欢迎来到学术参考网
当前位置:发表论文>论文发表

生物医学工程专业导论论文

发布时间:2023-02-18 02:59

生物医学工程专业导论论文

生物医学工程毕业论文

生物医学工程对现代医学的发展进步具有促进作用,我国各级医院要明确划分医学工程部门的工作范围,提高医学工程部门的地位,完善医疗设备的管理制度,加强专业人才的培养,促进生物医学工程的建设与发展。接下来是我带来的生物医学工程毕业论文,希望对你有所帮助~

摘要:生物医学工程,是综合了工程学、物理学、生物学、医学等学科,以预防和治疗疾病、保障人体健康为主要目的的新兴学科。生物医学工程致力于研发新的生物学制品和生物学材料,改进医疗技术,在现代医学领域中占有重要的地位。本文将追溯我国生物医学工程学科的发展历程,提出发展过程中存在的一些问题,为解决这些问题提供一些可行的策略。

关键词:生物医学工程;学科发展;学科建设

电子学、光电子学、计算机技术、物理学、化学、精密仪器制造等科学技术的高速发展,对现代医学产生了极大的促进作用,生物医学工程就是在这些技术背景下产生的新型医学分支学科。生物医学工程利用现代工程技术来对人体进行研究,分析疾病的机理,从而制定有效的治疗措施,极大提高了现代医学的治疗水平。但是,我国在建设和发展生物医学工程学科的过程中,也遇到了一些问题,必须对这些问题加以解决,才能够促进生物医学工程学科的发展。

1生物医学工程的发展历程

生物医学工程的历史可以追溯到20世纪50年代,起源于美国。这一学科一经产生,就迅速受到世界各国的重视。1965年,国际医学和生物工程联合会建立,后来改名为国际生物医学工程协会[1]。生物医学工程之所以受到世界各国的重视,是因为具有广阔的应用前景,能够产生极大的经济效益与社会效益。生物医学工程将现代科学的技术成果与医学联系起来,极大地提高了人体对疾病的预防水平和治疗水平。欧美等地区的先进国家,在20世纪70年代初就已经成立了针对这一学科的研究部门,负责生物医学工程学科的发展与建设。而我国的生物医学工程起步相对较晚,而且应用范围比较窄,仅限于医院设备保管和维修、医疗物资采购等方面,生物医学工程学科的建设还有很大的提升空间。

2我国生物医学工程存在的问题

我国在生物医学工程的学科建设方面起步比较晚,应用也处于初级水平。导致这种局面的原因主要来自于以下2个方面。首先,历史遗留的体制问题。我国的各级医院,负责生物医学工程的科室没有统一的名称,也没有明确的职责范围,各级医院都是根据自己的理解,设定有关部门的名称、职责范围、人员编制、归属单位等情况,具有很大的随意性。有些医院的生物医学工程部门只负责医疗设备和物资的采购,对医疗设备进行维修,而另一些医院的类似部门,不仅要负责医疗设备和物资的采购,还要负责生活用品的采购;有些医院的生物医学工程部门由医务处来管理,而另一些医院却将其列为后勤保障处的管理范围。这种学科建设上的混乱,极大程度地妨碍了生物医学工程的'发展,导致人们对其产生了偏见,没有意识到生物医学工程的重要意义。其次,人员编制问题。我国很多医院在设立生物医学工程的相关部门时,为了方便医疗设备的维修,聘用了一些电工、钳工等专业维修人员。然而随着现代医疗技术的发展,医疗设备越来越精密,这些维修人员的水平已经远远不能满足生物医学工程的需要。如果医院不能够加强对员工的培养,建立起一支理论知识扎实、实践能力强、能够规范应用现代医疗技术的人才队伍,就会导致人员冗余,许多专业能力不足的人占据岗位,真正的人才难以被引进,不能对生物医学工程的发展起到促进作用。

