2t24t根据我搜集的一些网站来看,建议看看这个,要做毕业论文以及毕业设计的,推荐一个网站 ,里面的毕业设计什么的全是优秀的,因为精挑细选的,网上很少有,都是相当不错的毕业论文和毕业设计,对毕业论文的写作有很大的参考价值,希望对你有所帮助。 别的相关范文很多的,推荐一些比较好的范文写作网站,希望对你有帮助,这些精选的范文网站,里面有大量的范文,也有各种文章写作方法,注意事项,应该有适合你的,自己动手找一下,可不要照搬啊,参考一下,用自己的语言写出来那才是自己的。 如果你不是校园网的话,请在下面的网站找: 毕业论文网: 分类很细 栏目很多 毕业论文: 毕业设计: 开题报告: 实习论文: 写作指导:
论文开题报告基本要素
各部分撰写内容
论文标题应该简洁,且能让读者对论文所研究的主题一目了然。
摘要是对论文提纲的总结,通常不超过1或2页,摘要包含以下内容:
目录应该列出所有带有页码的标题和副标题, 副标题应缩进。
这部分应该从宏观的角度来解释研究背景,缩小研究问题的范围,适当列出相关的参考文献。
这一部分不只是你已经阅读过的相关文献的总结摘要,而是必须对其进行批判性评论,并能够将这些文献与你提出的研究联系起来。
这部分应该告诉读者你想在研究中发现什么。在这部分明确地陈述你的研究问题和假设。在大多数情况下,主要研究问题应该足够广泛,而次要研究问题和假设则更具体,每个问题都应该侧重于研究的某个方面。
谈关于运筹学教学的几点思考 [论文关键词]运筹学 教学研究 课程建设[论文摘要]本文对运筹学教学中存在的一些问题进行分析,并就运筹学的教学目的、教学内容、教学形式等方面进行探讨,提出相应的改革思路和措施。 运筹学作为一个学科出现以来,特别是20世纪50年代以来,运筹学的研究与实践在我国得到深入发展,在工程、管理、经济等领域都发挥了重大的作用,并作为一门课程逐渐成为管理科学、系统科学、信息技术、工程管理、物流管理、经济、金融等专业的基础课程之一。然而,由于运筹学知识的综合性及内容上的数学复杂性,使得这一课程的教学表现出强烈的自身特色。结合几年来十几次运筹学教学的体会,对运筹学的教学方法进行一个粗浅的分析,以供探讨。 一、注重其发展背景及现实意义的讲授 运筹学作为一门应用科学,既不同于数学等经典学科,又不同于普通的应用学科,这一点可以从其发展背景中略见一斑。从运筹学的早期的发展来看,它可追溯到1914年提出的军事运筹学中的兰彻斯特(Lanchester)战斗方程、1917年丹麦工程师爱尔朗(Er-lang)在哥本哈根电话公司研究电话通信系统时提出的排队论的先驱者、20世纪20年代初提出的存储论最优批量公式等等。这些发展背景的介绍有助于学生对于这一学科的重要性、学科的特点、以及其中问题的解决思路都会起到非常重要的作用。所以,作为运筹学课程的讲授人员,要把不应在课程绪论的讲授中一带而过,而是要在讲授过程中让学生有所体悟。 二、注重其“学科交叉、多分支”的特点 应该说“学科交叉、多分支”是运筹学作为一门课程的重要特色,也是教学过程中需要认真处理、仔细推敲的一个关键问题。多学科交叉使得运筹学表现出知识结构和思维方式上的复杂性——既具有数学学科的理论特性又具有应用学科的自身特性、既具有理工学科的定量特性、又具有人文学科的分析特性、既追求“完美”又注重“实用”。作为授课教师而言要始终把握运筹学的这一特点,做到对发展现状的较好跟踪,注重对学生启发性引导;做到对授课对象的仔细区分,既包括对学生学历的区分又包括对学生专业的区分,对学生学历的区分主要体现在知识内容、授课学时、授课方式、课程要求等环节,而对学生专业的区分则主要体现在理学、工学和经管专业在知识深度与广度上的差异以及在理论和应用上的差异。而多分支特性则要求授课教师在授课过程中对各个分支有针对性的选择并能够做到对该分支理论及应用的充分把握。 三、注重“案例教学、实验教学”的`综合运用 案例教学与实验教学在运筹学教学中的运用主要在于对学生综合能力的培养。“案例教学”一方面可以在课程讲授过程中起到引导的作用,既可做到由浅入深、又可在较大程度上激发学生的学习兴趣,为接下来的深入做好铺垫;另一方面,又可在知识的运用上起到较好的教学效果,既激发学生的知识运用的兴趣又加深对知识理论的理解。“实验教学”既是对理论教学和案例教学的细化又是对学生动手能力的有效引导手段,特别是对学生脚踏实地的学习态度是一个较好的锤炼,同时也对学生长期以来单纯的“分数为上”的学习方式是一个有效的冲击。正是基于上述考虑,笔者认为在运筹学的讲授过程中要充分重视“案例教学”和“实验教学”的运用,充分考虑二者在运筹学教学过程中比重和搭配问题。 四、注重教学方式的运用 随着教育技术的飞速发展,多媒体教学在课堂教学中运用越来越普遍,它在一定程度上提高了教学的质量和教学率,同时又带来相应的弊端。尤其是多年的高校扩招和运筹学课程的普遍适用性使得多数运筹学课程为大课教学,这就促使教师为了避免后排学生看不清而几乎抹去了板书的运用。所以,在大班化的背景下,板书与多媒体的矛盾始终是运筹学教学中一个难以解决的问题。 五、注重对考核方式的研究 考核作为学习过程中的一个重要环节,其设计的好坏对整个教学质量有着重要影响。在传统的考试方式中,往往过多得强调知识点的掌握情况,而在一定程度上忽视了应用能力的培养。所以,不仅要在教学过程中注重“案例教学”和“实验教学”的运用,又要注重对学生实践能力方面的考核,不仅包括学生对分析能力、动手能力的考核,还要包括对学生探索精神和探索能力的考核。基于此,笔者认为在运筹学考核过程中“专题考核”和“研究论文”都可作为传统考核方式的重要补充。 总之,教学内容、教学方式、教学媒介、考核方式都是运筹学授课教师始终需要认真思考的问题。不仅如此,还要综合考虑自身高校的教学特点,特别是该课程在专业体系中作用的考虑以及该校教学管理部门的课程管理特点。该文仅仅是笔者一点粗浅体会,不足深论,仅供参考。 [参考文献] [1]杨茂盛,孔凡楼,张炜.对运筹学课程教学改革的看法和建议[J].西安建筑科技大学学报(社会科学版),2006(12),108-110 [2]张润红.从整体角度对工程管理专业《运筹学》教学的探索[J].理工高教研究,2005(2),94-95 [3]胡发胜,刘桂真.国家精品课程运筹学的教学改革与实践[J].中国大学教学,2006(7),9-10 论文相关查阅: 毕业论文范文 、 计算机毕业论文 、 毕业论文格式 、 行政管理论文 、 毕业论文 ;
随着我国国民经济的不断发展,企业之间的交易活动更加频繁、同地区、不同地区、甚至跨国的交易活动也不断发生,交通运输则成为交易的活动重点了。 交通运输作为国民经济的一个重要部门,作为人类进步、社会发展的一个重要推动力,其发展模式正在对环境产生越来越重要的影响。传统的运输方式已 经不能满足环境保护、经济发展以及交通运输本身发展的需求,探寻与环境、资源条件相适应的运输是非常重要的一个问题。人们在交通运输方面趋利避害建立更好的运输方法,让交通运输的方法达到一个更高的水平。
