基因型文献论文
基因型文献论文
Synthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate
by Escherichia coli transformant cells coexpressing
the carbonyl reductase and glucose dehydrogenase genes
由共表达碳酰还原酶和葡萄糖脱氢酶的大肠杆菌转化细胞合成
纯光学(S)-4-氯-3-羟基丁酸乙酯
Abstract The asymmetric reduction of ethyl 4-chloro-3-
oxobutanoate (COBE) to ethyl (S)-4-chloro-3-hydroxybutanoate
((S)-CHBE) was investigated. Escherichia coli cells expressing both the carbonyl reductase (S1) gene from Candida magnoliae and the glucose dehydrogenase (GDH) gene from Bacillus megaterium were used as the
catalyst. In an organic-solvent-water two-phase system,(S)-CHBE formed in the organic phase amounted to 2.58 M (430 g/l), the molar yield being 85%. E. coli transformant cells coproducing S1 and GDH accumulated 1.25 M (208 g/l) (S)-CHBE in an aqueous monophase system by continuously feeding on COBE, which is unstable in an aqueous solution. In this case, the calculated turnover of NADP+ (the oxidized form of nicotinamide adenine dinucleotide phosphate) to CHBE was 21,600 mol/mol. The optical purity of the (S)-CHBE formed was 100% enantiomeric excess in both systems. The aqueous system used for the reduction reaction involving E. coli HB101 cells carrying a plasmid containing the S1 and GDH genes as a catalyst is simple. Furthermore, the system does not require the addition of commercially available GDH or an organic solvent. Therefore this system is highly advantageous for the practical synthesis of optically pure (S)-CHBE.
本本篇文献研究了利用COBE不对称合成(S)-4-氯-3-羟基丁酸乙酯(CHBE)。大肠杆菌细胞作为催化剂同时表达了来自念珠菌属magnoliae的碳酰还原酶和来自巨大芽孢杆菌的葡萄糖脱氢酶基因。在水/有机溶剂两相体系中,(S)-CHBE在有机相中的浓度可以达到2.58M(430g/l),摩尔产率达到85%。大肠杆菌的副产物S1和GDH也达到了1.25M(208g/l),COBE在水相中不稳定,所以(S)-CHBE可以在水单相中不停的生成。在这种情况下,适当的从NADP+到CHBE的转变达到了21,600 mol/mol。所形成的CHBE的旋光度在这种体系中100%对映体过量。在水相中用携带含有S1和GDH基因质粒的E. coli HB101作为催化剂不对称还原是比较简单的。并且,这种体系并不额外需要商业GDH或者有机溶剂。因此,这种体系对于实际合成纯光学活性的(S)-CHBE是非常方便的。
Optically active 4-chloro-3-hydroxybutanoic acid esters are useful chiral building blocks for the synthesis of pharmaceuticals. The (R)-enantiomer is a precursor of L-carnitine (Zhou et al. 1983), and (S)-enantiomer is an important starting material for hydroxymethylglutaryl- CoA (HMG-CoA) reductase inhibitors (Karanewsky et
al. 1990). Many studies have described the microbial or enzymatic asymmetric reduction of 4-chloro-3-oxobutanoic acid esters (Aragozzini and Valenti 1992; Bare et al.1991; Hallinan et al. 1995; Patel et al. 1992; Shimizu et al. 1990; Wong et al. 1985) based on the reduction by baker’s yeast (Zhou et al. 1983).We have previously showed that Candida magnoliae AKU4643 cells reduced ethyl 4-chloro-3-oxobutanoate (COBE) to (S)-CHBE with an optical purity of 96% enantiomeric excess (e.e.) (Yasohara et al. 1999). As this yeast has at least three different stereoselective reductases (Wada et al. 1998, 1999a, b), the (S)-CHBE produced by this yeast was not optically pure. From among these three enzymes, an NADPH-dependent carbonyl reductase, designated as S1, was purified and characterized in some detail (Wada et al. 1998). We cloned and sequenced the gene encoding S1 and overexpressed it in Escherichia coli cells. This E. coli transformant reduced COBE to optically pure (S)-CHBE in the presence of glucose, NADP+, and commercially available glucose dehydrogenase (GDH) as a cofactor generator (Yasohara
et al. 2000).
Here, we describe the construction of three E. coli transformants coexpressing the S1 from C. magnoliae and GDH from Bacillus megaterium genes and analyze the reduction of COBE catalyzed by these strains. Previous reports on the enzymatic reduction of COBE to (R)-CHBE with an optical purity of 92% e.e. (Kataoka et al. 1999; Shimizu et al. 1990) recommended an organic- solvent two-phase system reaction for an enzymatic or microbial reduction, because the substrate (COBE) is unstable in an aqueous solvent and inactivates enzymes. We examined the reduction of COBE to optically pure (S)-CHBE by E. coli transformants in a water monophase system reaction and discuss the possible use of this type of reaction system in industrial applications。
具有旋光性的(S)-4-氯-3-羟基丁酸乙酯在药物制剂的合成中是重要的手性化合物。其右旋体是L-卡尼汀的前体,其左旋体是羟甲基戊二酰辅酶A还原酶抑制剂的起始材料。许多研究描述了以面包酵母为基础微生物或者酶的COBE的不对称还原。我们先前已经知道利用来自念珠菌属magnoliae AKU4643 细胞催化COBE生成光学纯度96%的CHBE。这种酵母至少有三种立体选择性的还原酶,这种酵母产生的CHBE并非纯光学的,在这三种酶之中,NADPH-依赖碳酰还原酶,我们克隆并测序编码S1的基因,并在大肠杆菌中过表达。大肠杆菌转化细胞在葡萄糖,NADP+和商业化的葡萄糖脱氢酶作为辅酶因子的启动子催化COBE生成纯光学的CHBE。
我们构建这三种大肠杆菌转化细胞共表达来自的S1和来自巨大芽孢杆菌的GDH,并分析COBE被这几种菌株催化还原的反应机理。先前的报道表明,利用酶催化还原COBE生成CHBE光学纯度可达92%,也提到了因为底物(COBE)在水相中不稳定,并且酶容易钝化,所以利用酶或者微生物在有机溶剂/水两相体系中催化反应。我们研究了在水单相体系中由COBE还原生成纯光学的CHBE,还讨论了这种反应体系在工业应用中可能的用途。
Materials and methods
Bacterial strain and plasmids
The E. coli strains used in this study were JM109 and d pGDA2, in which the GDH gene from B. megaterium is inserted into pKK223-3, was kindly provided by Professor I. Urabe, Osaka University (Makino et al. 1989). Plasmids pSL301 and pTrc99A were purchased from Invitrogen (USA), and Amersham Pharmacia Biotech (UK), respectively. Plasmids pUC19 and pSTV28 (Homma et al. 1995; Takahashi et al. 1995) were purchased from Takara Shuzo (Japan).
