大数据时代的思维方式论文
大数据时代的思维方式论文
随着近年来大数据技术的快速发展,大数据所创造的价值深刻改变了我们的生活、工作和思维方式。大数据研究专家舍恩伯格指出,大数据时代,人们对待数据的思维方式会发生如下三个变化:
事实上,大数据时代带给人们的思维方式的深刻转变远不止上述三个方面。大数据思维最关键的转变在于从自然思维转向智能思维,使得大数据像具有生命力一样,获得类似于“人脑”的智能,甚至智慧。
以下将介绍大数据技术所带来的四种思维方式的转变。
社会科学研究社会现象的总体特征,以往的采样方法一直是主要数据获取手段,这是人类在无法获得总体数据信息条件下的无奈选择。在大数据时代,人们可以获得与分析更多的数据,甚至是与之相关的所有数据,而不再依赖于采样,从而可以带来更全面的认识,可以更清楚地发现样本无法揭示的细节信息。
在大数据时代,随着数据收集、处理、存储、分析技术的突破性发展,我们可以更加方便、快捷、动态地获得研究对象有关的所有数据,而不再因诸多限制不得不采用样本研究方法,相应地,思维方式也应该从之前的样本思维转向总体性思维,从而能够更加直观、全面、立体、系统地认识总体状况。
在大数据时代之前,由于收集的样本信息量比较少,所以必须确保记录下来的数据尽量结构化、精确化,否则,分析得出的结论在推及总体上就会“南辕北辙”的现象,导致数据的准确性大大降低,从而造成分析的结论与实际情况背道而驰,因此,就必须十分注重数据样本的精确思维。
然而,在大数据时代,得益于大数据技术的突破,大量的结构化、非结构化、异构化的数据能够得到储存、处理、计算和分析,这一方面提升了我们从海量数据中获取知识和洞见的能力,另一方面也对传统的精确思维造成了挑战。
在大数据时代,思维方式要从精确思维转向容错性思维,当拥有海量即时数据时,绝对的精准不再是追求的主要目标,适当忽略微观层面上的精确度,容许一定程度的错误与混杂,反而可以在宏观层面拥有更好的知识和洞察力。
在大数据世界未出现时,人们往往执着于现象背后的因果关系,试图通过有限样本数据来剖析其中的内在关联关系。数据量小的另一个缺陷就是有限的样本数据无法反映出事物之间的普遍性的关联关系。而在大数据时代,人们可以通过大数据挖掘技术挖掘与分析出事物之间隐蔽的关联关系,获得更多的认知与洞见,运用这些认知与洞见就可以帮助我们捕捉现在和预测未来,而建立在关联关系分析基础上的预测分析正是大数据的核心议题之一。通过关注线性的关联关系及复杂的非线性关联关系,可以帮助人们看到很多以前不曾注意的数据之间存在的某些联系,还可以掌握以前无法理解的复杂技术和社会动态,关联性关系甚至可以超越因果关系,成为我们了解这个世界的更好视角。
在大数据时代,思维方式要从因果思维转向相关思维,努力颠覆千百年来人类形成的传统思维模式和固有偏见,才能更好地分享大数据带来的深刻洞见。
不断提高机器的自动化、智能化水平始终是人类社会长期不懈努力的方向。计算机的出现极大地推动了自动控制、人工智能和机器学习等新技术的发展,“智能机器人”技术研发也取得了突飞猛进的成果并开始一定应用。应该说,自进入到信息社会以来,人类社会的自动化、智能化水平已得到明显提升,但始终面临瓶颈而无法取得突破性进展,机器的思维方式仍属于线性、简单、物理的自然思维,智能化水平仍不尽如人意。但是,大数据时代的到来,可以为提升机器智能带来契机,通过机器学习可以从数据中获取有价值的学习数据,大数据将有效的推进机器思维方式由自然思维转向智能化思维,这才是大数据思维转变的关键所在、核心内容。