我这里有一份“等”对“不等”的启示 对于解集非空的一元二次不等式的求解,我们常用“两根之间”、“两根之外”这类简缩语来说明其结果,同时也表明了它的解法.这是用“等”来解决“不等”的一个典型例子.从表面上看,“等”和“不等”是对立的,但如果着眼于“等”和“不等”的关系,会发现它们之间相互联系的另一面.设M、N是代数式,我们把等式M=N叫做不等式M<N,M≤N,M>N、M≥N相应的等式.我们把一个不等式与其相应的等式对比进行研究,发现“等”是“不等”的“界点”、是不等的特例,稍微深入一步,可以从“等”的解决来发现“不等”的解决思路、方法与技巧.本文通过几个常见的典型例题揭示“等”对于“不等”在问题解决上的启示. � 1.否定特例,排除错解 �解不等式的实践告诉我们,不等式的解区间的端点是它的相应等式(方程)的解或者是它的定义区间的端点(这里我们把+∞、-∞也看作端点).因此我们可以通过端点的验证,否定特例,排除错解,获得解决问题的启示. �例1 满足sin(x-π/4)≥1/2的x的集合是(). ��A.{x|2kπ+5π/12≤x≤2kπ+13π/12,k∈Z} ��B.{x|2kπ-π/12≤x≤2kπ+7π/12,k∈Z} ��C.{x|2kπ+π/6≤x≤2kπ+5π/6,k∈Z} ��D.{x|2kπ≤x≤2kπ+π/6,k∈Z}∪{2kπ+5π/6≤(2k+1)π,k∈Z}(1991年三南试题) �分析:当x=-π/12、x=π/6、x=0时,sin(x-π/4)<0,因此排除B、C、D,故选A. �例2 不等式 +|x|/x≥0的解集是(). ��A.{x|-2≤x≤2} ��B.{x|- ≤x<0或0<x≤2} ��C.{x|-2≤x<0或0<x≤2} ��D.{x|- ≤x<0或0<x≤ } � 分析:由x=-2不是原不等式的解排除A、C,由x=2是原不等式的一个解排除D,故选B. �这两道题若按部就班地解来,例1是易错题,例2有一定的运算量.上面的解法省时省力,但似有“投机取巧”之嫌.选择题给出了三误一正的答案,这是问题情景的一部分.而且是重要的一部分.我们利用“等”与“不等”之间的内在联系,把目光投向解区间的端点,化繁为简,体现了具体问题具体解决的朴素思想,这种“投机取巧”正是抓住了问题的特征,体现了数学思维的敏捷性和数学地解决问题的机智.在解不等式的解答题中,我们可以用这种方法来探索结果、验证结果或缩小探索的范围. �例3 解不等式loga(1-1/x)>1.(1996年全国高考试题) �分析:原不等式相应的等式--方程loga(1-1/x)=1的解为x=1/(1-a)(a≠1是隐含条件).原不等式的定义域为(1,+∞)∪(-∞,0).当x→+∞或x→-∞时,loga(1-1/x)→0,故解区间的端点只可能是0、1或1/(1-a).当0<a<1时,1/(1-a)>1,可猜测解区间是(1,1/(1-a));当a>1时,1/(1-a)<0,可猜测解区间是(1/(1-a),0).当然,猜测的时候要结合定义域考虑. �上面的分析,可以作为解题的探索,也可以作为解题后的回顾与检验.如果把原题重做一遍视为检验,那么一则费时,对考试来说无实用价值,对解题实践来说也失去检验所特有的意义;二则重做一遍往往可能重蹈错误思路、错误运算程序的复辙,费时而于事无补.因此,抓住端点探索或检验不等式的解,是一条实用、有效的解决问题的思路. �2.诱导猜想,发现思路 �当我们证明不等式M≥N(或M>N、M≤N、M<N)时,可以先考察M=N的条件,基本不等式都有等号成立的充要条件,而且这些充要条件都是若干个正变量相等,这就使我们的思考有了明确的目标,诱导猜想,从而发现证题思路.这种思想方法对于一些较难的不等式证明更能显示它的作用. �例4 设a、b、c为正数且满足abc=1,试证:1/a3(b+c)+1/b3(c+a)+1/c3(a+b)≥3/2.(第36届IMO第二题) �分析:容易猜想到a=b=c=1时,原不等式的等号成立,这时1/a3(b+c)=1/b3(c+a)=1/c3(a+b)=1/2.考虑到“≥”在基本不等式中表现为“和”向“积”的不等式变换,故想到给原不等式左边的每一项配上一个因式,这个因式的值当a=b=c=1时等于1/2,且能通过不等式变换的运算使原不等式的表达式得到简化. �1/a3(b+c)+(b+c)/4bc≥ =1/a, �1/b3(a+c)+(a+c)/4ca≥1/b, �等号不一定成立而启迪我们对问题进一步探索的典型例子是1997年全国高考(理科)第22题: �例8 甲、乙两地相距S千米(km),汽车从甲地匀速行驶到乙地,速度不得超过c千米/小时(km/h).已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/小时)的平方成正比,比例系数为b,固定部分为a元. �Ⅰ.把全程运输成本y(元)表示为速度v(千米/小时)的函数,并指出这个函数的定义域; �Ⅱ.为了使全程运输成本最小,汽车应以多大的速度行驶? �分析:y=aSv+bSv,v∈(0,c〕,由y≥2S 当且仅当aS/v=bSv,即当v= 时等号成立得,当v= 时y有最小值.这是本题的正确答案吗?那就得考虑v= 是否一定成立.当 ≤c时可以,但 是有可能大于c的.这就引发了我们进行分类讨论的动机,同时也获得分类的标准. �综上所述,“等”是不等式问题中一道特殊的风景,从“等”中寻找问题解决的思路,本质上是特殊化思想在解题中的应用.从教学上看,引导学生注视不等式问题中的“等”,是教会学生发现问题、提出问题,从而分析问题、解决问题的契机. �1/c3(a+b)+(a+b)/4ab≥1/c, �将这三个等式相加可得 �1/a3(b+c)+1/b3(c+a)+1/c3(a+b)≥1/a+1/b+1/c-(1/4)〔(b+c)/bc+(c+a)/ca+(a+b)/ab〕=(1/2)(1/a+1/b+1/c)≥(3/2) =3/2,从而原不等式获证. �这道题看似不难,当年却使参赛的412名选手中有300人得0分.上述凑等因子的思路源于由等号的成立条件而产生的猜想,使思路变得较为自然,所用的知识是一般高中生所熟知的.再举二例以说明这种方法有较大的适用范围. �例5 设a,b,c,d是满足ab+bc+cd+da=1的正实数,求证:a3/(b+c+d)+b3/(a+c+d)+c3/(a+b+d)+d3/(a+b+c)≥1/3.(第31届IMO备选题) �证明:a3/(b+c+d)+a(b+c+d)/9≥(2/3)a2, �b3/(a+c+d)+b(a+c+d)/9≥(2/3)b2, �c3/(a+b+d)+c(a+b+d)/9≥(2/3)c2, �d3/(a+b+c)+d(a+b+c)/9≥(2/3)d2. �∴ a3/(b+c+d)+b3/(a+c+d)+c3/(a+b+d)+d3/(a+b+c)≥(2/3)(a2+b2+c2+d2)-(2/9)(ab+bc+cd+da+ac+bd) �=(5/9)(a2+b2+c2+d2)-(2/9)(ab+bc+cd+da)+(1/9)(a2+c2-2ac+b2+d2-2bd) �≥(5/9)(a2+b2+c2+d2)-(2/9)(ab+bc+cd+da)≥(5/9)(ab+bc+cd+da)-(2/9)(ab+bc+cd+da)=(1/3)(ab+bc+cd+da)=1/3. �当a=b=c=d=1/2时,原不等式左边的四个项都等于1/12,由此出发凑“等因子”.