离散数学小论文2000字
离散数学小论文2000字
你们学校也要提交译文是吧怎么现在才交啊现在都在忙着毕业论文的事情估计没人有空来帮你翻译的你直接去cnki找篇相似的好了用google翻译效果也蛮好的或者找本有中文翻译而且相关的书对照英文原版就行了再说译文这种东西没人去仔细看的或者你提到200分试试吧
求一篇大一微积分与经济学有关的小论文,2000字左右。。。
微积分的基本思想及其在经济学中的应用
摘要: 微积分局部求近似、极限求精确的基本思想贯穿于整个微积分学体系中,而微积分在各个领域中又有广泛的应用,随着市场经济的不断发展,微积分的地位也与日俱增,本文着重研究微分在经济活动中边际分析、弹性分析、最值分析的应用,以及积分在最优化问题、资金流量的现值问题中的应用。
关键词:微分 积分 基本思想 应用
微积分是人类智慧最伟大的成就之一,局部求近似、极限求精确的基本思想是进一步学习高等数学的基础。随着市场经济的不断发展,利用数学知识解决经济问题显得越来越重要,运用微分和积分可以对经济活动中的实际问题进行量化分析,从而为企业经营者的科学决策提供依据。
1. 微积分的产生、发展及其作用
微积分思想的萌发出现的比较早,中国战国时代的《庄子·天下》篇中的“一尺之锤,日取其半,万事不竭”就蕴涵了无穷小的思想。经查阅文献《晏能中.微积分——数学发展的里程牌》得知:到了十七世纪,欧洲许多数学家也开始运用微积分的思想来写极大值与极小值,以及曲线的长度等等。帕斯卡在求曲边形面积时,用到“无穷小矩形”的思想,并把无穷小概念引入数学,为后来莱布尼兹的微积分的产生奠定了基础。
随着数学科学的发展,微积分得到了进一步的发展,其中欧拉对于微积分的贡献最大,他的《无穷小分析引论》、《微分学》、《积分学》三部著作对微积分的进一步丰富和发展起了重要的作用。之后,洛必达、达朗贝尔、拉格朗日、拉普拉斯、勒让德、傅立叶等数学家也对微积分的发展作出了较大的贡献。由于这些人的努力,微分方程、级数论得以产生,微积分也正式成为了数学一个重要分支。
微积分的创立改变了整个数学世界。微积分的创立,极大的推动了数学自身的发展,同时又进一步开创了诸多新的数学分支,例如:微分方程、无穷级数、离散数学等等。此外,数学原有的一些分支,例如:函数与几何等等,也进一步发展成为复变函数和解析几何,这些数学分支的建立无一不是运用了微积分的方法。在微积分创设后这三百年中,数学获得了前所未有的发展。
2. 微积分的基本思想———局部求近似、极限求精确
微积分是微分学和积分学的总称,它的基本思想是:局部求近似、极限求精确。以下我们具体阐述微分学与积分学的思想。
2.1微分学的基本思想
微分学的基本思想在于考虑函数在小范围内是否可能用线性函数或多项式函数来任意近似表示。直观上看来,对于能够用线性函数任意近似表示的函数,其图形上任意微小的一段都近似于一段直线。在这样的曲线上,任何一点处都存在一条惟一确定的直线──该点处的“切线”。它在该点处相当小的范围内,可以与曲线密合得难以区分。这种近似,使对复杂函数的研究在局部上得到简化。
2.2积分学的基本思想
积分学的最基本的概念是关于一元函数的定积分与不定积分。蕴含在定积分概念中的基本思想是通过有限逼近无限。因此极限方法就成为建立积分学严格理论的基本方法。微分与积分虽然是微观和宏观两种不同范畴的问题,但它们的研究对象都是“非均匀”变化量,解决问题的基本思想方法也是一致的。可归纳为两步:a.微小局部求近似值;b.利用极限求精确。微积分的这一基本思想方法贯穿于整个微积分学体系中,并且将指导我们应用微积分知识去解决各种相关的问题。
3.微分在经济学中的应用
随着经济的发展及数学理论的完善,数学与经济学的关系越来越密切,应用越来越广泛.微积分作为数学知识的基础,介绍微积分与经济学的书也越来越多,然而大部分书或者着重介绍经济学概念或者着重介绍数学理论,很少有主要介绍微积分在经济学中的应用的书.本文将通过对一些简单的微积分知识在经济学中的应用,以使人们意识到理论与实际结合的重要性.