众所周知,人脑之所以具有智能、智慧,就在于它能够对周遭的数据信息进行全面收集、逻辑判断和归纳总结,获得有关事物或现象的认识与见解。同样,在大数据时代,随着物联网、云计算、社会计算、可视技术等的突破发展,大数据系统也能够自动地搜索所有相关的数据信息,并进而类似“人脑”一样主动、立体、逻辑地分析数据、做出判断、提供洞见,那么,无疑也就具有了类似人类的智能思维能力和预测未来的能力。“智能、智慧”是大数据时代的显著特征,大数据时代的思维方式也要求从自然思维转向智能思维,不断提升机器或系统的社会计算能力和智能化水平,从而获得具有洞察力和新价值的东西,甚至类似于人类的“智慧”。
大数据开启了一个重大的时代转型。大数据技术正在改变我们传统的生活以及理解世界的方式,成为新发明和新服务的源泉,而更多的改变正蓄势待发。大数据时代将带来深刻的思维转变,大数据不仅将改变每个人的日常生活和工作方式,改变商业组织和社会组织的运行方式,而且将从根本上奠定国家和社会治理的基础数据,彻底改变长期以来国家与社会诸多领域存在的“不可治理”状况,使得国家和社会治理更加透明、有效和智慧。
大数据时代对思维方式的改造
大数据时代对思维方式的改造
大数据将对整个社会的全面发展带来全新的动力。作为一种伟大的革命性动力,大数据的运行及其作用的发挥,需要我们做好各方面的准备,而这其中的一个关键,是与社会体制变革相适应的人们的思想变革。质而言之,就是大数据时代要求人们的思维方式进行一次深刻改造。
目前,在报刊文献和各种媒体中,大数据这个概念,几乎是处处可见、不绝于耳;同时,学术界的学术研究,使人们对大数据的理性认识水平不断提高。有学者认为,2012年世界迎来了大数据元年,而2013年则是中国的大数据元年。正是因为如此,从世界到中国的学术界,特别是科技界,大多数人都比较一致地认为,我们已经进入到大数据时代——一个全新的信息时代。
大数据将为整个社会的全面发展带来全新的动力。大数据的运行及其作用的发挥,一方面需要相应的社会条件,另一方面它也必然会创造出自己所需要的全新的社会条件。很显然,要迎接这样的革命性的新科技时代,需要我们做好各方面的准备,而这其中的一个关键,是与社会体制变革相适应的人们的思想变革。质而言之,就是大数据时代要求人们的思维方式进行一次深刻的改造。
大数据时代需要实证思维
这个问题的解决,首先是需要我们对大数据这个概念有一个真正的科学认识。现在的一些权威性研究性机构和文献,都在试图对大数据进行学术性的界定,其观点,大体上比较一致。什么是大数据呢?美国、英国等国家的有关专门机构和专业刊物上,对大数据概念的内涵都提出了自己的解释,我国的有关机构,特别是专业学者,也同时提出了自己的一些独立学术见解。综合起来看,基本观点主要是,所谓大数据是指一般传统工具无法处理的海量的、高增长率、多样化的信息资源;大数据反映的是网络时代的一种客观存在,即那些难以用传统工具认知的有巨大挑战性质的数据;大数据是指那种无法在一定时间内用常规软件工具处理的数据集合;如此等等。因为大数据作为一种巨量的数据集,能够从其中挖掘出各种有价值的信息,所以日益受到重视。
从这些界定中可以看出,大数据是超出了传统意义上的、极其巨大的、具有特殊价值的数据信息资源。但是,对大数据这样的界定,仍然是一种实体性质的描述,所以,还不能说是揭示了它的本质。那么,大数据的本质究竟是什么呢?在我看来,所谓“大数据”,已经不是一种具体的物理时空概念,而是一种哲学理论层次上的科学概念,也就是说,大数据本身已经具有了高度的理论抽象性质。据此,我们还可以大胆做出这样的判断:大数据已经不是一种具体的物质实体,本质上是一种抽象的哲学概念。面对着物质发展的这个崭新世界——大数据,我们那些常规的认识方式,已经不可能深刻认识它的特殊本质特征了,这就决定了在大数据时代,我们在认识领域必须来一次思维方式的根本性改造。
大数据作为人类实践和认识的一种特殊形式、特殊成果,要求我们对长期以来形成的经验主义主观演绎思维方式进行认真改造,牢固形成客观理性的实证思维方式。