对于某些中学数学中的常见问题也可用这种方法解决,降低问题解决对知识的要求. �例6 设a,b,c,d∈R+,a+b+c+d=8,求M= + + + 的最大值. �分析:猜想当a=b=c=d=2时M取得最大值,这时M中的4个项都等于3.要求M的最大值,需将M向“≤”的方向进行不等变换,由此可得3 ≤(3+4a+1)/2=2a+2,3 ≤2b+2,3 ≤2c+2,3 ≤2d+2.于是3M≤2(a+b+c+d)+8=24,∴M≤8.当且仅当a=b=c=d时等号成立,所以M的最大值为8. �当然,例6利用平方平均数不小于算术平均数是易于求解的,但需要高中数学教材外的知识.利用较少的知识解决较多的问题,是数学自身的追求,而且从教学上考虑,可以更好地培养学生的数学能力.先有猜想,后有设计,再有证法,也是数学地思考问题的基本特征. �3.引发矛盾,启迪探索 �在利用基本不等式求最大值或最小值时,都必须考虑等号能否取得,这不仅是解题的规范要求,而且往往对问题的解决提供有益的启示.特别当解题的过程似乎顺理成章,但等号成立的条件却发生矛盾或并不一定成立.这一新的问题情景将启迪我们对问题的进一步探索. �例7 设a,b∈R+,2a+b=1,则2 -4a2-b2有(). ��A.最大值1/4� B.最小值1/4 ��C.最大值( -1)/2� D.最小值( -1)/2 � 分析:由4a2+b2≥4ab,得原式≤2 -4ab=-4( )2+2 =-4( -1/4)2+1/4≤1/4.若不对不等变换中等号成立的条件进行研究,似已完成解题任务,而且觉得解题过程颇为自然,但若研究一下等号成立的条件,则出现了矛盾:要使4a2+b2≥4ab中的等号成立,则应有2a=b=1/2,这时 = /4≠1/4,第二个“≤”中的等号不能成立.这一矛盾使我们感觉到解题过程的错误,促使我们另辟解题途径.事实上,原式=2 -(2a+b)2+4ab=4ab+2 -1,而由1=2a+b≥2 得0< ≤ /4,ab≤1/8,∴原式≤ /2+1/2-1=( -1)/2,故选�C. 本文来自论文大学网
去淘宝购买Robo-Soul 机器人,很棒!
同学 能把程序和动作组卖我么
随着我国国民经济的不断发展,企业之间的交易活动更加频繁、同地区、不同地区、甚至跨国的交易活动也不断发生,交通运输则成为交易的活动重点了。 交通运输作为国民经济的一个重要部门,作为人类进步、社会发展的一个重要推动力,其发展模式正在对环境产生越来越重要的影响。传统的运输方式已 经不能满足环境保护、经济发展以及交通运输本身发展的需求,探寻与环境、资源条件相适应的运输是非常重要的一个问题。人们在交通运输方面趋利避害建立更好的运输方法,让交通运输的方法达到一个更高的水平。
谈关于运筹学教学的几点思考 [论文关键词]运筹学 教学研究 课程建设[论文摘要]本文对运筹学教学中存在的一些问题进行分析,并就运筹学的教学目的、教学内容、教学形式等方面进行探讨,提出相应的改革思路和措施。 运筹学作为一个学科出现以来,特别是20世纪50年代以来,运筹学的研究与实践在我国得到深入发展,在工程、管理、经济等领域都发挥了重大的作用,并作为一门课程逐渐成为管理科学、系统科学、信息技术、工程管理、物流管理、经济、金融等专业的基础课程之一。然而,由于运筹学知识的综合性及内容上的数学复杂性,使得这一课程的教学表现出强烈的自身特色。结合几年来十几次运筹学教学的体会,对运筹学的教学方法进行一个粗浅的分析,以供探讨。 一、注重其发展背景及现实意义的讲授 运筹学作为一门应用科学,既不同于数学等经典学科,又不同于普通的应用学科,这一点可以从其发展背景中略见一斑。从运筹学的早期的发展来看,它可追溯到1914年提出的军事运筹学中的兰彻斯特(Lanchester)战斗方程、1917年丹麦工程师爱尔朗(Er-lang)在哥本哈根电话公司研究电话通信系统时提出的排队论的先驱者、20世纪20年代初提出的存储论最优批量公式等等。这些发展背景的介绍有助于学生对于这一学科的重要性、学科的特点、以及其中问题的解决思路都会起到非常重要的作用。所以,作为运筹学课程的讲授人员,要把不应在课程绪论的讲授中一带而过,而是要在讲授过程中让学生有所体悟。 二、注重其“学科交叉、多分支”的特点 应该说“学科交叉、多分支”是运筹学作为一门课程的重要特色,也是教学过程中需要认真处理、仔细推敲的一个关键问题。多学科交叉使得运筹学表现出知识结构和思维方式上的复杂性——既具有数学学科的理论特性又具有应用学科的自身特性、既具有理工学科的定量特性、又具有人文学科的分析特性、既追求“完美”又注重“实用”。作为授课教师而言要始终把握运筹学的这一特点,做到对发展现状的较好跟踪,注重对学生启发性引导;做到对授课对象的仔细区分,既包括对学生学历的区分又包括对学生专业的区分,对学生学历的区分主要体现在知识内容、授课学时、授课方式、课程要求等环节,而对学生专业的区分则主要体现在理学、工学和经管专业在知识深度与广度上的差异以及在理论和应用上的差异。而多分支特性则要求授课教师在授课过程中对各个分支有针对性的选择并能够做到对该分支理论及应用的充分把握。 三、注重“案例教学、实验教学”的`综合运用 案例教学与实验教学在运筹学教学中的运用主要在于对学生综合能力的培养。“案例教学”一方面可以在课程讲授过程中起到引导的作用,既可做到由浅入深、又可在较大程度上激发学生的学习兴趣,为接下来的深入做好铺垫;另一方面,又可在知识的运用上起到较好的教学效果,既激发学生的知识运用的兴趣又加深对知识理论的理解。“实验教学”既是对理论教学和案例教学的细化又是对学生动手能力的有效引导手段,特别是对学生脚踏实地的学习态度是一个较好的锤炼,同时也对学生长期以来单纯的“分数为上”的学习方式是一个有效的冲击。正是基于上述考虑,笔者认为在运筹学的讲授过程中要充分重视“案例教学”和“实验教学”的运用,充分考虑二者在运筹学教学过程中比重和搭配问题。 四、注重教学方式的运用 随着教育技术的飞速发展,多媒体教学在课堂教学中运用越来越普遍,它在一定程度上提高了教学的质量和教学率,同时又带来相应的弊端。尤其是多年的高校扩招和运筹学课程的普遍适用性使得多数运筹学课程为大课教学,这就促使教师为了避免后排学生看不清而几乎抹去了板书的运用。所以,在大班化的背景下,板书与多媒体的矛盾始终是运筹学教学中一个难以解决的问题。 五、注重对考核方式的研究 考核作为学习过程中的一个重要环节,其设计的好坏对整个教学质量有着重要影响。在传统的考试方式中,往往过多得强调知识点的掌握情况,而在一定程度上忽视了应用能力的培养。所以,不仅要在教学过程中注重“案例教学”和“实验教学”的运用,又要注重对学生实践能力方面的考核,不仅包括学生对分析能力、动手能力的考核,还要包括对学生探索精神和探索能力的考核。基于此,笔者认为在运筹学考核过程中“专题考核”和“研究论文”都可作为传统考核方式的重要补充。 总之,教学内容、教学方式、教学媒介、考核方式都是运筹学授课教师始终需要认真思考的问题。不仅如此,还要综合考虑自身高校的教学特点,特别是该课程在专业体系中作用的考虑以及该校教学管理部门的课程管理特点。该文仅仅是笔者一点粗浅体会,不足深论,仅供参考。 [参考文献] [1]杨茂盛,孔凡楼,张炜.对运筹学课程教学改革的看法和建议[J].西安建筑科技大学学报(社会科学版),2006(12),108-110 [2]张润红.从整体角度对工程管理专业《运筹学》教学的探索[J].理工高教研究,2005(2),94-95 [3]胡发胜,刘桂真.国家精品课程运筹学的教学改革与实践[J].中国大学教学,2006(7),9-10 论文相关查阅: 毕业论文范文 、 计算机毕业论文 、 毕业论文格式 、 行政管理论文 、 毕业论文 ;