材料和方法
菌株和质粒
本次实验中使用的大肠杆菌是JM109 and HB101。来自B. megaterium的GDH基因插入到Pkk233-3质粒中,而带有GDH基因片段的pGDA2质粒由到由大阪大学的urabe教授提供。质粒pSL301和 pTrc99A是由美国的Invitrogen公司和英国的公司分别购买的。质粒pUC19和pST28是由日本takara公司购买的。
The recombinant plasmid used in this study was constructed as follows (Fig. 1): Plasmid pGDA2 was double-digested with EcoRI and PstI to isolate a DNA fragment of about 0.9 kilobase pairs (kb) including the GDH gene. This fragment was inserted into the EcoRI-PstI site of plasmid pSL301 to construct plasmid pSLG. Plasmid pSLG was double-digested with EcoRI and XhoI to isolate a DNA fragment of about 0.9 kb including the GDH gene.
这次实验使用的重组质粒构建如下:质粒pGDA2 被EcoRI 和 PstI双酶切从而分离出一个大小约为0.9kb的包含有GDH基因的DNA片段。这个片段被插入到质粒Psl301的EcoRI-PstI酶切位点从而构建出质粒pSLG。质粒pSLG被EcoRI和XhoI
To construct plasmid pNTS1G, this 0.9-kb fragment was inserted into the EcoRI-SalI site of pNTS1, which was constructed to overproduce S1 as described previously (Yasohara et al. 2000). To construct plasmid pNTGS1, plasmid pNTG was first generated. Two synthetic primers (primer 1, TAGTCCATATGTATAAAGATTTAG,and primer 2 TCTGAGAATTCTTATCCGCGTCCT) were prepared for polymerase chain reaction (PCR) using pGDA2 as the template. The PCR-generated fragment was double- digested with NdeI and EcoRI and then inserted into the NdeI EcoRI site of plasmid pUCNT, which was constructed from pUC19 and pTrc99A, as reported (Nanba et al. 1999), to obtain pNTG. To construct plasmid pNTGS1, two synthetic primers (primer 3, GCCGAATTCTAAGGAGGTTAATAATGGCTAAGAACTTCTCCAACG, and primer 4, GCGGTCGACTTAGGGAAGCGTGTAGCCACCGTC) were prepared using pUCHE, which contains the S1 gene as the template. The PCR-generated fragment was double-digested with EcoRI and SalI and then inserted into the EcoRI-SalI site of pNTG to obtain pNTGS1. Plasmid pNTS1G, pNTGS1 or pNTG was transformed into E. coli HB101.
构建pNTS1是为了过表达前文所提到的S1,这个0.9kb大小的片段被插入到pNTS1的EcoRI-SalI酶切位点从而构建pNTS1G。为了构建质粒pNTGS1,首先需要构建pNTG。两个合成引物(引物1,TAGTCCATATGTATAAAGATTTAG和引物2,TCTGAGAATTCTTATCCGCGTCCT)和作为模板的pGDA2是PCR反应需要的。PCR得到的片段是由NdeI 和EcoRI双酶切和并插入到质粒pUCNT的NdeI EcoRI酶切位点来得到pNTG。根据报道,pUCNT是由pUC19和 pTrc99A构建而来。为了构建质粒pNTGS1,两个合成引物(引物 3, GCCGAATTCTAAGGAGGTTAATAATGGCTAAGAACTTCTCCAACG, and 引物 4, GCGGTCGACTTAGGGAAGCGTGTAGCCACCGTC),包括了S1基因作为模板。Pcr产物片段被EcoRI和SalI双酶切然后被插入到pntg的EcoRI-SalI酶切位点得到pntg1.质粒pNTS1G, pNTGS1或者 pNTG都是导入大肠杆菌HB101.
Plasmid pGDA2 was double-digested with EcoRI and PstI to isolate a DNA fragment of about 0.9 kb including the GDH gene. To construct plasmid pSTVG, this fragment was inserted into the EcoRI-PstI site of plasmid pSTV28. Plasmid pSTVG was transformed into E. coli HB101.
质粒pGDA2被EcoRI 和 PstI双酶切得到包含GDH基因的0.9kb大小的DNA片段。为了构建pSTVG质粒,这个片段被插入到pSTV28质粒的EcoRI-PstI的酶切位点。pSTVG质粒被导入到E. coli HB101。
Medium and cultivation
The 2×YT medium comprised 1.6% Bacto-tryptone, 1.0% yeast
extract, and 0.5% NaCl, pH 7.0. E. coli HB 101 carrying pNTS1,
pNTG, pNTS1G, or pNTGS1 was inoculated into a test tube containing
2 ml 2×YT medium supplemented with 0.1 mg/ml ampicillin,
followed by incubation at 37 °C for 15 h with reciprocal shaking.