3.2弹性分析
在文献《蔡芷.财会数学》中,某个变量对另一个变量变化的反映程度称为弹性或弹性系数。在经济工作中有多种多样的弹性,这决定于所考察和研究的内容,如果是价格的变化与需求反映之间有关系,那么这个反映就称为需求弹性。由于具体商品本身属性的不同以及消费需求的差异,同样的价格变化给不同商品的需求带来的影响是不同的。有的商品反应灵敏,弹性大,涨价降价会造成剧烈的销售变动;有的商品则反应呆滞,弹性小,价格变化对其没什么影响。
4.积分在经济学中的应用
积分学是微分学的逆问题,利用积分学来研究经济变量的变化问题是经济学中的一个重要方法,不定积分是求全体原函数,定积分是求和式的极限。由边际函数求原函数,或求一个变上限的定积分,一般都采用不定积分来解决;如果求原函数在某个范围的改变量,则采用定积分来解决。对企业经营者来说,对其经济环节进行定量分析是非常必要的,不但可以给企业经营者提供精确的数值,而且在分析的过程中,还可以给企业经营者提供新的思路和视角。
5.总结:
微积分局部求近似、极限求精确的基本思想方法贯穿于整个微积分学体系中,在经济日益发展的今天,微积分的地位也与日俱增,贷款、养老金、医疗保险、企业分配、市场需求等等金融问题越来越多地进入普通人的生活,利用微积分的知识有利于我们去解决各种相关的问题。
参考文献:
[1] 祁卫红,罗彩玲.微积分学的产生和发展[J].山西广播电视大学学报,2003,(02). [2] 晏能中.微积分——数学发展的里程牌[J].达县师范高等专科学校学报,2002,(04). [3] 同济大学数学教研室.高等数学(第四版)[M].北京:高等教育出版社,1993. [4] [美]托·道林.数学在经济中的应用[M].福州:福建科学技术出版社,1983,4. [5] 蔡芷.财会数学[M].上海:知识出版社,1982,12.
[6] 赵树嫄.经济应用数学基础(一).微积分.中国人民大学出版社,2002. [7] 杨学忠.微积分[M].中国商业出版社,2001.
[8] 向菊敏.微积分在经济分析活动中的应用[J].科技信息,2009(26). [9] 髙哲.浅谈微积分在经济中的应用[J].中国科技博览,2009(7). [10] 王志平.高等数学大讲堂[M].大连:大连理工大学出版社,2004. [11] 吴赣昌.微积分[M].中国人民大学出版社,2004.
[12] 谭瑞林,刘月芬.微积分在经济分析中的应用浅析[J].商场现代化,2008(4). [13] 张先荣.谈微积分在经济分析中的应用[J].濮阳职业技术学院学报,2009,22(4) [14] 明清河.数学分析的思想与方法[M].山东大学出版社,2004.
[15] Elizabeth George State University Analysis of Diagram Modification and Construction in Students’Solutions to Applied calculus l for Research in Mathematics Education,2005Vol.36,No.3:48-277.
[16]Sandra Nicol(2006).Challenging Pre-serviceteachers’Mathematical Understanding:The case of Division by .
