欢迎来到学术参考网
当前位置:发表论文>论文发表

高等数学论文1000字免费

发布时间:2023-02-17 20:49

高等数学论文1000字免费

随着学生主体的变化,新的科技成果的出现,高等数学创新成为必然的趋势。下面是我为大家整理的高等数学论文,供大家参考。

一、高等数学在地方高等职业教育中遇到的问题及解决办法

(一)数学师资力量短缺,教师学历偏低

地方高等职业学校通常有以下办学途径:一是通过改革,将原有高等专科学校升格成规范化的高等职业院校;二是将具备条件的成人高校扩大招生,强强联合办学,突出高职特色;三是发挥一些重点中专的专业优势,在校内办高职班。由于以上原因,在现阶段的高职院校中,存在一部分学历不高的数学教师,这既影响了数学课程的整体教学水平,又影响了学生整体素质的培养与发展。要解决这一问题就需要做到以下几点:1.依托全国教师培训基地和现有的高等院校教师培训机制,加强对数学课教师的培训,做到教师在职培训和脱产培训相结合,以在职培训为主,通过有计划地培训,促进教师学历达标。2.提高高职院校人才录用标准,在政策和待遇方面给予照顾,引进更多高学历、高水平的数学专业人才。

(二)学生对数学课重要性认识不够,学习热情不高

目前,在高职院校学生中普遍存在着“专业至上”的观念。他们片面地认为只要专业课学好了,其他的文化课无足轻重。所以数学课堂上出现了出勤人数少、成绩普遍偏低的情况。针对这一现象,教师应该处理好数学课和专业课之间的时间分配比例,让学生认识到二者相辅相成的关系,提高他们对数学课重要性的认识。在教学实践中,笔者发现很多学生对数学缺乏学习兴趣。他们不习惯数学的独特结构和抽象的思维方式,加之高职数学课跨度大、内容多、解析难,学生学习数学如见猛虎。这就要求教师在教学中采取灵活多变的教学方法,想方设法地全面激发学生的兴趣关注点,进而带动他们的思维,从而达到课堂气氛轻松活跃、教学成效显著的目的。兴趣是最好的老师,从心理学角度来讲,兴趣点的刺激更有利于学习者的理解和记忆。这种兴趣的培养不仅仅对学生学习目前的课程有利,对于学生今后的自主学习也会发挥出不可替代的作用。

(三)高等数学课程设置不合理,教学与实际应用脱节

由于高等职业教育的教学内容和教材体系不同,高职院校数学课程的安排与普通大学有明显的区别。它的课程设置应根据培训目标、教学计划等内容,合理安排教学方法和步骤。高职数学课程改革的目标应以培养高级技术应用型人才为建设目标,从教学内容和课程体系中择优选择,并围绕这一目标有层次有步骤地实施。比如,高职院校的数学课程设置,在统计、公共管理类的专业上,就应当凸显数学学科特点,强化概率论与数理统计等数学基础课程的教学;在涉及计算机类的高等数学课程设置时,就应该加强数学逻辑思维和离散数学的课堂教学,让学生认识到数学的重要性,从而缩短理论与实践的距离;在涉及到医学类的教学时,应开设“模糊数学”和“线性代数”两部分内容,其目的是在高职阶段让学生在基本掌握微积分知识的前提下,拓宽学生的数学视野,为今后相关的科学研究提供多样性的数学方法,同时培养学生缜密清晰的思维、严谨科学的方法和能力。

二、总结

高职教育是以培养学生应用能力为主的教育方式,所以在高职数学教学中应当强调以实际应用为主要目标,这既适应了数学教学改革的要求,也是今后的发展方向。课程改革既要侧重基础性、应用性,又要增强科学性和理论性;既要加强数学在实际当中的应用,又不应忽视数学作为独立学科的学科特色;既要把握“适度够用”原则,又要把握好它在高职教育中的重新地位,以做好数学课的学科建设工作。