财政和会计。根据查询运筹学论文相关信息得知,方向有财政和会计。运筹学就是以数学为主要手段、着重研究最优化问题解法的学科。运筹学可以用来很好的解决生活中的许多问题。运筹学有着广泛的应用,对现代化建设有重要作用。
论文摘要:文章针对侦察无人机航路规划这一问题,分析了影响航路规划的因素,构建了航路规划的模型。结合侦察无人机航路规划的特点与模型,论证了基于蚁群算法求解的理由与优点,并对蚁群算法的初始信息素强度与启发因子进行了改进。最后以岛屿进攻战役这一特定作战任务为例。利用MATLAB实现了侦察多目标时的航路规划问题。 引言 航路规划是指在目标点与起始点之间,为运动物体寻找满足某种性能指标和某些约束的线路、路径。目前对于航路规划的研究主要用于导弹、鱼雷、飞机等飞行器的飞行线路选择上,对于无人机的侦察航路的系统研究还不多见。在文献[3]中虽然也应用蚁群算法进行了航路规划,但没有充分考虑到威胁点存在和目标点价值对航路的影响,且对蚁群算法没有进行启发因子和信息素初始强度方面的创新。在相关外文文献中,由于美军无人机航程较大,其航路规划的约束条件就相对较少,可供借鉴的内容也很有限。而针对岛屿进攻战役这一特殊作战样式的研究更是尚属空白。本文正是基于这一背景下对该问题进行研究,以实现在充分发挥无人机最大作战效能的同时,又尽可能地降低无人机被毁伤概率。 1、影响航路规划的因素分析 影响侦察无人机航路规划的主要因素有如下四个方面。 目标价值 目标价值是衡量某一时刻对某一目标实施火力突击必要程度的综合指标(用Vm表示)。可采用层次分析法获得各个目标的价值Vm,也可以再进行归一化处理,得到各目标的相对价值系数Ku,以此来衡量目标的重要程度。 对不同的目标实施侦察时,对于价值较高的目标可安排更长的有效侦察时间,而对于价值相对较低的目标,则应适当压缩有效侦察时间。 有效飞行时间(距离) 侦察的主要目的是发现对己方有价值目标并及时描述目标的状态,因此发现目标的概率是航路是否合理的一个重要指标。距离目标越近,飞机上侦察设备能够搜索目标区的时间也就越长,发现目标的概率也就越大。 在执行侦察任务时,为了获得某一目标的有效信息,无人机必需接近目标并使目标处于其机载电子、光学侦察设备的作用距离内。如果为了实时监控某一目标,侦察无人机还必需在此目标的上空盘旋、停留,以使目标长时间地处于机载设备的监控之下。因此对目标的发现概率可以用有效飞行时间来表征。它表示侦察无人机对目标总的侦察、监控时间,为处理方便,若侦察无人机以等速率飞行,则其有效侦察飞行时间也可转变为有效飞行距离表征。 生存能力 侦察无人机要完成侦察任务就必须具备一定的生存能力。而其生存能力主要与侦察无人机的隐形规避性能、敌方雷达、防空武器的性能等相关。即侦察无人机的生存能力既受本身的易感性、易损性、可靠性影响,也受敌方的侦察探测和打击能力影响。 从侦察无人机完成飞行任务过程来看,包括发射、正常飞行和突破拦截三个过程,若用概率Pf、Pl、Ps表示三个过程的完成情况。 航程(油量)限制 航程是指侦察无人机起飞后,中途不经加油所能飞越的最大水平距离,即飞行距离。是表征侦察无人机远航和持久飞行能力的指标。由于其在地面一次所加的油量是有限的,因此它的航路必然受到航程的限制,且由于无线电的作用距离受限,飞机执行任务的位置不能超过其作战半径。 2、航路规划构模 侦察无人机多数情况下执行特定的侦察监视飞行任务,指挥员期望的目标是在有限的飞行时间与航程内发现尽可能多的目标,同时付出的代价最小。 就航路规划的约束条件而言,首先是威胁量不能超过指挥员的许可范围,其二,是侦察无人机总的飞行距离不能超过侦察无人机的航程。一旦两者之一不能成立,表明要求的任务是无法完成的,即 3、蚁群算法及其改进 蚁群算法作为一种新的计算模式引入人工智能领域,被称为蚂蚁系统,该系统基于以下假设: (1)蚂蚁之间通过环境进行通信。每只蚂蚁仅根据其周围的局部环境做出反应,也仅对其周围的局部环境产生影响; (2)蚂蚁对环境的反应由其内部模式决定; (3)在个体水平上,每只蚂蚁仅根据环境做出独立选择。在群体水平上,单只蚂蚁的行为是随机的,但蚁群通过自组织过程形成高度有序的群体行为。 基于蚁群算法进行航路规划的特点 基于蚁群算法的侦察无人机航路规划方法,能够保证在航路制订时得到一条具有较小可被探测概率及可接受航程的飞行航路,这种航路规划方法还具有以下特点:(1)在蚂蚁不断散布生物信息激素的加强作用下,新的信息会很快被加入到环境中,而由于生物信息激素的蒸发更新,旧的信息会不断被丢失,体现出一种动态特性; (2)最优路线是通过众多蚂蚁的合作被搜索得到的,并成为大多数蚂蚁所选择的路线,这一过程具有协同性; (3)由于许多蚂蚁在环境中感受散布的生物信息激素同时自身也散发生物信息激素,这使得不同的蚂蚁会有不同的选择策略,具有分布性。这些特点与未来战场的许多要求是相符的,因而采用蚁群算法对侦察无人机的航路进行规划具有可行性与前瞻性。 蚁群算法的改进 (1)ij(t)的初值 为了更好的考虑威胁,在定义在初始条件下定义轨迹强度不同,根据蚂蚁选择路线最优选择轨迹强度高的路线,而无人机的航路规划中则应该更优的选择距离威胁点较远的航路。那么可以定义轨迹的初始强度与距离成反比。即与威胁点越近的路线,信息素强度越小。对于两目标点间的每条路径,其信息素轨迹初始强度。 4、基于改进蚁群算法的侦察无人机航路规划的实现 航路规划的初始条件 蚁群算法用于航路规划主要运用在对多目标实施搜索侦察的航路规划问题,即航路规划需要得出的是飞行经过各个目标的数量和次序,以使侦察无人机经过尽可能多的目标点。 在进行初始规划的过程中,为更方便蚁群算法的实现,首先确定坐标系,将上述各目标点及威胁点用坐标系来表示,这样可以便于实际的运算。 假设在岛屿进攻战役中以某市为坐标点(100,100)的位置,以3公里为1个坐标系单位长度建立平面直角坐标系(这是在充分考虑了将主要有价值点都包括在一个(120×120)的范围内而合理构建的)。则可以确定上述各点的坐标系位置,得到各点坐标。同时各个目标点的价值系数通过层次分析法可求得到结果(具体过程略)。 蚁群算法模型的实现 蚁周系统的各初始参量的确定 为计算和表示方便,将目标点定义为向量Mi(其中i=1,2,3,…,12),威胁点定义为向量Ti(其中i=1,2,3)。采用蚁群算法实现目标点的类旅行商(TSP,Traveling Salesman Problem)问题,目前已经开发的蚁群算法包括蚁密系统、蚁量系统和蚁周系统,而实际应用多数应用后者。为模拟系统中蚂蚁行为的方便,定义标记。 蚁群算法模型分析 通过比较的方法,定性分析各个情况下的目标函数值和航路规划图。不难发现在考虑了目标点价值和威胁点威胁的情况下,航路尽可能地避开了威胁并优先选择通过目标价值较大的点。这样无人机的被毁伤概率较低,且如果发生被毁伤事件时,已经发现的总体目标价值最大。 针对四种情况进行定量分析,假设指挥员的倾向性为,即略侧重于考虑威胁代价。2000表示对每个目标的有效侦察距离均为2000m,计算目标函数的值,可见考虑完备时虽然航路总长最大但总体的目标函数值也最大,航程最优,即侦察无人机应按照依次通过这些目标点。 5、结束语 通过上述分析,在给定侦察无人机的侦察任务情况下经运算可求得最优的初始航路,它可以有效地提高无人机的侦察效能,降低无人机的被毁伤概率,它对于目前军事斗争准备中如何使用侦察无人机具有一定的指导意义。随着我军侦察无人机性能的提高及型号的不断丰富,在对未来岛屿进攻战役中如何对这些机型进行航路规划尚有待于进一步探讨。