关于大一离散数学的论文
不用登陆我们学校了,在百度 输入维普 就可以了,要下载的话用ip登陆,以前我 下载过数学的,好像没有离散的。
计算机论文范文3000字
学术堂整理了一篇3000字的计算机论文范文,供大家参考:
范文题目:关于新工程教育计算机专业离散数学实验教学研究
摘要: 立足新工科对计算机类专业应用实践能力培养的要求,分析了目前离散数学教学存在的关键问题,指明了开展离散数学实验教学的必要性。在此基础上,介绍了实验教学内容的设计思路和设计原则,给出了相应的实验项目,并阐述了实验教学的实施过程和教学效果。
关键词:新工科教育;离散数学;计算机专业;实验教学
引言
新工科教育是以新理念、新模式培养具有可持续竞争力的创新型卓越工程科技人才,既重视前沿知识和交叉知识体系的构建,又强调实践创新创业能力的培养。计算机类是新工科体系中的一个庞大专业类,按照新工科教育的要求,计算机类专业的学生应该有很好的逻辑推理能力和实践创新能力,具有较好的数学基础和数学知识的应用能力。作为计算机类专业的核心基础课,离散数学的教学目标在于培养学生逻辑思维、计算思维能力以及分析问题和解决问题的能力。但长期以来“定义-定理-证明”这种纯数学的教学模式,导致学生意识不到该课程的重要性,从而缺乏学习兴趣,严重影响学生实践能力的培养。因此,打破原有的教学模式,结合计算机学科的应用背景,通过开展实验教学来加深学生对于离散数学知识的深度理解是实现离散数学教学目标的重要手段。
1.实验项目设计
围绕巩固课堂教学知识,培养学生实践创新能力两个目标,遵循实用性和可行性原则,设计了基础性、应用性、研究性和创新性四个层次的实验项目。
(1) 基础性实验
针对离散数学的一些基本问题,如基本的定义、性质、计算方法等设计了7个基础性实验项目,如表1所示。这类实验要求学生利用所学基础知识,完成算法设计并编写程序。通过实验将抽象的离散数学知识与编程结合起来,能激发学生学习离散数学的积极性,提高教学效率,进而培养学生的编程实践能力。
(2) 应用性实验
应用性实验是围绕离散数学主要知识单元在计算机学科领域的应用来设计实验,如表2所示。设计这类实验时充分考虑了学生掌握知识的情况,按照相关知识点的应用方法给出了每个实验的步骤。学生甚至不需要完成全部实验步骤即可达到实验效果。例如,在“等价关系的应用”实验中,按照基于等价类测试用例的设计方法给出了实验步骤,对基础较差的学生只需做完第三步即可达到“巩固等价关系、等价类、划分等相关知识,了解等价关系在软件测试中的应用,培养数学知识的应用能力。”的实验目的。
(3) 研究性实验研究性实验和应用性实验一样
也是围绕离散数学主要知识单元在计算机科学领域中的应用来设计实验,不同之处在于,研究性实验的实验步骤中增加了一些需要学生进一步探讨的问题。这类实验项目一方面为了使学生进一步了解离散数学的重要性,另一方面为了加强学生的创新意识与创新思维,提高计算机专业学生的数学素质和能力。表 3 给出了研究性试验项目。
(4) 创新性实验
在实际教学中还设计了多个难度较高的创新性实验题目,例如,基于prolog语言的简单动物识别
系统、基于最短路径的公交线路查询系统、简单文本信息检索系统的实现等,完成该类实验需要花费较长的时间,用到更多的知识。通过这些实验不仅有利于培养学生分析问题、解决问题的能力和创新设计能力,也有利于培养学生独立思考、敢于创新的能力。
3.实验教学模式的构建
通过实验教学环节无疑可以激发学生对课程的兴趣,提高课程教学效率,培养学生的实践创新能力。但是,近年来,为了突出应用性人才培养,很多地方本科院校对离散数学等基础理论课的课时进行了压缩,加之地方本科院校学生基础较差,使得离散数学课时严重不足,不可能留出足够的实验教学时间。针对这种情况,采用多维度、多层次的教学模式进行离散数学实验教学。
(1) 将实验项目引入课堂教学
在离散数学的教学过程中,将能反映在计算机科学领域典型应用的实验项目引入到课堂教学中,引导学生应用所学知识分析问题、解决问题。例如在讲授主析取范式时,引入加法器、表决器的设计,并用multisim进行仿真演示,让学生理解数理逻辑在计算机硬件设计中的作用。又如讲谓词逻辑推理时,引入前一届学生用Prolog完成的“小型动物识别系统”作为演示实验。这些应用实例能够让学生体会数理逻辑在计算机科学领域的应用价值,不仅激发学生的学习兴趣,提高课堂教学效率,也锻炼了学生的逻辑思维,培养了学生的系统设计能力。
