与功效,更能防止工程设备发生灾难性的断裂事故,以确保机械、设备的安全可靠与良好运行。

首先,我国在采用断裂力学方法制订结构缺陷评定标准及安全设计规范方面已取得了较好的成绩,如压力容器、小型但用量大的液化石油气钢瓶及汽轮一发电机组等。

其次,概率断裂力学在可靠性设计中应用较多。概率断裂力学在可靠性设计中的广泛应用推动了可靠性设计的快速发展。运用参量的分布及安全余度来反映常规设计中不能准确反映的客观实际和常规设计安全评定中用安全系数不能准确反映的真实安全性。由于安全余度考虑了应力和强度的二阶矩,较好地反映了结构可靠度的实质,既考虑了变异特性又考虑了平均值,因而与失效分布有较直接的关系,使安全设计更可靠。国外已较完整地应用于飞机结构,如概率损伤容限分析、飞机结构可靠性和事故分析、飞机结构的耐久性分析等方面。我国在这方面开展的典型性研究则是海洋石油平台导管架焊接管节点的疲劳强度分析。

再者,可用断裂力学方法进行机械产品的失效分析。失效分析是指事故或故障发生后所进行的检侧和分析,目的在于找到失效的部位、失效原因和机理,从而掌握产品应当改进的方向及修复的方法,防止同类问题再次发生,以推进技术不断前进。因此,失效分析技术受到了社会各界的重视。断裂力学在机械产品失效分析中具有着重要作用。机械产品的主要失效模式有: 断裂、蠕变、疲劳、腐蚀、磨损及热损伤等,它们都可以借助断裂力学方法及断裂分析技术予以解决,断裂力学方法是失效分析的有力工具。

最后,运用断裂力学可以指导改进工艺及合理选材,如模具、焊接工艺等方面,可以减少工人的劳动量。

3.工程力学在机械修理中的应用

工程力学涉及众多的力学学科分支与广泛的工程技术领域,是一门理论性较强、与工程技术联系极为密切的技术基础学科,工程力学的定理、定律和结论广泛应用于各行各业的工程技术中,是解决工程实际问题的重要基础。处理机械工程出现的大量破坏问题,绝大多数是根据力学方面的知识作出判断和分析的。例如,汽车修理中汽车零部件的破坏分析与修理也是如此,其中,判断汽车半轴套管断裂的原因与确定修复方案等,全部流程无一不体现着工程力学知识在汽修中的应用。

三、结语

当今社会,科学技术迅猛发展,作为一门基础学科,力学也一定会得到进一步的发展与进步,且在机械中获得更广更深的应用。

参考文献

[1]林同骥,浦群.现代力学的发展[J].力学进展,1990,(1).

[2]李彦军.工程力学在汽修中的应用与对策[J].科技向导,2012,(32).

[3]侯岩滨.弹性力学在机械设计中的应用[J].辽宁师专学报,2005,(1).

[4]吴清可,刘元杰,张毓槐.断裂力学在机械工程中的应用[J].机械强度,1988,(6).

上一篇:关于赏识教育的议论文

下一篇:elle杂志爱了女生