This preculture (0.5 ml) was transferred to a 500-ml shaking
flask containing 100 ml 2×YT medium. The cells were cultivated
at 37 °C for 13 h with reciprocal shaking. E. coli HB101 carrying
pNTS1 and pSTVG was similarly cultivated in 2×YT medium
supplemented with 0.1 mg/ml ampicillin and 0.1 mg/ml chloramphenicol.
培养基和培菌
2*YT培养基 包含有1.6%细菌用胰蛋白胨,1.0%酵母提取物,0.5% NaCl,pH7.0.
携带有pNTS1,pNTG, pNTS1G, 或 pNTGS1的大肠杆菌HB101被接种到有0.1mg/ml氨苄青霉素的2ml的2*YT培养基,37°C摇床15小时。将0.5ml菌液接种到100ml2*YT培养基的500ml烧瓶中。在37°C摇床培养13小时。携带有pNTS1 和 pSTVG质粒的大肠杆菌HB101在2*YT培养基中培养方法相似,只是培养基中要加入0.1 mg/ml的氨苄青霉素和 0.1 mg/ml的氯霉素。
Preparation of cell-free extracts and the enzyme assay
Cells were harvested from 100 ml of culture broth by centrifugation, suspended in 50 ml of 100 mM potassium phosphate buffer (pH 6.5), and then disrupted by ultrasonication. The cell debris was removed by centrifugation; the supernatant was recovered as the cell-free extract. Carbonyl reductase S1 activity (COBE-reducing activity) was determined spectrophotometically as follows: The assay mixture consisted of 100 mM potassium phosphate buffer (pH 6.5), 0.1 mM NADPH, and 1 mM COBE. The reactions were incubated at 30 °C and monitored for the decrease in absorbance at 340 nm. The assay mixture for GDH activity consisted of 1 M Tris-HCl buffer (pH 8.0), 100 mM glucose, and 2 mM NADP+. The reactions were incubated at 25 °C and monitored for the increase in absorbance at 340 nm. One unit of S1 or GDH was defined as the amount catalyzing the reduction of 1 μmol NADP+ or oxidation of 1 μmol NADPH per minute, respectively. Protein concentrations were measured with a protein
assay kit containing Coomassie brilliant blue (Nacalai Tesque, Japan),
using bovine serum albumin as the standard (Bradford 1976).
无细胞抽提液和酶鉴定
将100ml培养液离心收获菌体,用50ml0.1mol/LpH为6.5的磷酸缓冲液悬浮,然后超声粉碎。细胞碎片通过离心可以去除,收集上层清液就是无细胞抽提物。碳酰还原酶S1的活性由分光光度计测量如下:测定的混合物包括:0.1mol/LpH6.5的磷酸二氢钾缓冲液,0.1mMNADPH和1mMCOBE。反应在30°C条件下反应,并且随时监测其在340nm处的吸光值。测GDH混合物包括:1M pH 8.0的Tris-HCl的缓冲液,100mM的葡萄糖,2mM的NADP+。反应在25°C下进行,监测其在340nm处的吸光值。一个单位S1或GDH被定义为每分钟催化还原1μmol NADP+或氧化1 μmol NADPH的量。蛋白质的测定通过含有考马斯亮蓝的蛋白质测定试剂利用牛血清白蛋白作为标准进行测定。
Study of enzyme stability
One milliliter of 100 mM potassium phosphate buffer (pH 6.5) containing the cell-free extracts of E. coli HB101 carrying pNTS1 (S1: 20 U/ml) was mixed with an equal volume of each test organic solvent in a closed vessel. After the mixture was shaken at 30 °C for 48 h, the remaining enzyme activities in an aqueous phase were assayed as described above. The mixture, containing 100 mM potassium phosphate buffer (pH 6.5), S1 (20 U/ml), and various concentrations of CHBE, was incubated at 30 °C for 24 h in order to study the enzyme’s stability in the presence of remaining enzyme activities were assayed as described above.
酶稳定性的研究
一毫升含有含有pNTS1质粒的E. coli HB101的无细胞抽提液的100mM磷酸氢二钾缓冲液(pH6.5)与等体积的有机溶剂混合。混合物在30 °C震摇48小时后,水相中残留的酶活力即是上述的酶活力。
COBE reduction with E. coli cells expressing the S1 gene and E. coli cells expressing GDH genes in a two-phase system reaction
The reaction mixture comprised 15 ml culture broth of E. coli HB101 carrying pNTG, 17 ml culture broth of E. coli HB101 carrying pNTS1, 1.6 mg NADP+, 4 g glucose, 2.5 g COBE, 25 ml n-butyl acetate, and about 25 mg Triton X-100. The pH of the reaction mixture was controlled at 6.5 with 5 M sodium hydroxide. At 2 h, 1.25 g COBE and 2.5 g glucose were added to the reaction mixture. To compare the reaction by E. coli transformant coexpressing the GDH and S1 genes, 30 ml culture broth of E. coli
HB101 carrying pNTS1G was used instead of culture broth of E. coli HB101 carrying pNTG and E. coli HB101 carrying pNTS1. Other components and the procedure were the same as described above.