现在和将来的角度,结合你所学 我可以写,比较多
中文系本科毕业论文,学年论文选题一,中国古代文学《诗经》分类研究(情诗,思妇诗,离别诗等)先秦诸子文研究(《论语》,《老子》,《庄子》,《孟子》,《荀子》,《韩非子》等)屈原与楚辞研究(生平,悲剧成因,作品辨伪,思想与艺术等)《诗经》《楚辞》比较研究《左传》的叙事艺术《战国策》研究先秦寓言研究中国文明的来源和特征中国哲学与中国文学的关系贾谊论《史记》人物传记所体现审美情趣《史记》人物传记中人物形象分析汉乐府诗分析汉魏六朝史传文学研究《世说新语》研究唐诗与唐代社 研究;唐人小说研究简论中唐爱情传奇从李贺诗看其"鬼才"之名简论李商隐的咏史诗李商隐的"无题诗"的艺术特色韩0诗风浅探唐人小说研究;试论白居易的"中隐"观试论白居易的"狂"柳宗元和他的山水游记柳宗元的杂文艺术刘禹锡与柳宗元比较研究亡国之音哀以思――论李煜词李煜词的艺术特色唐诗与宋诗比较研究欧阳修在宋代诗文革新中的作用朱熹诗研究柳永词的雅和俗 天津大学本科生毕业设计开题报告学院名称: 专业名称:计算机信息管理学生姓名 指导教师:(内容:课题的来源及意义,国内外发展状况,本课题的研究目标,研究方法研究手段和进度安排,实验方案的可行性分析和已具备的实验条件以及主要的参考文献)人类已经进入21世纪,随着社会的发展,现代科学技术与管理技术的提高,生产信息的多元化、复杂化,信息量越来越大,社会的组织化和生产社会化的程度越来越高,因此,对信息的处理和管理工作也就边的很重要。可以说,现代管理的核心就是决策,而决策的基础,就是各种各样的信息。要想随时了解企业的经营管理活动中的各种运行情况,并且能及时的作出正确的决策,就必须全面而系统的掌握企业的各种生产管理信息,这就需要有科学的管理信息系统来进行企业信息的统一管理,为企业决策提供科学的依据,在这种情况下,结合了现代管理科学、系统科学、计算机科学等学科,形成了一门新兴的边缘性科学---管理信息系统科学。管理信息系统是管理科学、信息科学、系统科学与计算机科学相融合的一门新兴的边缘性科学,是先进的科学技术与现代化管理相结合的产物建设一计算机为主要手段的管理信息系统,已经成为现代企业、公司、政府部门等各类组织实现组织目标、提高自身素质的战略措施管理信息系统的开发是系统建设中最重要的一个阶段,同时也是一项艰巨而复杂的工作。国内外许多历史事实告诉人们,管理信息系统建设的道路坎坷许多已经建立的系统,远远达不到预期的效益和期望,反而因为在开发当中由于工作安排不当,导致耗用了大量的资金,致使后期系统维护工作困难,在系统使用过程中,出现大量错误,使使用单位的效益受到了严重的影响,也没有实现了所开发系统应达到的目的。管理信息系统是一个由人和计算机等组成的能进行信息收集、传递、加工、保存、维护和使用的系统,他是现代组织有效管理、正确决策和实现现代化管理的重要手段。作为一门新兴的学科,它综合了许多科学的方法和概念,包括如现代管理科学、计算机科学、现代经济学、现代运筹学和统计学、数据库技术等许多学科的概念和技术。 目前,市场经济快速渗透到全社会的各个部门,社会医疗体系也面临市场化转型,医院将不再是过去计划体制下的行政事业单位,而是一种经济服务部门。提高工作效率,改进医疗质量,以提高经济效益,是医院管理的新课题。基于计算机网络的信息系统,将成为医院运营的必要技术支撑环境和基础设施。本论文描述了“邯郸人民医院管理信息系统”的开发过程,通过收集和调查有关资料,利用我所学到的管理信息系统领域的知识,对如何开发一个上述的管理信息系统,进行了初步的研究和设计,主要包括该系统的系统分析,系统设计,系统实施,系统管理以及系统维护。本论文详细描述了在该系统开发过程中所采用的如:面向对象开发技术,数据库技术,计算机通信技术,信息资源管理技术,信息系统开发技术等新兴的系统开发技术。鉴于本人知识和精力有限,本论文侧重于描述住院信息管理。该系统开发主要采用POWER BULDING 完成,网络结构主要采用总线型网状结构,并和INTERNET互联,运行环境为中文WINDOWS98或和WINDOWS XP。
《工业工程专业》毕业设计教学大纲课程编码:1238 名 称:《工业工程》毕业设计 专 业:工业工程周 数:18周一,毕业设计意义和目的工业工程专业(本科)毕业设计是全面培养,综合训练工业工程专业本科学生的重要环节,是知识深化,拓宽教学内容的重要过程,可对学生的综合素质和工程实践能力进行全面检验,是实现本科培养目标的重要阶段.通过毕业设计,着重培养学生综合分析和解决工业工程相关实际问题的能力;培养学生独立工作的能力以及严谨,扎实的工作作风和事业心,责任感;掌握工业工程基本理论,技术,方法,着重解决制造系统中的实际工业工程问题;使学生接受工业工程师的基本训练,为学生将来走上工作岗位,独立,顺利完成所承担的工作任务奠定基础.二,选题的原则及题目难度,深度,广度要求(一)题目要求本专业毕业设计选题主要以工程与设计类(毕业设计)为主,原则上不选择管理与研究类题目.具体要求为:选题要求:毕业设计指导教师所出的题目要符合工业工程专业培养目标和教学基本要求,在学生受到工业工程师基本训练的基础上,做到题目具有先进性和一定的完整性,尽可能反映工业工程的新技术,新理论,新方法,力求结合生产,科研任务进行.题目新颖性要求:题目尽量做到每年更新,对已有题目要求说明新的任务和目标.设计内容要求:设计要做到目标明确,工作量充足,难易程度切实可行;设计内容要求有足够的深度和一定的代表性,使学生切实受到专业基本功的训练;坚持每生一题,对大而难的选题可分解为若干子题,但要有明确分工;对于能力强的学生可适当加深加宽设计内容.题目工作量要求:从查阅文献,调查研究开始,按学生每天工作6~8小时,一共16~20周完成来设定的工作量.(二)选题范围根据西安工业学院工业工程专业本科毕业生的培养目标和目前IE工程师主要从事的工作提出以下选题,以供参考(题目力求解决生产系统,服务系统中的实际问题):工作研究与效率运用方法研究对工厂生产系统的改进与设计;运用方法研究优化工厂物流系统的设计;运用方法研究提高企业生产效率的设计;动作研究的经济效果分析;利用作业测定制定科学的时间定额,作业标准,对企业减员增产的设计.