3我国生物医学工程的发展策略

3.1明确生物医学工程的职责范围

在一些生物医学工程发达的国家,医疗、护理、医学工程已经成为了医院发展的3个主要方面,这3大部门共同构成了现代医学的技术体系[2]。而在我国,医学工程的地位远远没有达到与医疗和护理平齐的地步,应用范围还比较狭窄,医学工程的作用还没有得到充分发挥。为了改变这种现状,我国的医院必须调整观念,强化对生物医学工程的建设和管理,明确地划分医学工程部门的工作范围,不仅要负责医疗设备的采购、安装、维修保养,还要做好下列工作。首先,医疗设备的安全性能调试。比如,目前我国医院所运用的先进医疗设备大多数依靠国外进口。但是,医院在引进设备的时候,往往只关注设备的技术水平和价格高低,忽视了医疗设备的插头问题。由于国内外医疗设备的插头标准不同,所以忽视插头问题,很容易导致花费大量资金引入的先进医疗设备无法在国内应用。另外,还有医疗设备的安全等级控制、设备之间的相互干扰问题,这些都是医学工程部门的工作内容。其次,医疗设备的保养。医疗设备的保养包括静态保养和东泰保养两个方面。静态保养就是建立医疗设备的维护保养制度,对设备的存放环境进行整顿;而动态保养则是根据设备的使用、消耗、故障情况实时进行的保养,比如检查设备的运行状况,及时进行故障诊断和维修,更换损害严重的部件等等。

3.2完善医疗设备的管理制度

在我国很多大型医院,都具备各种先进医疗设备,其固定资产的总额甚至能达到几百万、几千万。但是,这些医院当中,都存在一个共同的问题:只重视医疗设备的采购,而忽视了医疗设备的管理,医疗设备的管理制度不够完善,难以发挥医疗设备的最大性能,导致医疗设备闲置或者损坏。对此,我国的医院应当积极完善医疗设备的管理制度,以便能够最大程度发挥医疗设备的性能。比如说,将医院所有的医疗设备集中起来进行管理,而不是将医疗设备分属于各个科室,在各个科室需要使用设备的时候进行租赁。通过这种方式,就能够有效避免医疗设备的闲置状况,而且方便了医疗设备的统一维修与保养。

3.3加强专业人才培养力度

生物医学工程具有极高的科技含量,与众多高新科学技术成果都具有密切的联系。所以生物医学工程的从业人员也要具备相当高的科学素质,在具备应有的医学理论知识的同时,也要能够对各种先进医疗设备进行正确、规范地操作,制定针对患者身体健康状况的分析报告[3]。为了满足生物医学工程的发展需求,医院必须加强人才队伍的建设,着力培养生物医学工程的专业人才。医院要与各大高校进行合作,建立人才的引进机制,同时加强对内部员工的培养,制定激励制度来提高员工的学习热情。

4结论

生物医学工程对现代医学的发展进步具有促进作用,我国各级医院要明确划分医学工程部门的工作范围,提高医学工程部门的地位,完善医疗设备的管理制度,加强专业人才的培养,促进生物医学工程的建设与发展。

参考文献

[1]于璐,苏娟,王颖,等.中国生物医学工程类科技论文近期发文的计量研究[J].生物医学工程学杂志,2014(6):1342-1345.

[2]吕昊,张杨,荆西京,等.军事生物医学工程“信号与系统”实验教学改革的探索与思考[J].工业和信息化教育,2015(1):69-72.

[3]司清海,董旭.生物医学工程专业人才培养的几点建议[J].实用医药杂志,2014(12):1151-1152.

生物医学工程论文

生物医学工程回顾与展望

生物医学工程(Biomedical Engineering,BME)是一门生物、医学和工程多学
科交叉的边缘科学,它是用现代科学技术的理论和方法,研究新材料、新技术、新
仪器设备 ,用于防病、治病、保护人民健康,提高医学水平的一门新兴学科。

生物医学工程在国际上做为一个学科出现,始于20世纪50年代,特别是随着宇
航技术的进步 、人类实现了登月计划以来,生物医学工程有了快速的发展。在我
国,生物医学工程做为一 个专门学科起步于20世纪70年代,中国医学科学院、中
国协和医科大学原院校长、我国著名 的医学家黄家驷院士是我国生物医学工程学
科最早的倡导者。1977年中国协和医科大学生物 医学工程专业的创建、1980年中
国生物医学工程学会的成立,有力地推进了我国生物医学工 程的发展。目前,我
国许多高校科研单位均设有生物医学工程机构,从事着生物医学的科研 教学工作
,在我国生物医学工程科学事业的发展中发挥着重要作用。