表达S1基因和GDH基因的大肠杆菌细胞在两相反应体系中的还原反应
混合物包含有带有pNTG质粒的大肠杆菌HB101的菌液15ml,pNTS1质粒的大肠杆菌HB101的菌液17ml,1.6 mg NADP+,4 g葡萄糖,2.5g的COBE,25ml的n-butyl acetate丁酰醋酸盐和大约25mg的聚乙二醇辛基苯基醚Triton X-100。用5M的NaOH溶液将pH控制在6.5。在反应两小时后,加入1.25gCOBE和2.5g葡萄糖到该混合物中。比较大肠杆菌转化细胞共表达GDH和S1基因,携带有pNTS1G质粒的大肠杆菌HB10130ml菌液取代了携带有pNTG和pNTS1质粒的大肠杆菌HB101菌液。其他的成分和步骤和上述的方法相似。
COBE reduction to (S)-CHBE in a two-phase system reaction
The reaction mixture contained 50 ml of culture broth of an E. coli HB101 transformant, 3.2 mg NADP+, 11 g glucose, 10 g COBE, 50 ml n-butyl acetate, and about 50 mg Triton X-100. The reaction mixture was stirred at 30 °C, and the pH was controlled at 6.5 with 5 M sodium hydroxide. Five grams of COBE/5.5 g glucose and 10 g COBE/11 g glucose were added to the reaction mixture at 3 h and 7 h, respectively; 3.2 mg NADP+ was added at 26 h.
COBE在两相系统中还原生成(S)-CHBE
反应混合物包含50ml E. coli HB101转化细胞的培养液,3.2mgNADP+,11g
葡萄糖,10gCOBE,50ml丁酰醋酸,和大概50mg聚乙二醇辛基苯基醚Triton X-100.
在30°C温度下将其混合均匀,并用5M的NaOH溶液将pH控制在6.5。在第3小时加入5gCOBE和5.5g葡萄糖或者在第7小时加入10gCOBE和11g葡萄糖,分别在第26小时加入3.2gNADP+。
COBE reduction to (S)-CHBE in an aqueous system reaction
The reaction mixture was made up of 50 ml of culture broth of an E. coli HB101 transformant, 3.1 mg NADP+, 11 g glucose, and about 50 mg Triton X-100. The reaction mixture was stirred at 30 °C. Fifteen grams of COBE was fed continuously by means of a micro-feeding machine at a rate of about 0.02 g/min for about 12 h. The pH of the reaction mixture was controlled at 6.5 with 5 M sodium hydroxide. The reaction mixture was extracted with 100 ml ethyl acetate. The organic layer was dried over anhydrous sodium sulfate and then evaporated in vacuo.
COBE在水相中还原成(S)-CHBE的反应
反应的体系是由50ml大肠杆菌HB101转化细胞的菌液,3.1mgNADP+,11g葡萄糖和大约50mg聚乙二醇辛基苯基醚Triton X-100。反应混合物在30°C15mg的COBE通过微量添加机器以0.02 g/min的速率连续12小时恒定的加入到体系中。用5M的NaOH溶液将pH控制在6.5。反应混合物用100ml乙酸乙酯萃取。有机层用无水硫酸钠吸干,并在真空中脱水。
Analysis
The organic layer was obtained on centrifugation of the reaction mixture and was assayed for CHBE and COBE by gas chromatography. Optical purity of CHBE was analyzed by high-performance liquid chromatography (HPLC), as described previously (Yasohara et al. 1999).
Enzymes and chemicals
Restriction enzymes and DNA polymerase were purchased from
Takara Shuzo (Japan). COBE (molecular weight: 164.59) was purchased
from Tokyo Kasei Kogyo (Japan). Racemic CHBE (molecular
weight: 166.60) was synthesized by reduction of COBE with
NaBH4. All other chemicals used were of analytical grade and
commercially available.
分析
离心反应混合物得到的有机层通过气相色谱法测定其CHBE和COBE。COBE的光学纯度如前所述通过高效液相色谱法进行分析。
酶和化学试剂
限制性内切酶和DNA聚合酶由takara公司购得,COBE(分子量:164.59)由东京Tokyo Kasei Kogyo公司购得,消旋体CHBE(分子量166.6)通过COBE及NaBH4合成。所有其他化学试剂都是分析等级和商业化的试剂。
Construction of E. coli transformants overproducing S1 and GDH
To express the carbonyl reductase S1 and GDH genes in the same E. coli cells, four expression vectors were constructed (Fig. 1). Plasmids pNTS1G and pNTGS1 contain the S1 gene from C. magnoliae, the GDH gene from B. megaterium, the lac promoter derived from pUC19, and the terminator derived from pTrc99A. Plasmid pNTS1 contains the S1 gene, the lac promoter derived from pUC19, and the terminator derived from pTrc99A. The enzyme activities in cell-free extracts of the E. coli transformants are shown in Table 1. E. coli HB101 cells carrying the vector plasmid pUCNT had no detectable S1 or GDH activity. E. coli HB101 carrying either pNTS1G or pNTGS1 showed S1 and GDH activity without isopropyl-β-D-thiogalactopyranoside (IPTG) induction. The S1 activities of these two transformants were lower than the GDH activities. To obtain a transformant whose S1 activity was equal to or greater than the level of GDH activity, we used a lower copy vector, pSTV28 (Homma et al. 1995; Takahashi et al. 1995), to express the GDH gene. It may be possible to raise the S1 activity by lowering the GDH activity. Plasmid pSTVG contains the GDH gene, the lac promoter, the chloramphenicol resistance gene, and the replicative origin derived from pACYC184 for compatibility with the plasmid pNTS1. In E. coli HB101 carrying pNTS1 and pSTVG, the S1 activity was higher than the GDH activity, but this GDH
level may be too low to regenerate in a COBE reduction reaction as described below.