生产率研究生产率测定的研究;影响企业生产率的因素与生产率提高研究;降低能耗的途径与方法研究.人因工程降低作业疲劳提高作业能力的途径与方法;影响工作质量的环境因素研究;人体测量学在人机系统设计中的应用;人机系统分析与评价;事故与可操作性分析.运筹学应用利用网络计划编制大型工程进度计划;运用排队论进行最优设计和最优控制;利用存储论进行库存优化设计;运筹学其它理论的应用实例.系统工程应用系统评价与决策;系统仿真在生产系统(或服务系统)中的应用;信息系统的开发与应用生产作业层的信息化(如CAI,CAQC,PDM等);管理办公层的信息化(如MIS,ERP,MRPII,OA,WFS);战略决策层的信息化(如:DSS,ES).工程经济企业投资风险分析;工程技术经济效益的评价与分析;经济效益的评价方法研究;工程项目的可行性研究;设备更新的技术经济分析.价值工程价值工程在企业中的应用;提高价值的途径及应用;以最低成本实现产品功能的途径及应用.物流工程企业物流系统规划及合理化研究;物料搬运设备的选用与设计;物流搬运系统优化与设计;现代仓储系统的规划与设计;配送中心规划与设计;物流系统优化与仿真.10,生产与库存管理生产的组织,计划与控制;降低在制品的途径与方法;库存控制与分析;降低库存的途径与方法;ERP,MRPII在企业的应用;JIT应用.11,质量管理与可靠性工程提高产品可靠性的途径;全面质量管理在企业中的应用;制造过程中的质量控制应用;质量成本控制在企业中的应用;12,先进制造模式GT在制造系统中的应用及效益分析;MC相关技术,策略及应用;AM或LP在企业中的应用;VM及应用.三,设计内容及要求1.毕业设计论文内容要求工业工程专业毕业设计所提交的论文正文应包含的主要内容如下:选题的论证方案比较与选择原理与理论分析工程设计与计算技术经济分析或规划,控制和决策建模,仿真,数据处理与分析,评价及优化反映计算机应用能力和外文资料阅读,利用能力的内容以上内容可根据具体课题有所侧重,但要求学生毕业设计所提交的论文的设计,论证逻辑过程清晰,有必要的分析,计算,设计依据和过程,能反映学生综合运用IE方法,理论解决实际问题的能力.2.论文格式和工作量要求本专业学生毕业设计论文格式严格按照《西安工业学院毕业设计论文规范》的要求执行,论文工作量具体要求为:毕业设计论文正文字数18000字以上.补充说明:a,管理或研究类毕业论文正文字数25000字以上,要求有创新;b,信息系统设计及仿真类题目正文字数12000字以上.英文资料翻译不少于1000单词,内容为与设计相关的英文资料.参考文献不少于15篇,其中包括5篇以上期刊文献,3篇以上英文文献(其中1篇英文文献翻译成汉语),要求正文标注参考文献.
我这里有一份“等”对“不等”的启示 对于解集非空的一元二次不等式的求解,我们常用“两根之间”、“两根之外”这类简缩语来说明其结果,同时也表明了它的解法.这是用“等”来解决“不等”的一个典型例子.从表面上看,“等”和“不等”是对立的,但如果着眼于“等”和“不等”的关系,会发现它们之间相互联系的另一面.设M、N是代数式,我们把等式M=N叫做不等式M<N,M≤N,M>N、M≥N相应的等式.我们把一个不等式与其相应的等式对比进行研究,发现“等”是“不等”的“界点”、是不等的特例,稍微深入一步,可以从“等”的解决来发现“不等”的解决思路、方法与技巧.本文通过几个常见的典型例题揭示“等”对于“不等”在问题解决上的启示. � 1.否定特例,排除错解 �解不等式的实践告诉我们,不等式的解区间的端点是它的相应等式(方程)的解或者是它的定义区间的端点(这里我们把+∞、-∞也看作端点).因此我们可以通过端点的验证,否定特例,排除错解,获得解决问题的启示. �例1 满足sin(x-π/4)≥1/2的x的集合是(). ��A.{x|2kπ+5π/12≤x≤2kπ+13π/12,k∈Z} ��B.{x|2kπ-π/12≤x≤2kπ+7π/12,k∈Z} ��C.{x|2kπ+π/6≤x≤2kπ+5π/6,k∈Z} ��D.{x|2kπ≤x≤2kπ+π/6,k∈Z}∪{2kπ+5π/6≤(2k+1)π,k∈Z}(1991年三南试题) �分析:当x=-π/12、x=π/6、x=0时,sin(x-π/4)<0,因此排除B、C、D,故选A. �例2 不等式 +|x|/x≥0的解集是(). ��A.{x|-2≤x≤2} ��B.{x|- ≤x<0或0<x≤2} ��C.{x|-2≤x<0或0<x≤2} ��D.{x|- ≤x<0或0<x≤ } � 分析:由x=-2不是原不等式的解排除A、C,由x=2是原不等式的一个解排除D,故选B. �这两道题若按部就班地解来,例1是易错题,例2有一定的运算量.上面的解法省时省力,但似有“投机取巧”之嫌.选择题给出了三误一正的答案,这是问题情景的一部分.而且是重要的一部分.我们利用“等”与“不等”之间的内在联系,把目光投向解区间的端点,化繁为简,体现了具体问题具体解决的朴素思想,这种“投机取巧”正是抓住了问题的特征,体现了数学思维的敏捷性和数学地解决问题的机智.在解不等式的解答题中,我们可以用这种方法来探索结果、验证结果或缩小探索的范围. �例3 解不等式loga(1-1/x)>1.(1996年全国高考试题) �分析:原不等式相应的等式--方程loga(1-1/x)=1的解为x=1/(1-a)(a≠1是隐含条件).原不等式的定义域为(1,+∞)∪(-∞,0).当x→+∞或x→-∞时,loga(1-1/x)→0,故解区间的端点只可能是0、1或1/(1-a).当0<a<1时,1/(1-a)>1,可猜测解区间是(1,1/(1-a));当a>1时,1/(1-a)<0,可猜测解区间是(1/(1-a),0).当然,猜测的时候要结合定义域考虑. �上面的分析,可以作为解题的探索,也可以作为解题后的回顾与检验.如果把原题重做一遍视为检验,那么一则费时,对考试来说无实用价值,对解题实践来说也失去检验所特有的意义;二则重做一遍往往可能重蹈错误思路、错误运算程序的复辙,费时而于事无补.因此,抓住端点探索或检验不等式的解,是一条实用、有效的解决问题的思路. �2.诱导猜想,发现思路 �当我们证明不等式M≥N(或M>N、M≤N、M<N)时,可以先考察M=N的条件,基本不等式都有等号成立的充要条件,而且这些充要条件都是若干个正变量相等,这就使我们的思考有了明确的目标,诱导猜想,从而发现证题思路.这种思想方法对于一些较难的不等式证明更能显示它的作用. �例4 设a、b、c为正数且满足abc=1,试证:1/a3(b+c)+1/b3(c+a)+1/c3(a+b)≥3/2.(第36届IMO第二题) �分析:容易猜想到a=b=c=1时,原不等式的等号成立,这时1/a3(b+c)=1/b3(c+a)=1/c3(a+b)=1/2.