显微镜的发明 “解剖”一词由希腊语“Anatomia”转译而来,其意思是用
刀剖割,肉眼观察研究人体结构。17世纪Lee Wenhock发明了光学显微镜,推动了
解剖学向 微观层次发展,使人们不但可以了解人体大体解剖的变化,而且可以进
一步观察研究其细胞 形态结构的变化。随着光学显微镜的出现,医学领域相继诞
生了细胞学、组织学、细胞病理 学,从而将医学研究提高到细胞形态学水平。

普通光学显微镜的分辨能力只能达到微米(μm)级水平,难以分辨病毒及细胞
的超微细结构 、核结构、DNA等大分子结构。而20世纪60年代出现的电子显微镜,
使人们能观察到纳米(nm )级的微小个体,研究细胞的超微结构。光学显微镜和电
子显微镜的发明都是医学工程研究 的成果,它们对推动医学的发展起了重要作用


影像学诊断飞跃进步 影像学诊断是20世纪医学诊断最重要发展最快的领域
之一。50年代X光透视和摄片是临床最常用的影像学诊断方法,而今天由于X线CT技
术的出现 和应用,使影像学诊断水平发生了飞跃,从而极大地提高了临床诊断水
平。即计算机体断层 摄影(computed tomography CT),即是利用计算机技术处理人
体组织器官的切面显像。X线CT 片提供给医生的信息量,远远大于普通X线照片观
察所得的信息。目前,螺旋CT(spiral CT 或helicalet CT)已经问世,能快速扫描
和重建图像,在临床应用中取代了多数传统的CT, 提高了诊断准确率〔1〕。医学
工程研究利用生物组织中氢、磷等原子的核磁共振(nu clear magnetic resonanc
e)原理。研制成功了核磁共振计算机断层成像系统(MRI),它不仅 可分辨病理解剖
结构形态的变化,还能做到早期识别组织生化功能变化的信息,显示某些疾 病在
早期价段的改变,有利于临床早期诊断。可以认为MRI工程的进步,促进了医学诊
断学 向功能与形态相结合的方向发展,向超快速成像、准实时动态MRI、MRA、FM
RI、MRS发展。 根据核医学示踪,利用正电子发射核素(18F,11C,13N)的原理,
创造 的正电子发射体层摄影(PET),是目前最先进的影像诊断技术。美国新闻媒体
把PET列为十大 医学生物技术的榜首。PET问世不过30年历史,但它已显示出对肿
瘤学、心脏病学、神经病 学、器官移植,新药开发等研究领域的重要价值〔2〕。
影像学诊断水平的不断提高 ,与20世纪生物医学工程技术的发展密切相关。

介入医学问世 介入医学是一种微创伤的诊疗技术。Dotter和Judkin(1964 年
)是最早使用介入技术治疗疾病的创始人,他们用导管对下肢动脉阻塞性病变进行
扩张治 疗取得成功。1967年Margulis首先使用过介入放射学(Interventional Ra
diology),这是医 学文献出现“介入”一词的最早记载。1977年 Gruenzing成功
地进行了首例冠状动脉球囊扩 张术获得成功以后,介入性诊疗技术由于其创伤小
、患者痛苦少,安全有效而倍受临床欢迎 。20世纪80年代随着生物医学工程的发
展,高精度计算机化影像诊查仪器、数字减影血管造 影(DSA)、射频消融技术以及
高分子(high-polymer)新材料制成的介入技术用的各种导管相 继问世,使介入性
诊疗技术发生了飞速进步,临床应用范围不断扩大,从心血管、脑血管、 非血管
管腔器官到某些恶性肿瘤等都具有使用介入诊疗的适应证,并使诊疗效果明显提高
,患者可减免许多大手术之苦。有人把介入诊疗技术视 为与药物诊疗、手术诊疗
并列的临床三大诊疗技术之一,也有人把介入诊疗技术称之为20世 纪发展起来的
临床医学新领域--介入医学〔3,4〕。

人工器官的应用 当人体器官因病伤已不能用常规方法救治时,现代临床医
疗技术有可能使用一种人工制造的装置来替代病损器官或补偿其生理功能,人们
称这种装置 为人工器官(artificial organ)。如20世纪50年代以前,风湿性心脏
瓣膜病的治疗,除了应 用抗风湿药物、强心药物对症治疗外,对病损的瓣膜很难
修复改善,不少患者因心功能衰竭 死亡。而今天可以应用人工心肺机体外循环技
术,在心脏停跳状态下切开心脏,进行更换人 工瓣膜或进行房、室间隔缺损的修
补,使心脏瓣膜病、先天性心脏病患者恢复健康。心外科 之所以能达到今天这样
的水平,主要是由于人工心肺机的问世和使用了人工心脏瓣膜、人工 血管等新材
料、新技术的结果〔5〕。