一、网络教育高等数学的现状分析

1.学生方面。通过笔者多年来从事高等数学的网上教学工作来看,网络教育学院上的培养目标主要是面向成人在职人员,为社会培养更多的适用性、应用型人才。然而网络教育学生普遍数学基础较差,个别人甚至严重匿乏。包括有一部分学生没有参加过高考等高中阶段的学习,有一部分学生已参加工作多年早已将有关高等数学知识遗忘。面对这种情况,如果网络教育教师只是单纯地辅导高等数学知识,就会存在一部分学生由于基础差而跟不上高等数学的学习。另外厂部分学生不仅基础较差而且学习方法都很难适应高等数学的学习,再加上对网络教育学习环境不适应严重影响学习质量。

2.教师方面。根据网络教育的目前情况来看很多高校聘用的网络教育教师都是来自其他院校的兼职人员,他们很难把大部分精力用于网络教育高等数学的教学中。从长远发展看,网络教育学院应该拥有自己的专职教师队伍。有的高校聘用的大批高学历、高素质的教师队伍均为刚毕业的优秀人才。他们年龄较小掌习能力较强对工作充满极大热情。但由于他们从小受到传统教育观的影响,对网络教育的学生要求习惯同高校全日制统招生进行比较,而且教师队伍最初成立无历史借鉴周此缺乏一定的教学和实践经验。这就需要教师逐渐掌握网络教育学生的实际水平和个人要求充分利用网络教育的现代化教学水平遵循教学原则顺利实现高等数学的教学目的。

二、网络教育高等数学的教学初探

教学原则是有效进行教学必须遵循的基本要求。它既指导教师的教也指导学生的学应贯彻于教学过程的各个方面和始终。那么根据高等数学的教学特点,教学原则应贯彻以下几个方面:

1.科学性和思想性统一原则。网络教育学院的培养对象是成人在职人员,他们学习的侧重点偏向于跟自己职业相关的专业知识对高等数学等基础课缺乏重视肩个别学生会认为基础课无用,没有什么学习价值。这些都是学习态度不够端正掌习思想不够明确的表现。针对这种情况,可以通过网上教学向学生说明高等数学学习的重要性和必要性指出数学也是一种思想方法掌习数学的过程就是思维训练的过程。人类社会的进步与数学这门科学的广泛应用是分不开的。尤其到了现代现代数学正成为科技发展的强大动力同时也广泛和深入地渗透到各个领域。通过这些讲述河以提高学生的学习意识,为高等数学的学习奠定思想基础。另外还有很多学生学习的主动性很强但缺少科学合理的学习方法,即使花费很多的学习时间却没有达到良好的学习效果。这就需要教师加以引导通过网上教学同学生积极交流和讨论高等数学有益的学习方法,提高学生的学习能力。个人认为学习高等数学之前要对初等数学知识有一定的了解。如基本初等函数及其计算公式会在高等数学中再次重述常用的几何公式、不等式和数学归纳法会对微积分的学习有所帮助;方程的解法是学会微分方程的基础二项式定理、数列公式、因式分解公式是求有关无穷级数相关知识的基本方法等等。这些都是有益的学习方法经过实践认证得到了学生的充分肯定。

2.理论联系实际原则。传统高等数学的教学过于注重理论忽视概念产生的实际背景和数学方法的实际应用。网上教学就应该在淡化理论的同时,加深对数学概念的理解和应用。高等数学的概念可以从学生熟悉的生活实例或与专业相关联的实例引出从而激发学生的学习兴趣。如讲解导数概念时河以通过求变速直线运动瞬时速度的过程归纳出求解方法步骤撇开具体意义得到“导数(变化率)”的概念。还可根据不同专业的学生同时介绍与变化率有关的问题。适用于机电类专业学生河介绍圆周运动的角速度是转角对时间的导数、非恒定电流的电流强度是电量对于时间的导数等变化率问题适用于经济类专业学生河介绍产品总产量对时间的导数就是总产量的变化率、产品总成本对产量的导数就是产品总成本的变化率(边际成本)等等。在引用实例讲述知识后还可以引入典型例题。通过实际问题引出数学知识,再反过来论证数学知识在生活实际中应用这不仅提高了学生学习的兴趣减少了数学学习的枯燥性同时也给学生建立了一种数学建模的思想使学生所学的理论知识能够进一步联系生产实际并为其他学科服务。