过产生S1和GDH的大肠杆菌转化细胞的构建
为了在同一大肠杆菌细胞中表达碳酰还原酶S1和GDH基因,要构建四个表达型载体。质粒pNTS1G 和 pNTGS1包含有来自C. magnoliae的S1基因,来自B. megaterium的GDH基因,来自pUC19的LAC启动子,从pTrc99A的来的终止子,质粒pNTS1包含有S1基因,来自pUC19的LAC启动子,从pTrc99A的来的终止子。在大肠杆菌转化细胞的无细胞抽提物的酶活力如表一所示。携带有运输质粒pUCNT的大肠杆菌细胞无法检测到其S1和GDH活性。携带有pNTS1G 或 pNTGS1质粒在没有IPTG的诱导下有S1和GDH的活性。在这两个转化菌种中,S1的活力小于GDH的活力。为了得到S1活性等于或者大于GDH的大肠杆菌转化菌株,我们使用低拷贝的载体pSTV28,来表达GDH基因。它可能可以通过降低GDH的活性从而提高S1的活性。质粒pSTVG包含有GDH基因,lac启动子,和氯霉素抗性基因,以及与pNTS1具有相容性的从pACYC184得来的复制起始位点。在携带有pNTS1和pSTVG的大肠杆菌转化细胞中,S1的活性要高于GDH的活性,但是GDH的活性可能会太低而在COBE还原反应中不能再生。
太长了,字数有限制,所以不能发完。分数我无所谓啦,我很少登录的。这应该算是基因工程的吧,是我以前自己翻的,不是很好。如果你要的话可以联系我的邮箱。
关于基因工程的参考文献
参考文献[1] YU Jun,HU Song-nian,WANG Jun,et al. A draft sequence of rice(Oryza sativa ) genome[J]. Chinese Science Bulletin,2001,40(23):1 937-1 942.
[2] 黄健秋,卫志明,安海龙,等.农杆菌转化获得转B.T.基因水稻及其生物学鉴定[J]. 植物生理学报,2000,26(6):519-524.
[3] 赵艳,于彦春,钱前,等.无载体主干序列的bar和cecropin B基因表达框共转化水稻[J]. 遗传学报,2003,30(2):135-141.
[4] 安韩冰,朱祯,李慧芬,等.基因枪法转化水稻(Oryza sativa L.)获得可育的转抗虫基因水稻再生植株[J]. 高技术通讯,2001,2:12-17.
[5] CHU Qi-ren, CAO Hua-xin, FAN Hui-qin, et al.. Preliminary report on transienexpression of gus gene in transgene rice protoplast-derived calli via PEG-mediated DNA transformation[J]. shanghai nongye xue bao,1995,11(3):63-68.
[6] 赵凌,王才林,宗寿余,等. 花粉管介导的转bar基因水稻植株的获得及其遗传[J]. 中国生物工程杂志,2003,23(8):92-95.
[7] LI L C, QU R D, KOCHKO A,et al.. An improved transformation of embryogenic grape cell suspensions[J]. Plant Cell Report,1993,12:250-255.
[8] 范钦,许新萍,黄小乐,等. 早籼稻培矮64S愈伤组织形成及植株再生[J]. 西北植物学报,2002,22(6):1 469-1 473.
[9] 易自力,曹守云,王力,等. 提高农杆菌转化水稻频率的研究[J]. 遗传学报,2001,28(4):352-358.
[10] 郑宏红,何锶洁,戴顺洪,等. 提高水稻基因枪转化效率的研究[J]. 生物工程学报,1996,(增):111-115.
[11] 田文忠,IAN RANCE,ELUNIALAI,等. 提高籼稻愈伤组织再生频率的研究[J]. 遗传学报,1994,21(3):215-221.
[12] 叶松青,储成才,曹守云,等. 提高水稻转化率几个因素的研究[J]. 遗传学报,2001,28(10):933-938.
[13] 刁现民,陈振玲,段胜军,等. 影响谷子愈伤组织基因枪转化的因素[J]. 华北农学报,1999,14(3):31-36.
[14] 易自力,王力,曹守云,等. 提高籼稻基因枪转化频率的研究[J]. 高技术通讯,2000,10(11):12-15.
[15] 薛锐,曹守云,杨炜,等. 基因枪法转化籼稻有关因素的评价[J]. 中国水稻科学,1998,12(1):21-26.
[16] LI L C, TIAN W Z, YANG M, et al.. Establishment of an efficient transformation system for rice(Oryza Sativa L.) [A].农业的未来-转基因技术研究[C]. 长沙,湖南科学技术出版社,2002.
[17] 马炳田,朱祯,李平,等. 水稻遗传转化选择系统优化初探[J]. 西南农业学报,2003,16(1):28-31.
[18] 唐祚舜,王象坤,李良才,等. 基因枪法转基因水稻中HPT基因稳定遗传[J]. 遗传学报,2000,27(1):26-33.
[19] 陶利珍,凌定厚,张世平,等. 基因枪介导的籼稻遗传转化及外源基因在受体中的遗传研究[J]. 武汉植物学研究,1999,17(4):289-296.
[20] CHENG Zai-quan,HUANG Xing-qi,RAY Wu,et al..Comparison of biolistic and agrobacterium-mediated transformation methods on transgene copy number and rearrangement frequency in rice[J]. Acta Botanica Sinica, 2001,43(8):826-833.
[21] 华志华,朱雪峰,吴明国,等. 水稻转基因整合模式中外源基因的遗传规律[J]. 作物学报,2003,29(1):44-48.
[22] MING Xiao-tian,YUAN Hua-yi,WANG Li-jiang,et al.. Agrobacterium-mediated transformation of rice with help of bombardment[J]. Acta Botanica Sinica,2001,43(1):72-76.
[23] 赵燕,易自力,洪亚辉,等. 借助粒于轰击提高农杆菌转化水稻的频率[J]. 湖南农业大学学报(自然科学版),2001,27(3):182-184.
文献解读 | MiRNA调控异常及其在精神分裂症治疗中的潜在应用
空闲时间,
也不要懒惰呀!
来和小喵一起看看文献吧!