肾功能衰竭、尿毒症患者愈后不良,而人工肾血液透析技术已挽救了大量肾病
晚期患者的生 命,肾病治疗学也因此有了很大进步。

现代生物医学工程中人工器官的发展也非常迅速,除上述人工器官外,人工关
节、人工心脏 起搏器、人工心脏、人工肝、人工肺等在临床都得到应用,使千千
万万的患者恢复了健康。 可以说,人体各种器官除大脑不能用人工器官代替外,
其余各器官都存在用人工器官替代的 可能性。

此外,放射医学、超声医学、激光医学、核医学、医用电子技术、计算机远程
医疗技术等先 进的医疗技术和仪器设备都是现代医学工程研究开发的成果,综上
可见,20世纪生物医学工 程的发展,显著提高了医学诊断和治疗水平,有力地推
动着医学科学的进步。

21世纪生物医学工程展望 纵观医学新技术诞生和发展的 历史,从伦琴发现
X线到今天X射线诊疗技术的发展,从朗兹万发现超声波到今天B超诊断的 广泛应用
,从布洛赫和伯塞尔发现核磁共振到今天MRI的问世,从赫斯费尔德发明CT到今天
C T成像系统的应用,都是以物理学工程技术为基础、医学需求为前提发展起来的
医学新技术 。循着20世纪医学发展的轨迹,我们有理由预测21世纪新的医学诊疗
技术可能在以下10个方 面有重大突破和创新:

(1)各种诊疗仪器、实验装置趋向计算机化、智能化,远程医疗信 息网络化,
诊疗用机器人将被广泛应用。〔6〕

(2)介入性微创,无创诊疗技术在临床医疗中占有越来越重要的地位。激光技
术,纳米技术 和植入型超微机器人将在医疗各领域里发挥重要作用。

(3)医疗实践发现单一形态影像诊查仪器不能满足疾病早期诊断的需要。随着
PET的问世和应 用,形态和功能相结合的新型检测系统将有大发展。非影像增显剂
型心血管、脑血管影像诊 查系统将在21世纪问世。

(4)生物材料和组织工程将有较大发展,生物机械结合型、生物型人工器官将
有新突破,人 工器官将在临床医疗中广泛应用。

(5)材料和药物相结合的新型给药技术和装置将有很大发展,植入型药物长效
缓释材料,药 物贴覆透入材料,促上皮、组织生长可降解材料,可逆抗生育绝育
材料、生物止血材料将有 新突破。

(6)未来医疗将由治疗型为主向预防保健型医疗模式转变。为此,用于社区、
家庭、个人医 疗保健诊疗仪器,康复保健装置,以及微型健康自我监测医疗器械
和用品将有广泛需求和应 用。

(7)除继续努力加强生物源性疾病防治外,对精神、心理、社会源性疾病的防
治诊疗技术和 相应仪器设备的研制受到越来越多的重视与开发,研制精神分析、
心理安抚、生物反馈型诊 疗技术和设备将是生物医学工程的新起点。

(8)创伤是造成青年人群死亡的主要原因,研制新型创伤防护装置、生命急救
系统是未来生 物医学工程的重要课题。

(9)即将迎来的21世纪是分子生物学时代,有关分子生物学的诊疗新技术将快
速发展,遗传 、疾病基因诊疗技术,生物技术和微电子技术相结合的DNA芯片、雪
白芯片和诊疗系统将被 广泛应用。

(10)空气污染、环境污染严重危害着人类健康,研究和开发劳动保护、家庭保
健、个人防护 用的人工气候微环境是未来不能忽视的问题。

1997年我国发布了关于卫生工作改革与发展的决定,提出了奋斗目标:“到2
000年,基本实 现人人享有初级卫生保健”,到2010年国民健康的主要指标在经济
发达地区达到或接近世界 中等发达国家水平,在欠发达地区达到发展中国家的先
进水平。1999年国家科技部召开了“ 发展生物医学工程技术战略研讨会”,国家
工程院开展了有关发展我国医疗器械工业战略研 究等,对推动生物医学工程产业
发展、落实创新工程战略布置起着重要作用。20世纪人类与 疾病做斗争,在医学
诊疗技术上取得了重大成就;但面向21世纪的巨大挑战,我们要动员起 来,调整
政策,制定规划,改革医学研究教学的旧模式,发挥现代科学多学科交叉合作的优
势,创建全新的生物医学,为人民造福。