大学高数小论文

大学高数小论文

在学习和工作的日常里,大家对论文都再熟悉不过了吧,通过论文写作可以提高我们综合运用所学知识的能力。那么一般论文是怎么写的呢?以下是我整理的大学高数小论文,欢迎大家借鉴与参考,希望对大家有所帮助。

【摘要】本文结合自己对高等数学的教学实践,以及高等数学的教学特点,给出了培养学生主动学习高数的方法和途径。

【关键词】高数;自学能力;会学;乐学

同志曾说:“会学比学会更重要,学会思考比学会知识更重要”。人们常说的“授之以鱼,不如授之以渔。”也就是这个道理。教是为了不教,学是为了会学。因此如何培养学生自学能力,使之找到适合学生自己的独立学习方法尤为重要。笔者结合自己高等数学的教学实践,以及针对石大商学院学生的特点,谈谈教师如何在教学中培养学生自主学习的能力。

一、是明确目标,端正学习态度,认识学习高数的重要性。

刚上大学,有的学生觉得学习数学一下子变得困难起来,开始怀疑自己的能力,有的甚至认为自己没有数学细胞,觉得数学越学越难学,越学越糟糕。其实,同学们没有找到真正的原因。与初高中相比,大学数学内容丰富,推理论证性强,抽象,教学难度大,学习要求明显提高。对于非数学专业的学生来说,感觉高数对自己以后找工作也没用,就是一门基础学科,学与不学都一样,另外再加上原来是文科的学生来说,更感觉是天书,一遇到学习困难就缴械投降,失去了学习的兴趣,从此就不再愿意学习数学。那么这个时候,带课教师的正确引导就变的更为重要。带课教师在高等数学教学前,非常有必要针对这门新课程进行入学教育,结合学生的专业,做些简单的介绍,使学生初步了解这门课程的内容、重要性、学习目的、学习方法及课程大致的教学安排。了解这些是为避免学生开始时就不自觉地进入被动的学习,在学之前就知道为何要学、如何去学。这也为以后的自主学习开了个好头。

二、是努力让学生对高数爱学,乐学,会学。

教学水平的高低通过学生来检验,教学效果优良的课程,学生一定由爱学到会学。其实也就是逐渐培养学生的自学能力,变被动学习为主动学习的一个过程。那么这个过程该如何体现呢?

(1)认真开列自学提纲

主要由教师根据某一单元的教学内容,抓住教学的重难点,给学生列出自学提纲。列题纲的目的就是为了激发学生的兴趣和体现学生积极主动性学习。同时,为了提出高质量的自学提纲,教师就必须要吃透课本,很好的把握教材的重难点。如在讲《线性代数》的矩阵概念和运算这一节的内容时,可以给学生列出这样的提纲。

1、什么是矩阵?也就是矩阵的概念。

2、矩阵与行列式的区别在哪?从形式上有什么区别?

3、矩阵都有哪些运算?具体的'每一种运算都是如何来进行的?在数k乘矩阵的运算与数k乘行列式的运算的区别在哪?在此基础上,学生就可以自学来解决这些疑问。

(2)提高学生的数学阅读能力

提高学生的数学阅读能力是培养学生自学能力的关键。自学能力的核心是数学阅读能力,数学阅读能力提高了,也会促进其他能力的发展。由于大多学生受传统教学的影响,习惯听老师讲,思维上养成惰性,被动的接受,从来不去自己主动的学习,老师讲多少就听听多少。这也是一部分学生对数学经常有“一讲就懂,一看就会,一做就错”的原因。只会用公式去套题,或用题去套公式,没有正确的解题思路,不会思考,更不善于思考,也就不能举一反三。因此,要让学生学会自学,必须学会阅读,这就需要教师加强对数学阅读的指导。把握数学阅读的“四种读法”。“四种读法”是指:

a、“泛读”:要求对本节课的大致内容有初步了解,了解基本内容;

b、“细读”:要求对所读内容有全面的一个了解,弄清定理、公式的性质,明确公式、例题的渐进梯度和知识关联的范围;

c、“精读”:在泛读的基础上,对与重点、难点有关的内容进行阅读,着重掌握数学内容的知识体系,既要知其然,又要知其所以然;

d、“熟读”:要求学生通过阅读,总结规律,融会贯通,基本内容烂熟于心。

(3)注重练习,及时的进行归纳总结

数学课不同于其它课,最大的窍门在于多练,孰能生巧。只有通过大量的做练习题,才能更好地巩固本节课的知识点,才能掌握更多的解题技巧,才能把失误降到最低点。平时练习太少,计算能力太差,考试的时候一做就错。另外,在做完题后及时的进行总结。就拿行列式的计算来说,只有多多练习,在做完题后,及时针对不同的行列式进行方法总结,你才能掌握求解行列式的技巧,比如定义法,目标行列式法,降阶法,升阶法,归纳法等等。掌握了方法后,在做题的时候,才能根据行列式的特点选择正确的计算方法。

(4)引导学生做好预习、复习,培养自学习惯

为了培养学生的自学能力,预习和复习也是非常重要的。通过预习,学生才能更清楚的知道自己对本节的哪个知识点看不懂,带着问题听课,听课的时候有所侧重,这也在某种程度上起到一种激发学生学习的兴趣,正因为不会,上课才要更好好的听老师讲,使学生“乐学”。学生一旦有了学习兴趣,特别是直接兴趣,学习活动对他来说就不是一种负担,而是一种享受、一种愉快的体验,学生会越学越想学、越学越爱学,有兴趣的学习事半功倍。相反,如果学生对学习不感兴趣,情况就大相径庭了,学生在逼迫的状态下被动学习,学习的效果必定是事倍功半。当然课后复习也特别的重要,学生往往不太重视对概念的理解,以致导致学生课堂上啥都听懂了,下去做题问题就出现了,其实这是学生对概念没吃透,稍微变下题型就不知道从哪下手。复习不是翻开书走马观花,要找到自己不会的地方,增强记忆。因此这一方面,老师一定引导学生围绕学习重点,理解相关的内容,在概念,理论以及方法上下功夫。

(5)创造良好的课堂氛围

大量的教学实践证明,要求学生循规蹈矩,洗耳恭听的课堂学习环境是不可能吸引学生好奇、自由想象和大胆质疑的,学生在这种环境中,学的被动,学的压抑,当然不可能调动起学习积极性。因此我们要营造良好的学习氛围,才能使学生愉快地、主动地参与到学习中来。要摒弃传统的“注入式”教学模式,给学生一定的时间和空间,启发诱导学生积极思考,主动参与,鼓励学生发表不同的见解,活跃氛围,让他们真正体会到他们是学习的主人。教师在讲课过程中要吸引学生眼球。教师讲课的内容要承前启后,突出重点,讲透难点;讲课的语言要规范,准确,力求生动;讲课的声音不仅要洪亮,而且要悦耳;语调要抑扬顿挫,有起伏,有高潮,还可以适当采取诙谐幽默的语言。教师在讲课时目光一定要关注学生的表情,看学生是否听课,注意力是否集中,是否听懂,切不可背向学生念讲稿。在教学的过程中,教师要调动学生的思维,可以恰当的在课堂中提问,或自问自答,或组织学生当堂讨论,或者给学生上台展示的机会,或者是如果课时容许的情况下辅导学生备课主讲某节内容,然后教师讲评,最后教师把学生讲的不到位的地方,再加以补充,效果很好。