考虑到“≥”在基本不等式中表现为“和”向“积”的不等式变换,故想到给原不等式左边的每一项配上一个因式,这个因式的值当a=b=c=1时等于1/2,且能通过不等式变换的运算使原不等式的表达式得到简化. �1/a3(b+c)+(b+c)/4bc≥ =1/a, �1/b3(a+c)+(a+c)/4ca≥1/b, �等号不一定成立而启迪我们对问题进一步探索的典型例子是1997年全国高考(理科)第22题: �例8 甲、乙两地相距S千米(km),汽车从甲地匀速行驶到乙地,速度不得超过c千米/小时(km/h).已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/小时)的平方成正比,比例系数为b,固定部分为a元. �Ⅰ.把全程运输成本y(元)表示为速度v(千米/小时)的函数,并指出这个函数的定义域; �Ⅱ.为了使全程运输成本最小,汽车应以多大的速度行驶? �分析:y=aSv+bSv,v∈(0,c〕,由y≥2S 当且仅当aS/v=bSv,即当v= 时等号成立得,当v= 时y有最小值.这是本题的正确答案吗?那就得考虑v= 是否一定成立.当 ≤c时可以,但 是有可能大于c的.这就引发了我们进行分类讨论的动机,同时也获得分类的标准. �综上所述,“等”是不等式问题中一道特殊的风景,从“等”中寻找问题解决的思路,本质上是特殊化思想在解题中的应用.从教学上看,引导学生注视不等式问题中的“等”,是教会学生发现问题、提出问题,从而分析问题、解决问题的契机. �1/c3(a+b)+(a+b)/4ab≥1/c, �将这三个等式相加可得 �1/a3(b+c)+1/b3(c+a)+1/c3(a+b)≥1/a+1/b+1/c-(1/4)〔(b+c)/bc+(c+a)/ca+(a+b)/ab〕=(1/2)(1/a+1/b+1/c)≥(3/2) =3/2,从而原不等式获证. �这道题看似不难,当年却使参赛的412名选手中有300人得0分.上述凑等因子的思路源于由等号的成立条件而产生的猜想,使思路变得较为自然,所用的知识是一般高中生所熟知的.再举二例以说明这种方法有较大的适用范围. �例5 设a,b,c,d是满足ab+bc+cd+da=1的正实数,求证:a3/(b+c+d)+b3/(a+c+d)+c3/(a+b+d)+d3/(a+b+c)≥1/3.(第31届IMO备选题) �证明:a3/(b+c+d)+a(b+c+d)/9≥(2/3)a2, �b3/(a+c+d)+b(a+c+d)/9≥(2/3)b2, �c3/(a+b+d)+c(a+b+d)/9≥(2/3)c2, �d3/(a+b+c)+d(a+b+c)/9≥(2/3)d2. �∴ a3/(b+c+d)+b3/(a+c+d)+c3/(a+b+d)+d3/(a+b+c)≥(2/3)(a2+b2+c2+d2)-(2/9)(ab+bc+cd+da+ac+bd) �=(5/9)(a2+b2+c2+d2)-(2/9)(ab+bc+cd+da)+(1/9)(a2+c2-2ac+b2+d2-2bd) �≥(5/9)(a2+b2+c2+d2)-(2/9)(ab+bc+cd+da)≥(5/9)(ab+bc+cd+da)-(2/9)(ab+bc+cd+da)=(1/3)(ab+bc+cd+da)=1/3. �当a=b=c=d=1/2时,原不等式左边的四个项都等于1/12,由此出发凑“等因子”.对于某些中学数学中的常见问题也可用这种方法解决,降低问题解决对知识的要求. �例6 设a,b,c,d∈R+,a+b+c+d=8,求M= + + + 的最大值. �分析:猜想当a=b=c=d=2时M取得最大值,这时M中的4个项都等于3.要求M的最大值,需将M向“≤”的方向进行不等变换,由此可得3 ≤(3+4a+1)/2=2a+2,3 ≤2b+2,3 ≤2c+2,3 ≤2d+2.于是3M≤2(a+b+c+d)+8=24,∴M≤8.当且仅当a=b=c=d时等号成立,所以M的最大值为8. �当然,例6利用平方平均数不小于算术平均数是易于求解的,但需要高中数学教材外的知识.利用较少的知识解决较多的问题,是数学自身的追求,而且从教学上考虑,可以更好地培养学生的数学能力.先有猜想,后有设计,再有证法,也是数学地思考问题的基本特征. �3.引发矛盾,启迪探索 �在利用基本不等式求最大值或最小值时,都必须考虑等号能否取得,这不仅是解题的规范要求,而且往往对问题的解决提供有益的启示.特别当解题的过程似乎顺理成章,但等号成立的条件却发生矛盾或并不一定成立.这一新的问题情景将启迪我们对问题的进一步探索. �例7 设a,b∈R+,2a+b=1,则2 -4a2-b2有(). ��A.最大值1/4� B.最小值1/4 ��C.最大值( -1)/2� D.最小值( -1)/2 � 分析:由4a2+b2≥4ab,得原式≤2 -4ab=-4( )2+2 =-4( -1/4)2+1/4≤1/4.若不对不等变换中等号成立的条件进行研究,似已完成解题任务,而且觉得解题过程颇为自然,但若研究一下等号成立的条件,则出现了矛盾:要使4a2+b2≥4ab中的等号成立,则应有2a=b=1/2,这时 = /4≠1/4,第二个“≤”中的等号不能成立.这一矛盾使我们感觉到解题过程的错误,促使我们另辟解题途径.事实上,原式=2 -(2a+b)2+4ab=4ab+2 -1,而由1=2a+b≥2 得0< ≤ /4,ab≤1/8,∴原式≤ /2+1/2-1=( -1)/2,故选�C. 本文来自论文大学网
(二)选题范围工作研究与效率运用方法研究对工厂生产系统的改进与设计;运用方法研究优化工厂物流系统的设计;运用方法研究提高企业生产效率的设计;动作研究的经济效果分析;利用作业测定制定科学的时间定额,作业标准,对企业减员增产的设计.生产率研究生产率测定的研究;影响企业生产率的因素与生产率提高研究;降低能耗的途径与方法研究.人因工程降低作业疲劳提高作业能力的途径与方法;影响工作质量的环境因素研究;人体测量学在人机系统设计中的应用;人机系统分析与评价;事故与可操作性分析.运筹学应用利用网络计划编制大型工程进度计划;运用排队论进行最优设计和最优控制;利用存储论进行库存优化设计;运筹学其它理论的应用实例.系统工程应用系统评价与决策;系统仿真在生产系统(或服务系统)中的应用;信息系统的开发与应用生产作业层的信息化(如CAI,CAQC,PDM等);管理办公层的信息化(如MIS,ERP,MRPII,OA,WFS);战略决策层的信息化(如:DSS,ES).工程经济企业投资风险分析;工程技术经济效益的评价与分析;经济效益的评价方法研究;工程项目的可行性研究;设备更新的技术经济分析.价值工程价值工程在企业中的应用;提高价值的途径及应用;以最低成本实现产品功能的途径及应用.物流工程企业物流系统规划及合理化研究;物料搬运设备的选用与设计;物流搬运系统优化与设计;现代仓储系统的规划与设计;配送中心规划与设计;物流系统优化与仿真.10,生产与库存管理生产的组织,计划与控制;降低在制品的途径与方法;库存控制与分析;降低库存的途径与方法;ERP,MRPII在企业的应用;JIT应用.11,质量管理与可靠性工程提高产品可靠性的途径;全面质量管理在企业中的应用;制造过程中的质量控制应用;质量成本控制在企业中的应用;12,先进制造模式GT在制造系统中的应用及效益分析;MC相关技术,策略及应用;AM或LP在企业中的应用;VM及应用.