今天这篇文献主要是说
MiRNA调控异常及其
在精神分裂症治疗中的潜在应用
论文:Dysregulation of miRNA and its potential therapeutic application in schizophrenia(MiRNA调控异常及其在精神分裂症治疗中的潜在应用)
虽然人们普遍认为遗传和发育因素在精神分裂症的发病机制中起着关键作用,但精神分裂症的确切病因机制尚不清楚。 在过去的几十年里,miRNAs已经成为基因表达调控中必不可少的转录后调节因子。
MiRNA在脑发育和神经可塑性中的重要性已经被证实。 MiRNAs的异常表达和功能异常参与了包括精神分裂症在内的许多神经精神疾病的病理生理过程。
本文综述了精神分裂症相关miRNA调控异常的最新发现及其在精神分裂症发生发展中的作用。 我们还讨论了miRNA调控在疾病中的潜在治疗意义。
许多研究使用死后脑样本分析miRNA的表达谱。 Perkins等人使用定制微阵列(miRBaseVersion7.0)检测了13例精神分裂症患者死后前额叶皮质(PFC)的miRNA谱。 与21名精神上未受影响的个体相比,他们发现在精神分裂症患者中有15种miRNAs的差异表达,其中14种miRNAs被下调,1种miRNA(miR-106b)被上调。
在颞叶上回(STG)皮层灰质中也有miR-181 b的显著上调,STG是参与精神分裂症幻听产生的脑区。 鉴定了miR-181 b的两个靶基因: 钙 传感器基因粘蛋白样1(VSNL 1)和嗜离子谷氨酸受体亚基(GRIA 2)。
同一组进一步观察到,STG和背外侧前额叶皮质(DLPFC)在死后组织中的整体miRNA表达明显增加。 这种miRNA的高表达被认为是由于微处理机元件Dgcr 8的初级miRNA处理和上调所致。
然而,来自Berveridge的研究的数据与Perkin的报告不一致。 一些miRNAs,如miR-26b,miR-29c和miR-195,据报道在珀金斯的研究中被下调,但在Berveridge的结果中被发现被上调。 关于精神分裂症患者miRNA表达改变的报道不断积累。
然而,miRNA表达谱的结果有些争议。 MiRNA表达数据的差异可通过样本大小、治疗方案、性别因素和技术应用的差异(如不同的miRNA提取方法和miRBase测试版本)来解释。 此外,miRNAs在人脑中的时间表达模式也可能导致冲突的发生。
为了探讨miRNA作为生物标志物的潜在作用,一些研究集中在精神分裂症患者外周血miRNA的表达上。 Gardiner等人检测了112名精神分裂症患者和76名对照者外周血单个核细胞(PBMC)中miRNA的表达。他们发现精神分裂症患者的83个miRNAs明显减少。
赖等人同时,分析了精神分裂症患者和对照组单个核白细胞的全基因组miRNA表达谱。 7种miRNAs(上调:MIR-34a,miR-449a,miR-564,miR-548d,miR-572 miR-652;下调:MIR-432)被确定为精神分裂症的预测生物标志物。 有趣的是,他们发现7个miRNAs在PBMC中的表达不受住院2个月的影响,即使临床症状明显改善。
我们还注意到,hsa-miR-34a和hsa-miR-548 d在脑样本中的表达没有改变。 魏等人在较大样本中筛选出血浆miRNA谱,并鉴定了8种差异表达的miRNAs(miR-122、miR-130 a、miR-130 b、miR-193 a-3p、miR-193 B、miR-502-3p、miR-652、miR-886-5p)。
他们还发现,阿立哌唑和利培酮治疗1年后,患者血浆中miR-130b和miR-193a-3p水平的升高消失, 并提出了作为精神分裂症预后的生物标志物的潜在作用。
此外,Galleo等人还比较了精神分裂症患者和健康对照者脑脊液(CSF)和全血的miRNA表达谱。 而脑脊液和血液中miRNA的表达水平相关性较差。 尽管miRNAs在精神分裂症患者中的潜在生物标志物已经被提出,但显然还需要更多的研究。
事实上,血清miRNAs的测定为精神分裂症的临床诊断和预后(包括治疗反应)提供了一种可行的方法。
单核苷酸多态性(SNPs)或拷贝数变异(CNVS)是人群中常见的DNA序列变异,在非编码区发生频率较高,与人类疾病易感性有关。 通过病例对照研究,报告了几个与精神分裂症相关的miRNA基因的SNPs。
SNP在miR-206中的rs17578796与斯堪的纳维亚(丹麦和挪威)样本中的精神分裂症有显著的相关性。 变异体ss178077483位于前米尔-30e,与汉族人群精神分裂症有强烈的相关性(等位基因)。
P=0.00017;基因型P = 0.00015). Watanabe等人在日本人口中复制了这种联系。 成熟miR-30e在精神分裂症患者外周血白细胞中的表达水平明显高于精神分裂症患者,与精神分裂症患者PFC表达增加相一致。
同时, 对268例精神分裂症患者和232例正常人进行了SNP基因分型(hsa-pre-mir-146 a rs2910164 G>C和hsa-mir-499 rs3746444 T>C)。 Rs3746444携带CC基因型的患者更容易出现幻觉,缺乏动机。
然而,这两个SNPs与精神分裂症之间没有统计学意义。 SNP rs 7289941也有阴性关联。