在课堂练习中,让个别同学在黑板上做,做完教师并不要急于评价谁是谁非,而让其他学生自己来评讲,解错了,要分析原因,找出错误的症结,再重新做一遍。这样做,不但使得练中有思,而且锻炼和培养了学生的思维品质,正确的该怎么做;解对了,要想有没有更好的解法,鼓励学生采用多种方法解决问题;这样大家集思广议,不但把问题解决了,而且还可以拓宽大家的思路,使他们相互启发,共同进步。

(6)充分利用现代化高科技的教学手段

充分利用现代化教学手段,提高学生自学的能力。两方面,一方面是老师要根据该课程的特点,高数内容多且抽象,若能采取多媒体+适当板书的讲授,定能事半功倍。另外在课件的制作过程中可以使用动画,图案的效果,达到吸引学生的注意力。另一方面就是学生要利用网络优势,学会查找学习资料以及充分利用相关媒体资源。特别要注意网上学习资料的下载和学习,比如本学校的网络教学平台,任课教师一般会在教学平台上传该课程的教学大纲,教学日历,以及相关的学习课件,练习题。

这是笔者借鉴同行以及自己在教学过程中的一些体会,目的在于培养大学生学习数学的一种自学能力,或者说一种兴趣,要培养学生爱学,乐学数学;不要一提起数学,大家都很头疼的。总之,只有转变教学观念,只有以学生为中心,充分发挥学生的主体作用,通过教师适当的点拨引导,才能全方位地提高学生的综合素质,达到培养和提高自学能力的目的。

参考文献:

[1]徐振华.关注学生差异,提升有效教学[J].教育研究与实验,2010(12).

[2]马德炎.谈创新与大学数学教育[J].大学数学,2003(1).

求高等数学小论文一篇

去看下(理论数学)吧,或者自己在网上多找下这类的文献,多看看,自己写

高等数学论文1000字(数列及数列的应用)

不知道你需要哪一篇,你自己能上这个期刊网吗?



序号 篇名 作者 刊名 年/期
1 数列应用题的建模 尚鸿宾 数理化解题研究(高中版) 2008/08
2 等差数列应用3例 牛爱玲 数理天地(高中版) 2008/12
3 三类典型数列应用题的解题策略 慕泽刚 数学爱好者(高一人教大纲) 2008/10
4 数列的应用 王思俭 考试(高考数学版) 2008/Z5
5 丰富多彩的图形数列应用题 赵艺川 高中数学教与学 2008/07
6 高考中常见数列应用问题模型例举 邓红旗 数理化学习 2008/04
7 利用列表法求解数列应用题 宗平芬 高中数学教与学 2008/02
8 新情境下的递推数列应用问题 胡志红 高考(数语英) 2007/11
9 再说斐波那契数列的应用 邹常志 中学生数学 2007/20
10 三类典型数列应用题的解题策略 慕泽刚 数学爱好者(高一版) 2007/11
11 例说函数和数列应用题的数学化 廖东明 数学爱好者(高考版) 2007/04
12 构建数学模型解数列应用性问题 陈路飞 数学爱好者(高考版) 2006/02
13 数列应用题中的递推关系常见类型解析 黄爱民 中学数学月刊 2005/09
14 考点11 递推数列及数列的应用 中学数学 2005/Z1
15 等比数列应用题错解二例 李钟春 中学数学杂志 2005/07
16 建立递推关系 速解数列应用题例析 张照平 数理化学习(高中版) 2005/13
17 数列应用题中的几种常见递推关系 管春鸾 高中数学教与学 2005/07
18 数列应用题 李玉群 中学生数理化(高中版) 2005/04
19 数列应用问题例谈 李坤 第二课堂(高中版) 2005/05
20 新理念 新设计——谈等比数列的应用案例的设计和实践 林风 中学数学月刊 2005/01

求2篇数学小论文 1000字左右 谢谢各位了

数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 数学小论文三 数学是什么 什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 那么,究竟什么是数学呢? 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。 数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。 高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。 体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。 广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。 各门科学的“数学化”,是现代科学发展的一大趋势。

记得采纳啊

上一篇:英语专业语言学方向的论文

下一篇:山西职工医学院学报编辑部