作为现代科学认识形式的大数据,标志着自然科学已经走进了理性认识即理论认识的领域,这本身意味着在这个问题上,我们必须克服方法论上的经验主义,而代之以客观理性的实证思维方式。对这一点,恩格斯是有先见之明的。他说过:“经验自然科学积累了如此庞大数量的实证的知识材料,因而在每一个研究领域中系统地和依据其内在联系来整理这些材料,简直成了不可推卸的工作。于是,自然科学便走上理论的领域,而在这里经验的方法不中用了,在这里只有理论思维才管用。”
如果我们认真思考一下就可以明白,对作为现代科技发展高级阶段的大数据的研究和运用,仍然靠以经验主义为基础的那种演绎思维方式来进行,不走进理性的思辨思维即理论领域中去,显然是不行了。这就是说,在面对着大数据这个现代高科技形式,思维方式的根本改造,已经是不能回避的事情了。当然,在这里,我们所面对的大数据,毕竟是处理信息数据这样的客观问题,所以,不能搬用纯粹的理论思维,而必须运用以理性为基础的实证思维方式。这里所说的理性实证思维,是指以理论形态的信息数据这样的客观根据,来证明结论的真理性。认识论的经验教训告诉我们,这样的思维方式,能够在更高的理论层次上达到追求真理的目的,从而避免经验主义思维方式的弊端。
大数据时代塑造开放性思维
大数据这样特殊的高新科技发展形式,它的正常运行和充分作用发挥,另一个重要条件,是要求我们克服各种各样实际上的封闭性思维方式,树立起真实的开放性思维方式。
很显然,大数据时代思维方式的这种改造,是由大数据本身的本质特征决定的。我们可以看到,无论是一个地区、一个国家,还是在世界范围,大数据的形成和运行,是以一种真正的开放形态存在着的。我们甚至可以这样说,不管是在什么样的范围里,没有真正开放的社会环境,就不可能有大数据这样高科技形式的真正存在,这样的现代高科技也不可能发挥它的特殊作用。
我们这里所说的大数据的开放性,是指它本身的无限发展特点。我们可以想象,就任何一个数据集合本身而言,无论是在时间上还是在空间上,不存在一种量的框框,因为它总是处在一种不断的生生息息的发展过程中。这就决定了大数据的存在和运行是没有边界局限的,也就是说,对大数据来说,不存在地区界限、国家界限;这个事实本身也在告诉我们,任何一种大数据、每一种数据本身是开放性的存在,各种数据之间也必然是互相开放着的,否则,它们就不成其为大数据了。实践证明,大数据这种彻底的开放性本质,对思维方式的改造是具有革命意义的。
大数据的这种特殊本质,要求我们必须以完全开放的心态对待它的运行和发展,从而形成与大数据本身相一致的广阔思想视野,这样才能把大数据真正视为各个地区、各个民族、各个国家的共同财富,互通有无、共有共享。这恰恰是真正的开放性思维方式的本质要求。
大数据时代所要求的开放性思维方式改造,对于我们目前的社会科学研究,特别是马克思主义研究,是非常重要的,而且也是社会科学深入发展的一个契机。因为,我们在这方面的许多研究工作,实际上还是在封闭的状态中进行的,特别是在世界范围内,更是如此。事实证明,这样的研究方式,无异于把自己禁锢在某种理论框架中走投无路,或者是陷入某种思想深坑不能自拔。出路何在?在广阔的开放视野中,放眼世界,走人类文明发展的共同道路。
大数据时代呼唤多元性思维
大数据科技形式的正常运行、其作用的充分发挥,还有一个重要条件,这就是要求我们把一元性思维方式改造为充满活力的多元性思维方式。事实证明,由大数据催生的这种思维方式改造,其意义远远超出了大数据的运用范围,它的深刻影响将在各个方面显示出来。
大数据为什么会催生思维方式的这种根本性的改造呢?这里涉及对大数据之“大”的科学理解问题。一般来说,数据之“大”,与数据之“多”是具有相同意思的。当然,这里说的“多”,并不仅仅是个实体量的概念,而是数据——信息之质与量统一的表现形式。这就是说,大数据不仅是一种极为巨大数量的信息群,而且同时也是各种各样不同性质数据形成的信息集。这样,就必然形成各种各样不同性质数据的独立并存,这就是我们称之为大数据的多元性存在之本来意义。很显然,大数据存在和运行多元性的这个客观事实,要求我们对其所应该形成的正确思想反映,在逻辑上只能是多元性思维方式,而绝不应该是单一性思维方式。