最近,Yu等人对精神分裂症进行了两阶段GWAS,包括4384例和5770例对照, 然后对另外4339例精神分裂症患者和7043名汉族对照者进行了13个单核苷酸多态性的独立复制。
他们证实3个位点,分别位于VRK 2外显子 2p16.1(Rs 1051061)、6p22.1(GABBR 1内含 子 rs 115070292)和10q24.32(AS3MT内含子rs10883795;ARL 3内含子rs10883765)与精神分裂症有显著关联。 这三个位点参与了GABA能和多巴胺能信号、细胞粘附分子和髓鞘化通路的调控。
精神分裂症被认为是一种复杂的神经发育疾病。大量证据表明,几种神经递质系统(如多巴胺和谷氨酸)的功能紊乱是精神分裂症的病理生理过程。 N-甲基-D-天冬氨酸-谷氨酸(NMDA)受体是突触可塑性的重要调节因子。
NMDA受体信号传导的高功能可改变皮层回路的兴奋和抑制平衡,并产生类似精神分裂症症状的行为。 Kocerha等人利用NMDA受体拮抗剂地佐西平快速诱发精神分裂症样行为,检测了小鼠不同脑区miRNA的表达。
他们发现,用急性而非慢性地唑西林治疗的小鼠在pfc中的脑特异性miRNA miR-219明显减少。 在亚纯GRN 1(NR1)突变小鼠中,miR-219的表达也明显降低。 抗精神病药物(氟哌啶醇和氯氮平)预处理可预防地唑西林所致miR-219的减少。
MiR-219的靶点之一是钙/钙调素依赖性蛋白激酶Ⅱγ亚基(CaMKIIγ),这是NMDA谷氨酸受体信号级联的一个组成部分。 抑制小鼠脑内miR-219可减少地佐西林诱导的行为反应,如多动和刻板印象,提示miR-219在NMDA受体功能中起调节作用。
作为支持,据报道miR-219在死后脑组织的DLPFC中显著上调。 此外,miR-129还参与了少突胶质细胞分化和髓鞘维持的调控,提示miR-219在突触结构和疾病相关功能中的重要性。
张等对1041例精神分裂症患者和953例健康对照者进行了NMDAR信号通路基因3‘UTR(GRIN2A/2B/3A和CAMK2G)中3个SNPs的关联分析,证实GRIN2B rs 890与精神分裂症有显著相关性。
脑源性神经营养因子(BDNF)是中枢神经系统中最常见的生长因子, 在脑发育和神经元可塑性中起着重要作用。 越来越多的证据表明BDNF的失调与多种神经精神障碍有关。
死后研究显示精神分裂症患者某些脑区BDNF表达水平改变。 Mellios等人60两种miRNAs miR-30a和miR-195直接靶向BDNF 3‘UTR,抑制BDNF的表达。
他们进一步报道,miR-195与BDNF的相互作用可以调控精神分裂症相关的γ-氨基丁酸(GABA),即GABA能基因的表达,包括神经肽Y(NPY)和生长抑素。 MIR-30a-5p还通过调节BDNF信号通路来控制酒精摄入。
作为医学生医学微生物
是一门必修的基础医学课程
通过这门课程掌握与医学相关的微生物
(细菌、病毒、真菌等)的基本生物学性状、
感染与抗感染免疫的机理、
感染性疾病的诊断、预防与治疗原则
为学习相关基础医学和临床医学课程奠定坚实的基础
怎么才能学好这门课程呢?
今天小喵给大家分享的是非常详细的医学微生物课程
1.医学微生物学
2.细菌的形态和结构
3.细菌的生理
4.消毒与灭菌
5.噬菌体
6.细菌的遗传与变异
7.细菌的感染与免疫
8.细菌感染的检查方法和防治原则
9.病原性球菌
10.肠道杆菌
11.弧菌属
12.厌氧性杆菌
13.支原体、立克次体、衣原体
14.螺旋体、真菌、病毒的基本 性态
15.病毒的感染与免疫、病毒感染的检查方法与防治原则
16.肠道病毒、肝炎病毒、黄病毒
17.出血热病毒、疱疹病毒、逆转录病毒、其他病毒、亚病毒
18.18.白喉棒状杆菌 G+、分枝杆菌属
19.放线菌和诺卡氏菌属、动物源性细菌、其他细菌
求一篇关于 基因工程利于弊的论文 3000-3500字
20世纪后期,生物工程迅速发展,给人类生活
带来了巨大的变化。有人说,生物工程给人类带来
了更大的希望,也有人说,它也会相应给人类带来灾
难。学者们众说纷纭,褒贬不一。其中,植物转基因
工程更是如此。
植物转基因工程就是指通过基因枪等基因工程
手段,将一种或几种外源基因转移到原本不具有这
些基因的植物体内,并使之有效表达,产生相应性
状,这种具有相应性状的植物称之为转基因植物。
1983年,第一例转基因植物———转基因烟草问
世。从此,转基因植物的研究就以惊人的速度发展,
人类看到了更大的希望。1986年,抗虫和抗除草剂
的转基因棉花首次进入田间实验,此后转基因植物
在全球范围内飞速发展,种植面积不断扩大,给人类
带来了非常明显的经济效益。在这同时,人类也注
意到了它可能潜在着的一系列危害,即可能对环境
产生不利影响,影响到生物多样性的保护和持续利
用,并且对人类健康也可能有潜在的危害。
1 转基因植物的利用
植物转基因工程的目的旨在通过导入有用的外
源基因,获得转基因植物,用于植物的改良和有效成
分的生产。目前在抗除草剂、抗虫、抗病、控制果实
成熟以及植物生物反应器等方面已获得了一系列令
人鼓舞的成果。
1.1 抗除草剂的转基因植物
化学除草剂在现代农业中起着十分重要的作
用,理想的除草剂必须具有高效、广谱的杀草能力,
而对作物及人畜无害。但这样的除草剂成本越来越