去看看这本(运筹与模糊学 )里的内容吧
提供一些经济统计类的学年论文题目,供写作参考。 1. 某省各地市经济发展水平的综合评价 2. 工业企业经济效益综合评价的应用研究 3. 某省市经济发展水平分区研究 4. 某省市消费拉动第三产业增长的实证分析 5. 某省市城镇居民消费结构变化趋势研究 6. 某省普通高等教育生源变动趋势与对策研究 7. 某省城镇居民消费结构比较研究 8. 某高校学生的心理健康统计分析 9. 课堂教学评估体系与方法研究 10. 某市各区县经济综合实力评价研究 11. 基于多元统计的某省经济分区研究 12. 因子分析在某省利用外资效果评价中的应用 13. 因子分析在居民消费结构变动分析中的应用 14. 因子分析在企业竞争力评价中的应用 15. 深沪股市收益率分布特征的统计分析 16. 某省市农民收入问题的调查与思考 17. 最优加权组合法在GDP预测中的运用研究 18. 最优加权组合法在粮食产量预测中的运用研究 19. 最优加权组合法在能源消耗预测中的运用研究 20. 我国(某省)实际人均GDP的趋势分析及预测 21. 某省市工业经济效益的综合评价 22. 工业企业科技竞争力的综合评价 23. 某省市城镇居民消费结构的地区差异分析 24. 某省市各地区经济综合实力的评价 25. 基于因子分析法的上市公司财务状况评价研究 26. 某省工业化进程统计测度及实证分析 27. 某省城市化进程统计测度及实证分析 28. 某省城市规模发展水平分析与比较研究 29. 某省市工业行业结构特征的因子分析 30. 城镇居民消费的典型相关分析 31. 我国(某省)各地区人口素质差异的统计分析 32. 我国(某省)三次产业结构变动的统计分析 33. 某省农业产业化发展的实证研究 34. 某省外贸出口与经济发展关系的实证研究 35. 县域经济发展综合评价的实证研究 36. 某省各县市经济发展的聚类分析 37. 某省各县市产业结构的聚类分析 38. 某省(市)信息化实现程度实证评价 39. 某省(市)环境保护综合评价 40. 我国科技进步贡献率的测度 41. 某省(市)居民生活水平与质量实证评价 42. 某省(市)经济外向度实证研究 43. 县级政绩考核指标体系与方法研究 44. 我国城乡居民收入差距实证研究 45. 我国东西部城镇居民收入差距实证研究 46. 某省市城镇居民消费水平与结构变化趋势研究 47. 某省市投资拉动GDP增长的实证研究 48. 耐用品需求预测模型及其应用研究 49. 某省市GDP周期波动实证研究 50. 某省市工业周期波动实证研究 51. 某省市零售市场周期波动实证研究 52. 某省市农民收入周期波动实证研究 53. 某省市人口最优预测模型与应用研究 54. 某省市人口老龄化趋势与对策研究 55. 某省市财政收支变化趋势与对策研究 56. 某省市城镇居收入差距变化趋势与对策研究 57. 某省市农民收入差距变化趋势与对策研究 58. 长江水质的综合评价与预测 59. 多元统计分析方法在股票市场板块中的应用研究 60. ARCH族波动模型研究及其在我国股市中的应用研究
浅议中小企业薪酬激励问题
大三下了,学的是财务管理专业,老师要求我们写五千字的学年论文,题目自拟,但最好是写经济类的,说是从掌握的经济咨询里面总结出自己的观点就有东西可写了,而且如果这次写的好,直接可以和毕业论文相关联。 拜求各位童鞋们给点建议,或者给个思路,题目之类的 小女子不甚感激……给各位鞠躬了```3Q
你可以上网上看一下赵国庆教授写的论文,我觉得还不错。 求采纳
韩国词性分析,比如阴性词阳性词 韩国助词分析例如이/가 은/는 词尾之类的分析 还可以比如说韩国泡菜看韩国人 韩国电视剧的发展 韩国电影 韩国语汉字词分析都可以 韩国韩服 韩国韩服和中国旗袍 韩国礼仪等等 总之文化类的范围广,词性之类的引用很多~
《股票价格的影响因素》这题目比较有吸引力
运筹学知识 论我来写的 的
好像没有类似设计类的专业。 经济类的专业有:经济学、国际经济与贸易、金融学、风险管理与保险学、财政学、环境资源与发展经济学(一般的院校有前三个专业,后三个专业在重点院校才有)。 (1)经济学专业:该专业课程设置与国外大学经济学专业接轨,为有志成为经济理论研究者、宏观经济管理者和职业经理的青年学生提供一个成长和发展的舞台。毕业生既适合到 *** 经济决策部门、金融研究机构、教学研究机构和公司企业工作,也为在国内或出国继续深造打下坚实的基础。 (2)国际经济与贸易专业:该专业主要培养适应经济全球化趋势,具备国际经济基本理论与较高的外语和电子商务运用等实践技能的,能从事国际经济、贸易、金融、商务工作的高级专门人才。毕业生以深厚的理论基础与开阔的创新思维为竞争优势,有较为自由的选择空间。 (3)金融学专业:该专业在与国际上金融学专业教学接轨的同时,也提供实践应用性课程,从而全面提升学生个人的竞争能力。毕业生既有去国外名校留学深造的,也有选择到咨询管理公司、投资银行、中央银行、外资或国有商业银行、保险公司、国家部委机关等工作的。 (4)风险管理与保险学专业:该专业致力于培养"有专长、基础宽、素质高",能够胜任国内外风险管理与保险经营管理工作的复合型人才及风险管理与保险教学科研工作的学术人才。毕业生或者去国外名校留学,或者供职于各大保险公司、保险监督管理机构、金融证券机构。 (5)财政学专业:该专业顺应公共管理事务在中国的勃兴,旨在培养具有宽厚扎实的经济学理论基础,熟悉财政税务、财务会计知识,具备较高的外语和计算机运用水平、较强的研究能力、决策能力和管理能力的高级专门人才。毕业生可从事 *** 部门的公共经济研究和政策制定工作,可任职于各类大型企业、会计师事务所、律师事务所等中介机构的资产评估、税务代理等工作,还可以留在大学或是研究机构,从事研究教学工作。 (6)环境资源与发展经济学专业:该专业是一门兼有文、理、工三栖特点的综合型经济学科,侧重于环境、资源与可持续性发展的研究,毕业生将能胜任在 *** 部门、大中型企业、跨国公司、科研机构、高等院校及国际组织等的管理与研究工作。 经济学、国际经济与贸易、金融学一般大学都会有的。
与版式设计有关的
1、应用工业工程技术提高洗衣机生产效率
2、工业工程课程体系设置优化研究
3、浅谈工业工程的发展现状与展望
4、工业工程在台湾产业界的典范移转
5、工业工程综合实验平台规划设计研究
6、工业工程与创造学的关系分析
7、工业工程及其在中国企业中的应用
8、浅谈工业工程与经济发展之关系
9、工业工程在当代世界的发展趋势
10、工业工程在生产效率方面改善之应用