为了适应大数据时代的要求,甚至可以说,为了迎接高新科技时代的到来,我们必须对一元性思维方式进行根本改造,代之以多元性思维方式。从本质上看,所谓“大数据”,是一个实际上的多元世界,丰富多彩的世界,异彩纷呈的世界,个性鲜明的世界,因而是一个充满了活力的世界。这个科学技术发展的事实,必然要求我们改变陈旧的思维方式,破除一元性思维方式,确立起一种能够正确反映这个新科技时代的世界本来面目的那种多元性思维方式。
改革开放以来的鲜活经验告诉我们,面对着充满活力的现代社会,特别是高新科技带来的勃勃生机,必须下决心改造各种陈旧的思维方式,更快地确立多元性思维方式。
在现代科技发展中,通过思维方式的改造,特别是确立开放性、多元性思维方式,其意义不仅有益于科技事业发展本身,而且还会推动社会的发展。因为这种开放性、多元性思维方式的形成,意味着整个社会正在朝着自由人的联合体这一历史性方向前进。虽然这只是一个起步,但是,却具有极为深远的历史意义。
得数据者得天下——浅谈大数据思维
“三分技术,七分数据”,今后得数据者得天下。
维克托·迈尔-舍恩伯格在《大数据时代》一书中举了百般例证,都是为了说明一个道理:在大数据时代已经到来的时候要用大数据思维去发掘大数据的潜在价值。
书中,作者提及最多的是Google如何利用人们的搜索记录挖掘数据二次利用价值,比如预测某地流感爆发的趋势;Amazon如何利用用户的购买和浏览历史数据进行有针对性的书籍购买推荐,以此有效提升销售量;Farecast如何利用过去十年所有的航线机票价格打折数据,来预测用户购买机票的时机是否合适。
什么是大数据思维?维克托·迈尔-舍恩伯格认为:
需要全部数据样本而不是抽样;
关注效率而不是精确度;
关注相关性而不是因果关系。
阿里巴巴的王坚对于大数据也有一些独特的见解,比如:
“今天的数据不是大,真正有意思的是数据变得在线了,这个恰恰是互联网的特点。”
“非互联网时期的产品,功能一定是它的价值,今天互联网的产品,数据一定是它的价值。”
“你千万不要想着拿数据去改进一个业务,这不是大数据。你一定是去做了一件以前做不了的事情。”
特别是最后一点,我是非常认同的,大数据的真正价值在于创造,在于填补无数个还未实现过的空白。
有人把数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。
大数据在投资者眼里是金光闪闪的两个字:资产。比如,Facebook上市时,评估机构评定的有效资产中大部分都是其社交网站上的数据。
如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
浅谈基于大数据时代的机遇与挑战论文
浅谈基于大数据时代的机遇与挑战论文推荐
在学习和工作中,大家总少不了接触论文吧,论文的类型很多,包括学年论文、毕业论文、学位论文、科技论文、成果论文等。为了让您在写论文时更加简单方便,以下是我精心整理的浅谈基于大数据时代的机遇与挑战论文,仅供参考,希望能够帮助到大家。
浅谈基于大数据时代的机遇与挑战论文
1、大数据的基本概况
大数据(Big Data)是指那些超过传统数据库系统处理能力的数据,其具有以下四个基本特性,即海量性、多样性、易变性、高速性。同时数据类型繁多、数据价值密度相对较低、处理速度快、时效性要求高等也是其主要特征。
2、大数据的时代影响
大数据,对经济、政治、文化等方面都具有较为深远的影响,其可帮助人们进行量化管理,更具科学性和针对性,得数据者得天下。大数据对于时代的影响主要包括以下几个方面:
(1)“大数据决策”更加科学有效。如果人们以大数据分析作为基础进行决策,可全面获取相关决策信息,让数据主导决策,这种方法必将促进决策方式的创新和改变,彻底改变传统的决策方式,提高决策的科学性,并推动信息管理准则的重新定位。2009 年爆发的甲型H1N1 流感就是利用大数据的一个成功范例,谷歌公司通过分析网上搜索的大量记录,判断流感的传播源地,公共卫生机构官员通过这些有价值的数据信息采取了有针对性的行动决策。
(2)“大数据应用”促进行业融合。虽然大数据源于通信产业,但其影响绝不局限于通信产业,势必也将对其他产生较为深远的影响。目前,大数据正逐渐广泛应用于各个行业和领域,越来越多的企业开始以数据分析为辅助手段加强公司的日常管理和运营管理,如麦当劳、肯德基、苹果公司等旗舰专卖店的位置都是基于大数据分析完成选址的,另外数据分析技术在零售业也应用越来越广泛。
(3)“大数据开发”推动技术变革。大数据的应用需求,是大数据新技术开发的源泉。相信随着时代的不断发展,计算机系统的数据分析和数据挖掘功能将逐渐取代以往单纯依靠人们自身判断力的领域应用。借助这些创新型的大数据应用,数据的能量将会层层被放大。
另外,需要注意的是,大数据在个人隐私的方面,容易造成一些隐私泄漏。我们需要认真严肃的对待这个问题,综合运用法律、宣传、道德等手段,为保护个人隐私,做出更积极的努力。
3、大数据的应对策略
3.1 布局关键技术研发创新。
目前而言,大数据的技术门槛较高,在这一领域有竞争力的多为一些在数据存储和分析等方面有优势的信息技术企业。为促进产业升级,我们必须加强研究,重视研发和应用数据分析关键技术和新兴技术,具体可从以下几个方面入手:第一,夯实发展基础,以大数据核心技术为着手点,加强人工智能、机器学习、商业智能等领域的理论研究和技术研发,为大数据的应用奠定理论基础。二是加快基础技术(非结构化数据处理技术、可视化技术、非关系型数据库管理技术等)的研发,并使其与物联网、移动互联网、云计算等技术有机融合,为解决方案的制定打下坚实基础。三是基于大数据应用,着重对知识计算( 搜索) 技术、知识库技术、网页搜索技术等核心技术进行研发,加强单项技术产品研发,并保证质量的提升,同时促使其与数据处理技术的有机结合,建立科学技术体系。
3.2 提高软件产品发展水平。
一是促进以企业为主导的产学研合作,提高软件发展水平。二是运用云计算技术促进信息技术服务业的转型和发展,促进中文知识库、数据库与规则库的建设。三是采取鼓励政策引导软硬件企业和服务企业应用新型技术开展数据信息服务,提供具有行业特色的系统集成解决方案。四是以大型互联网公司牵头,并聚集中小互联网信息服务提供商,对优势资源进行系统整合,开拓与整合本土化信息服务。五是以数据处理软件商牵头,这些软件商必须具备一定的基础优势,其可充分发挥各自的数据优势和技术优势,优势互补,提高数据软件开发水平,提高服务内容的精确性和科学性。同时提高大数据解决方案提供商的市场能力和集成水平,以保障其大数据为各行业领域提供较为成熟的解决方案。
3.3 加速推进大数据示范应用。
大数据时代,我们应积极推进大数据的示范应用,可从以下几个方面进行实践:第一,对于一些数据量大的领域(如金融、能源、流通、电信、医疗等领域),应引导行业厂商积极参与,大力发展数据监测和分析、横向扩展存储、商业决策等软硬件一体化的行业应用解决方案。第二,将大数据逐渐应用于智慧城市建设及个人生活和服务领域,促进数字内容加工处理软件等服务发展水平的提高。第三,促进行业数据库(特别是高科技领域)的深度开发,建议针对不同的行业领域建立不同的专题数据库,以提供相应的内容增值服务,形成有特色化的服务。第四,以重点领域或重点企业为突破口,对企业数据进行相应分析、整理和清洗,逐渐减少和去除重复数据和噪音数据。