(2) 改变课后作业形式,在课后作业中增加上机实验题目
由于课时有限,将实验内容以课后作业的形式布置下去,让学生在课余时间完成实验任务。例如讲完数理逻辑内容后,布置作业: 编写 C语言程序,实现如下功能: 给定两个命题变元 P、Q,给它们赋予一定的真值,并计算P、P∧Q、P∨Q的真值。通过完成,使学生掌握命题联结词的定义和真值的确定方法,了解逻辑运算在计算机中的实现方法。又如,把“偏序关系的应用”实验作为“二元关系”这一章的课后作业,给定某专业开设的课程以及课程之间的先后关系,要求学生画出课程关系的哈斯图,安排该专业课程开设顺序,并编写程序实现拓扑排序算法。通过该实验学生不仅巩固了偏序关系、哈斯图等知识,而且了解到偏序关系在计算机程序设计算法中的应用和实现方法。
(3) 布置阅读材料
在教学中,通常选取典型应用和相关的背景知识作为课前或课后阅读材料,通过课堂提问抽查学生的阅读情况。这样,不仅使学生预习或复习了课程内容,同时也使他们对相关知识点在计算机学科领域的应用有了一定的了解。例如,在讲解等价关系后,将“基于等价类的软件测试用例设计方法”作为课后阅读材料; 在讲解图的基本概念之前,将“图在网络爬虫技术中的应用”作为课前阅读材料; 货郎担问题和中国邮路问题作为特殊图的课后阅读材料。通过这些阅读材料极大地调动学生学习的积极性,取得了非常好的教学效果。
(4) 设置开放性实验项目
在离散数学教学中,通常选择一两个创新性实验项目作为课外开放性实验,供学有余力的学生学习并完成,图1给出了学生完成的“基于最短路径公交查询系统”界面图。同时,又将学生完成的实验系统用于日后的课堂教学演示,取得了比较好的反响。
(5) 利用网络教学平台
为了拓展学生学习的空间和时间,建立了离散数学学习网站,学习网站主要包括资源下载、在线视频、在线测试、知识拓展和站内论坛五个部分模块,其中知识拓展模块包含背景知识、应用案例和实验教学三部分内容。通过学习网站,学生不仅可以了解离散数学各知识点的典型应用,还可以根据自己的兴趣选择并完成一些实验项目。在教学实践中,规定学生至少完成1-2个应用性实验项目并纳入期中或平时考试成绩中,从而激发学生的学习兴趣。
4.结束语
针对新工科教育对计算机类专业实践创新能力的要求,在离散数学教学实践中进行了多方位、多层次的实验教学,使学生了解到离散数学的重要
性,激发了学生的学习兴趣,提高了学生程序设计能力和创新能力,取得了较好的教学效果。教学团队将进一步挖掘离散数学的相关知识点在计算机学科领域的应用,完善离散数学实验教学体系,使学生实践能力和创新思维得以协同培养,适应未来工程需要。
参考文献:
[1]徐晓飞,丁效华.面向可持续竞争力的新工科人才培养模式改革探索[J].中国大学教学,2017(6).
[2]钟登华.新工科建设的内涵与行动[J].高等工程教育研究,2017(3).
[3]蒋宗礼.新工科建设背景下的计算机类专业改革养[J].中国大学教学,2018( 11) .
[4]The Joint IEEE Computer Society/ACM Task Force onComputing Curricula Computing Curricula 2001 ComputerScience[DB / OL]. http:/ / WWW. acm. org / education /curric_vols / cc2001. pdf,2001.
[5]ACM/IEEE - CS Joint Task Force on Computing Curricula.2013. Computer Science Curricula 2013[DB / OL]. ACMPress and IEEE Computer Society Press. DOI: http: / / dx.doi. org /10. 1145 /2534860.
[6]中国计算机科学与技术学科教程2002研究组.中国计算机科学与技术学科教程2002[M].北京: 清华大学出版社,2002.
[7]张剑妹,李艳玲,吴海霞.结合计算机应用的离散数学教学研究[J].数学学习与研究,2014(1) .
[8]莫愿斌.凸显计算机专业特色的离散数学教学研究与实践[J].计算机教育,2010(14)
上一篇:幼儿园信息技术教育论文
下一篇:中国实用医刊属于几类期刊