生物医学工程研究导论有些什么课题

生物医学工程导论论文(读后感)

——生医1202班熊缘缘

摘要: 这篇文章主要是写了通过自己这学期上的生物医学工程导论课和平时自己了解的关于生物医学工程的相关知识,文章介绍了生物医学工程的概况和学科特点,同时阐述了该学科的研究领域,并且着重写了生物医学工程这门学科的现状和发展趋势,在最后写了我对本学科的认识和学习方法,同时激励自己努力学好本学科。

关键字:生物医学工程 研究领域 现状 发展趋势

一、生物医学工程简介

1.学科概况

生物医学工程是一门新兴的边缘学科,它综合工程学、生物学和医学的理论和方法,在各层次上研究人体系统的状态变化,并运用工程技术手段去控制这类变化,其目的是解决医学中的有关问题,保障人类健康,为疾病的预防、诊断、治疗和康复服务。

2.学科特点

(1)交叉性:它是各种学科知识的高水平交叉、新时代结合的产物;是生命科学(生物学与医学)现代化的迫切需求;是现代科学技术迅速发展的必然结果。

(2)依赖性:它尚未形成自己的独立基础理论与知识体系(与传统学科不同),融合各交叉学科知识为自己的基础 ;缺乏永恒的研究主题与固有的中心目标,随交叉学科的发展和应用对象的需求而变化。

(3)复杂性:它知识覆盖面非常广,几乎涉及所有自然科学与技术的基础理论与知识体系;相关的研究机构、专业教育、企业厂家和市场营销只能涉足其部分,而不能包揽全局。

(4)服务性:它以应用基础或直接应用性研究为中心,以最终在生物医学领域应用为目的;为生命科学的创新性发展提供现代化工具,为医疗卫生事业现代化发展提供新装备(支撑生物医学工程产业)。

二、研究领域

生物医学工程学是工程学与生物学、医学结合的产物,任何工程学科与生物学和医学的结合均属于生物医学工程的范畴,因此生物医学工程的研究领域十分广泛,并在不断的发展,目前较成熟的领域有如下八个:

1. 生物力学

2. 生物材料

3. 生物系统建模与仿真

4. 物理因子在治疗中的应用及其生物效应

5. 生物医学信号检测与传感器

6. 生物医学信号处理

7. 医学图像技术

8. 人工器官

高手请进!麻烦提供关于现代生命科学导论的一片综述或者论文~~

  基因芯片——“生物信息精灵”
  ——浅谈数学、计算机在现代生命科学研究中的作用

  二十世纪是物理科学的世纪,而二十一世纪则是生命科学的世纪。生命科学,尤其是生物技术的迅猛发展,不仅与人类健康,农业发展以及生存环境密切相关,而且还将对其它学科的发展起到促进作用,所谓"今天的科学,明天的技术,后天的生产"。而生命科学的基础性研究是现代生物技术的源泉、科学和技术创新的关键。
  现代生物技术,是一门领导尖端科技的学科,正因如此,我很想知道它与数学——我得专业课,计算机等理论或技术是怎样有机的联系在一起的。基于此,我利用课余时间查阅了许多网站、书籍,并有了小小的收获。现就“基因芯片”技术,浅谈如下。

  一、基因芯片简介

  基因芯片,也叫DNA芯片,是在90年代中期发展出来的高科技产物。基因芯片大小如指甲盖一般,其基质一般是经过处理后的玻璃片。每个芯片的基面上都可划分出数万至数百万个小区。在指定的小区内,可固定大量具有特定功能、长约20个碱基序列的核酸分子(也叫分子探针)。

  由于被固定的分子探针在基质上形成不同的探针阵列,利用分子杂交及平行处理原理,基因芯片可对遗传物质进行分子检测,因此可用于进行基因研究、法医鉴定、疾病检测和药物筛选等。基因芯片技术具有无可比拟的高效、快速和多参量特点,是在传统的生物技术如检测、杂交、分型和DNA测序技术等方面的一次重大创新和飞跃。