3.4 优化完善大数据发展环境。
信息安全问题是大数据应用面临的主要问题,因此,我们应加强对基于大数据的情报收集分析工作信息保密问题的研究,制定有效的防范对策,加强信息安全管理。同时,为优化完善大数据发展环境,应采取各种鼓励政策(如将具备一定能力企业的数据加工处理业务列入营业税优惠政策享受范围)支持数据加工处理企业的发展,促使其提高数据分析处理服务的水平和质量。三是夯实大数据的应用基础,完善相关体制机制,以政府为切入点,推动信息资源的集中共享。
做到上面的几点,当大数据时代来临的时候,面临大量数据将不是束手无策,而是成竹在胸,而从数据中得到的好处也将促进国家和企业的快速发展。
大数据为经营的横向跨界、产业的越界混融、生产与消费的合一提供了有利条件,大数据必将在社会经济、政治、文化等方面对人们生活产生巨大的影响,同时大数据时代对人类的数据驾驭能力也提出了新的挑战与机遇。面对新的挑战与发展机遇,我们应积极应对,以掌握未来大数据发展主动权。
结构
论文一般由名称、作者、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成(例如附录)可有可无。
1、论文题目
要求准确、简练、醒目、新颖。
2、目录
目录是论文中主要段落的'简表。(短篇论文不必列目录)
3、内容提要
是文章主要内容的摘录,要求短、精、完整。
4、关键词定义
关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。
主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语。(参见《汉语主题词表》和《世界汉语主题词表》)。
5、论文正文
(1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。
(2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容:
a.提出问题-论点;
b.分析问题-论据和论证;
c.解决问题-论证方法与步骤;
d.结论。
6、参考文献
一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按进行。
7、论文装订
论文的有关部分全部抄清完了,经过检查,再没有什么问题,把它装成册,再加上封面。论文的封面要朴素大方,要写出论文的题目、学校、科系、指导教师姓名、作者姓名、完成年月日。论文的题目的作者姓名一定要写在表皮上,不要写里面的补页上。
大数据时代下的思维提升
在大数据时代,我们的思维认知很容易受到各类媒体的冲击。下面我分享几点关于在大数据时代下如何进行思维提升的思考。
第一,我们尤其要培养开放性思维,提升思想的包容性,警惕认知偏差。认知偏差往往源于人们只看到经过某种筛选而产生的结果,而没有意识到筛选的过程,因此忽略了被筛选掉的关键信息。比如,“幸存者偏差”就是众多认知偏差之一,因为失败案例被忽略导致人们盲目乐观。
第二,我们要摈弃样本思维,建立全局思维。我们每天被海量信息包围,从这些信息中找到有效信息就成为一种必备技能。大数据精准信息投放导致我们都深陷信息壁垒之中,只有敢于打破壁垒,确保信息的多样性和整体性,这样才能帮助我们更接近事实真相。
第三,我们要从感性思维切换到理性思维。大数据意味着庞杂的信息,这些信息作为实证材料时刻影响着影响我们的观念。相近的和相反的例证导致我们在截然不同的结论之间摇摆不定,迷惑不已。因此,我们只有认真分析不同信息来源背后隐藏的动机并系统梳理其内在联系和发展脉络,才能实现从感性思维到理性思维的转变,摆脱信息表象的困扰。
上一篇:2022年湖南大学报录比
下一篇:东方城乡报2021投稿邮箱