高,通过转基因技术,在作物中导入抗除草剂基因,
获得抗除草剂作物,就能有效地解决这些问题,提高
经济效益,使除草剂的应用更加方便。据报道,现已
成功地获得了转aro A基因的番茄、油菜、大豆、杨
树等,在田间试验中表现出对除草剂的良好抗性。
1.2 抗虫的转基因植物
虫害对农业生产的危害非常严重,如能在植物
体内转入抗虫基因,使植物获得抗虫性,增加对虫害
的抵抗力,将对农业生产具有重要意义。基于这个
目的,人们现已成功地将苏云金芽孢杆菌(Bacillus
thurigiensis)的B.t毒蛋白基因转入了烟草、番茄、马
铃薯、甘蓝、棉花、杨树等植物,使这些植物获得了抗
虫性。
1.3 抗病的转基因植物
据报道,将烟草花叶病毒(TMV)、黄瓜花叶病毒
(CMV)、马铃薯X和Y病毒(PVX和PVY)、大豆花
叶病毒(SMV)、苜蓿花叶病毒(AIMV)等病毒的外壳
蛋白基因导入不同的植物体后,这些植物均获得了
对相应病毒的抗性,这有望应用于农业生产。
1.4 抗逆的转基因植物
68
小分子化合物(如脯氨酸、甜菜碱、葡萄糖等)与
植物忍受环境渗透胁迫的能力有关,人们若能将与
脯氨酸或甜菜碱等合成有关的酶的基因克隆后转入
植物,有望提高植物对干旱和盐碱等逆境的抗性。
有报道说,人们现已成功地将相关基因转入了烟草、
苜蓿、马铃薯等植物,使它们获得了对不同逆境的抗
性。
1.5 植物生物反应器生产药物蛋白
生物反应器(bioreactor)是指利用生物系统大规
模生产有重要商业价值的外源蛋白质,用于医疗保
健和科学研究。将不同的基因转入植物,可使转基
因植物产生植物抗体、口服疫苗、植物药物和人类蛋
白质等。据报道,到目前为止,人们已成功地获得了
4种具有潜在医疗价值的植物抗体。
2 转基因植物存在的潜在风险
2.1 转基因作物对生态环境的潜在风险
在耕地上栽种那些实验室里培育出来的转基因
植物可能会对生态环境造成许多负面影响,转基因
植物对非目标生物可能造成危害,转基因植物通过
基因漂变对其它物种也可能产生有害影响。
2.2 对人类健康的潜在危害
转基因食品里的新基因可能对消费者造成健康
威胁,因为转基因植物是在传统植物接受了动物、植
物、微生物的基因的基础上形成的,所以很可能对人
类健康产生影响。人们正在关注这样一些问题:毒
性问题、过敏反应问题、对抗生素的抵抗作用问题、
营养问题等。
3 展望
20世纪末生物技术取得了突飞猛进的发展,其
涉及面之广、进展之快乃前所未有。从1986年美国
批准第一个转基因作物进行大田试验,至1999年4
月,已有4987个转基因作物被批准进行大田试验。
自1994年至1999年五年间转基因农作物的种植面
积增加了23倍多。美国的转基因抗虫棉花的种植
面积已占其棉花总种植面积的13%。
从发展趋势看,转基因植物将向多元化发展,例
如品质改良、高产、抗逆(抗旱、抗寒、抗低光照、耐盐
碱、耐瘠薄等)的基因工程发展。
随着转基因技术的深入发展,人们也将把转基
因植物应用到医药化工领域,建立基因工厂,从而利
用转基因植物生产各种化工原料和药品,摆脱传统
化工厂对日益短缺的化工原料的依赖和生产过程中
对环境的严重污染。
在21世纪,科学技术更加透明,更加公平,人们
需要更多、更大的知情权,所以,国际社会对这个问
题给予了极大关注,各国政府也高度重视。争论本
身就是推动社会前进的动力。通过争论,弄清是非,
避免破坏性后果的发生,这将推动科学技术沿着健
康的道路发展前进。
任何科学技术都不应该滥用,但也不能扼杀能
给人类和社会创造巨大财富的技术成果。在应用植
物转基因工程技术中,人类应该像对待其它科学技
术一样,扬长避短,全面、理性地看问题,把握尺度,
使植物转基因工程更加健康地发展,造福全人类。
基因对基因学说 最新文献
基因对基因学说
在垂直抗性基因和毒性基因的相互关系上,人们发现了一个极有趣的规律。对应于寄主的每一个垂直抗性基因,病原物方面存在或迟早会发现一个相对应的毒性基因,它能克服其对手抗病基因而使之感病,任何一方的基因只有在对方的对手基因作用下才能鉴定出来。这就是基因对基因学说,是Florl954年根据其亚麻锈病抗病性遗传研究结果而提出的。
基因对基因关系在许多病害中都被发现,马铃薯晚疫病菌生理小种鉴定实际上就反映了基因对基因关系。只需在小种名下加上小种的毒性基因型便可一目了然(即相应于小种(0),(1),(2),(3)……(1,2,,3)……(1,2,3,4)分别注明-,v1,v2,v3……v1v2v3……v1v2v3v4)。
由上述可见,毒性基因乃是能克服寄主方面对手(或对应的)抗病基因使之再无抗病作用的基因,呈现,一把钥匙开一把锁的对应关系。四种组合中感病基因——无毒性基因、感病基因——毒性基因和抗病基因——毒性基,因都将导致感病的后果,只有抗病基因——无毒性基因这一组合才能导致抗病。
基因对基因学说对认识寄主病原物相互关系的遗传学,对生理小种研究和抗病育,种及对抗病性机制研究都有很大的指导意义,而且它还提示出了寄主抗病性和病原物致病性的协同进化。
显然,基因对,基因学说只适用于垂直体系,即双方主效基因之间。在水平体系中,则看不出这种规律,曾,有人推测,在水平体系中,寄主的抗病性微效基因和病原物的侵袭力微效基因可能也存在着基因对基因关,系,但是目前尚无法证实。
上一篇:研究型论文的英文
下一篇:电影编导论文研究