  二、基因芯片技术

  生物芯片技术是于90年代初期随着人类基因组计划的顺利进行而诞生,它是通过像集成电路制作过程中半导体光刻加工那样的微缩技术,将现在生命科学研究中许多不连续的、离散的分析过程,如样品制备、化学反应和定性、定量检测等手段集成于指甲盖大小的硅芯片或玻璃芯片上,使这些分析过程连续化和微型化。也就是说将现在需要几间实验室、检验室完成的技术,制作成具有不同用途的便携式生化分析仪,使生物学分析过程全自动化,分析速度成千上万倍地提高,所需样品及化学试剂成千上万倍地减少。可以预见,在不远的将来,用它制作的微缩分析仪将广泛地应用于分子生物学、医学基础研究、临床诊断治疗、新药开发、司法鉴定、食品卫生监督、生物武器战争等领域。

  生物芯片技术是目前应用前景最好的DNA分析技术之一,分析对象可以是核酸、蛋白质、细胞、组织等。目前全世界用生物芯片进行疾病诊断还处于研究阶段,国外已将其用于观察癌基因及肌萎缩等一些遗传病基因的表达和突变情况。

  生物芯片技术还可以用于治疗,例如已开发出在4平方毫米的芯片上布满400根有药物的针,定时定量为病人进行药物注射。另外,科学家还在考虑制作定时释放胰岛素治疗糖尿病的生物芯片微泵及可以置入心脏的芯片起搏器等。生物芯片技术与组合化学相结合将开辟另一个极有价值的应用方向,即为新药研制提供超高通量筛选平台技术,这必将使新药研究开发和传统中药的成分评估获得重大突破。

  三、基因芯片的应用技术举例

  1、基因破译

  目前,由多国科学家参与的“人类基因组计划”,正力图在21世纪初绘制出完整的人类染色体排列图。众所周知,染色体是DNA的载体,基因是DNA上有遗传效应的片段,构成DNA的基本单位是四种碱基。由于每个人拥有30亿对碱基,破译所有DNA的碱基排列顺序无疑是一项巨型工程。与传统基因序列测定技术相比,基因芯片破译人类基因组和检测基因突变的速度要快数千倍。
  基因芯片的检测速度之所以这么快,主要是因为基因芯片上有成千上万个微凝胶,可进行并行检测;同时,由于微凝胶是三维立体的,它相当于提供了一个三维检测平台,能固定住蛋白质和DNA并进行分析。
  美国正在对基因芯片进行研究,已开发出能快速解读基因密码的“基因芯片”,使解读人类基因的速度比目前高1000倍。图1所示为一种内嵌基因芯片的基因检测装置。

  2、基因诊断

  通过使用基因芯片分析人类基因组,可找出致病的遗传基因。癌症、糖尿病等,都是遗传基因缺陷引起的疾病。医学和生物学研究人员将能在数秒钟内鉴定出最终会导致癌症等的突变基因。借助一小滴测试液,医生们能预测药物对病人的功效,可诊断出药物在治疗过程中的不良反应,还能当场鉴别出病人受到了何种细菌、病毒或其他微生物的感染。利用基因芯片分析遗传基因,将使10年后对糖尿病的确诊率达到50%以上。
  未来人们在体检时,由搭载基因芯片的诊断机器人对受检者取血,转瞬间体检结果便可以显示在计算机屏幕上。利用基因诊断,医疗将从千篇一律的“大众医疗”的时代,进步到依据个人遗传基因而异的“定制医疗”的时代。

  3、基因环保

  基因芯片在环保方面也大有可为。基因芯片可高效地探测到由微生物或有机物引起的污染,还能帮助研究人员找到并合成具有解毒和消化污染物功能的天然酶基因。这种对环境友好的基因一旦被发现,研究人员将把它们转入普通的细菌中,然后用这种转基因细菌清理被污染的河流或土壤。

  4、基因计算

  DNA分子类似“计算机磁盘”,拥有信息的保存、复制、改写等功能。将螺旋状的DNA的分子拉直,其长度将超过人的身高,但若把它折叠起来,又可以缩小为直径只有几微米的小球。因此,DNA分子被视为超高密度、大容量的分子存储器。
  基因芯片经过改进,利用不同生物状态表达不同的数字后还可用于制造生物计算机。基于基因芯片和基因算法,未来的生物信息学领域,将有望出现能与当今的计算机业硬件巨头――英特尔公司、软件巨头――微软公司相匹敌的生物信息企业。

  四、基因芯片的实际应用

  基因芯片在生命科学、医药研究、环境保护和农业等领域有极其重要的应用价值。在基因芯片的驱动下,人类正进入一个崭新的生物信息时代。

  1、在美国科学家第一次将一个他们称之为生物芯片的计算机芯片植入人体的细胞上,从而使人体细胞与计算机连接。这是美国科学家波利斯·鲁宾斯基(Boris Lubinsky)和他的同事黄永(译音)在3月份的美国《生物医学微设备》杂志中著文披露的。

  2、人体细胞外面包有一个细胞膜,该细胞膜具有使特定物质单向通过的功能。多年来,科学家们一直寻求找到用电冲击的方法,使所希望的物质进入细胞膜,但直 到目前为止,所用的方法有时成功,有时失败。而使用鲁宾斯基和黄永研究出来的 新方法,细胞膜由计算机得到一个信号,让某些物质进入到细胞中。随具体场合的 不同,这些物质可以是例如用来改变基因的遗传物质,也可以是药物或蛋白质。这样,就可以更好地使这些物质发生效力。
  鲁宾斯基等科学家打算研制出能对例如神经细胞和肌肉等人体组织发出指令的生物芯片,这样至少会使人所服用的药物发挥更大的效力。俄亥俄州立大学生物医学工程中心主任莫里罗·弗拉里称鲁宾斯基的这项发明是处在发展阶段早期的具有潜在作用的实验室工具。
  美国科学家们称,他们已经找到了一种能使人体细胞和电路进行交配的生物工程芯片,它能在医学和基因工程学方面发挥关键的作用。
  这种比头发还小还细的微型装置使健康人体细胞和电子芯片结合,通过电脑对芯片进行控制,科学家认为他们能够控制细胞的活动。
  电脑向细胞芯片发送电脉冲,激发细胞膜孔张开,并激活细胞。科学家希望能够大批量地生产这种细胞芯片,并能够把它们植入人体,取代或修正病变组织。
  领导这项研究的加州大学机械工程学教授鲍里斯·鲁宾斯基说:“细胞芯片还使科学家在复杂的基因治疗过程中更准确地进行控制,因为他们能够更准确地开启细胞孔。”
  鲁宾斯基还说:“我们在生物学领域里引入了工程学的精髓,我们完全可以在不影响周围其它细胞的情况下输入DNA、提取蛋白质以及注射药物。”
  该细胞芯片的出现与长期存在的一种理论有关,即一定量的电压能够穿透细胞膜。
  多年来,科学家一直在进行用电力轰击细胞试验的遗传研究,希望藉此引入新的疗法和基因物质。研究人员希望能最终制造出与激活不同的身体组织(从肌肉到骨骼到大脑)所需的准确的电压量相调合的细胞芯片。那样的话,将会有数以千计的细胞芯片用来治疗各种类型的疾病。

  3、用独创技术自行研制的中国第一片应用型基因芯片于近日在第一军医大学正式诞生。

  据第一军医大学有关负责人透露,该军医大研制成功的基因芯片,是中国首次应用一种创新的基因片扩增技术,率先攻克了内地同行在基因芯片研究中首先面临的快速经济地搜集数以万数基因探针难题,并巧妙运用新技术手段明显地降低成本。
  目前,该芯片已完成实验室工作,即将进入临床验证阶段,如果顺利,用於临床诊断的基因芯片可望不久投入批量生产。但到目前为止,全世界还没有实际用於临床应用诊断的基因芯片生产。
  在实验室里,将这几片比大拇指盖稍大的基因芯片,放在检测器上,与之相连的电脑屏幕上立刻出现了纵横交错的红红绿绿荧光点,出现的每个荧光点就是一个基因片断的点阵。只要取病人一滴血放在芯片检测卡上,经过分子杂交后,连上电脑就可以立刻显示出基因变化情况,并通过电脑把基因语言翻译成医生能读得懂的信息,从而对疾病做出准确的诊断。
  这种芯片的成功诞生,标志着疾病的诊断由细胞和组织水平推进到基因水平。它们的开发应用将在环境污染控制、动植物检疫、器官移植、产前诊断、药物筛选、药物开发等方面展示出广阔的前景。

  五、生命科学渐成IT公司关注焦点

  人类基因组工作草图绘毕的消息像打开了阿里巴巴宝藏的大门,以基因技术为核心的生命科学市场正吸引着越来越多的淘金者。近来,为这些淘金者生产“铁锨”的资讯科技(IT)公司的积极行动颇为引人注目。

  1、揭开基因之迷须破译大量数据

  人类基因组草图仅仅是读出了“生命之书”,而要真正读懂它,揭示所有基因编码所代表的信息,还必须破译浩如烟海的数据。
  在著名的英国桑格中心里,有关人类基因组的数据已经达到22万亿字节,是世界上首屈一指的美国国会图书馆藏书内容的两倍多。据这家中心估计,在未来两至三年内,与人类基因组有关的数据量还将上升到50万亿至100万亿字节。

  2、生命科学公司10%投资用于开发资讯科技

  为了解决处理数据所需的庞大计算能力的问题,世界上最大的12家生命科学公司目前把近10%的科研预算用于资讯科技投资,而且这个比例可能还将增长。
  据美国国际商业机器公司(IBM)估计,与生命科学有关的资讯科技市场将在今年达到35亿美元,到2003年达到90亿美元。

  3、市场潜力巨大

  一些著名的IT企业,已将眼光瞄准了这一潜力巨大的市场。例如,IBM已经决定投资1亿美元,用五年时间研制一种名为“蓝基因”的超级电脑。
  “蓝基因”的运算能力将是美国现有40台最快的超级电脑运算能力总和的40倍,它主要用于模拟人类蛋白折叠成特殊形状的过程。世界最大的个人电脑制造商美国康柏公司,也垂涎这块“肥肉”。

  4、康柏趁早下手培养未来客户基础

  已经成为生命科学领域电脑服务器主要供应商的康柏公司最近宣布,它将继续投资1亿美元,支持新兴生物技术公司,以培养未来的客户基础。
  其实,IT公司还远不止盯着这些近期利益。以基因研究为基础的生物经济可能在新世纪里成为新经济的重要组成部分,对此人们已经达成共识。

  5、行业标准制定者能享有巨大经济利益

  根据以往的经验,率先进入市场的公司大多能够成为行业标准的制定者,这些行业标准往往意味着巨大的经济利益。
  今年8月,德国狮生命科学公司的股票上市。由于投资者看中这家公司的基因次序检索系统(SRS)可能成为行业新标准,其股票价格在短短时间里迅速上涨了50%。

  6、政府支持基因研究

  IT公司进军生命科学领域,与各国政府对基因研究的支持密不可分。为了在基因组研究的下一个阶段——分析蛋白质结构的国际竞争中领先,不少国家积极采取措施,促进信息业与生物产业的结合。
  例如,日本不久前就组织了“官产学”大联合的“生物产业信息化研究共同体”,参加这个共同体除了制药、食品、生物、化学等与基因科学相关的企业外,还有不少电脑公司。

  小结:科学界公认,生物芯片技术将给下个世纪生命科学和医学研究带来一场革命。目前我国科学家正在加速研制这种可能快捷便利提取DNA,查找遗传基因特性的新技术。相信,这一现代生物与高科技联姻的成果将为二十一世纪的发展作出巨大的贡献!

生物医学工程导论介绍了哪些主要内容

我是一名上海交大生医工专业的学生,很高兴能为你解答问题. 我是11级的学生,根据我们年级的专业培养计划,我们主要学以下这些课程. 公共课略去(就是思修马列等)基础课:微积分A类,线性代数B类,大学物理A类,概率统计,C++A类,数理方法,生物学导论,程序设计思想与方法,生物医学工程导论. 专业课:基本电路理论,模拟电子技术,数字电子技术,解剖与生理,生命伦理学,微机原理,生物医学传感器,医学仪器原理,生化实验F类,生物信息学B类,生物医学图像处理,免疫学,遗传学,自动控制原理B类,算法与数据结构A类,信号与线性系统,生物医学光子学,嵌入式计算机系统及实验,医学超声基础,生物传热学导论,生物力学,现代生物显微技术,生物材料,神经生物学,数字信号处理D类,生物物理,生化F类,细胞生物学实验.(不要被吓坏哦,有些是分方向选修的.)本科四年大概就是这样,

上一篇:中南财经政法大学学报招聘

下一篇:论文引用网页新闻怎么标文献