航空学报、推进技术、宇航学报等。航天科工704所的核心期刊包括航空学报、推进技术、宇航学报等知识。《航空动力学报》期刊影响因子在航空航天类期刊中排名第二。
2.《火力与指挥控制》刊期:月刊。中国兵器工业集团有限公司主管,北方自动控制技术研究所主办的核心期刊。国内刊号是14-1138/TJ,国际刊号是1002-0640。
3.《指挥控制与仿真》刊期:双月刊。是由中国船舶重工集团有限公司主管,中国船舶重工集团公司第七一六主办的核心刊物。
《航空动力学报》期刊影响因子在航空航天类期刊中排名第二 再给你介绍一些吧:航空学报、推进技术、宇航学报、南京航空航天大学学报、航空制造工程(改名为:航空工程与维修)、工程热物理学报、中国航天、导弹与航天运载技术、国防科技大学学报喜欢航天的可以加入我的航天QQ群一起交流69625631 (告诉你身边的航天迷吧,欢迎大家的加盟!!)
《航空动力学报》期刊影响因子在航空航天类期刊中排名第二 再给你介绍一些吧:航空学报、推进技术、宇航学报、南京航空航天大学学报、航空制造工程(改名为:航空工程与维修)、工程热物理学报、中国航天、导弹与航天运载技术、国防科技大学学报喜欢航天的可以加入我的航天QQ群一起交流69625631 (告诉你身边的航天迷吧,欢迎大家的加盟!!)
这两种期刊都是很好的期刊,实在难分伯仲。《航空动力学报》是由中国航空学会主办,中国航空工业集团公司主管,北京航空航天大学承办的中文科技核心学术刊物。1986年7月创刊,创刊时为季刊,现为月刊,国内外公开发行。EI 工程索引(美)和 中国科学引文数据库(CSCD)来源期刊,中文核心期刊(2011)。CNKI复合影响因子: ,综合影响因子:。《推进技术》是由中国航天机电集团公司主管、该公司第三研究院第31研究所主办的全国优秀科技期刊。于1980年创刊,现为双月刊,国内外公开发行。EI 工程索引(美)和中国科学引文数据库(CSCD)来源期刊,中文核心期刊(2011)。 CNKI复合影响因子: ,综合影响因子:。
当然是{推进技术}啦!
《Progress in Materials Science》:液态铅/铅铋冷却反应堆结构材料的环液态铅/铅铋冷却快中子核反应堆(简称“铅基快堆”,下同)具有能量密度高、本征安全性好、核燃料利用效率高等优点,被第四代核能系统国际论坛(GIF)列为最有希望首先实现商用的第四代堆型,也是近20年来核能领域研究的重点和热点核技术之一。该堆型在陆地、深海和深空等多种场景下均具有广阔的应用前景,其最早应用可追溯至上个世纪前苏联成功研制的阿尔法级铅铋核动力潜艇。但是,铅和铅铋介质对不锈钢的性能具有较强的环境退化作用,严重制约了该堆型的大规模工程化应用。近日,深圳大学物理与光电工程学院核科学与核技术系先进核能团队的龚星博士(副研究员)在国际材料科学领域顶尖综述期刊《Progress in Materials Science》(最新IF=,中科院一区)上发表题为《Environmental degradation of structural materials in liquid lead- and lead-bismuth eutectic-cooled reactors》的综述文章,全文约万字,含6大章节(约60个小节),111个图。该论文第一作者和共同通讯作者均为深圳大学的龚星副研究员,第二作者是美国麻省理工(MIT)的Michael P Short教授,第三作者是法国HESAM Université的Thierry Auger教授,第四作者是比利时核能研究中心(SCK CEN)的Evangelia Charalampopoulou博士,第五作者兼共同通讯作者是在比利时核能研究中心(SCK CEN)和英国University of Huddersfield同时任职的Konstantina Lambrinou教授。《Progress in Materials Science》是国际材料科学研究领域的顶尖综述性学术期刊,该期刊不接受自由投稿,主要由期刊编辑邀请在相关领域做出突出贡献的学者对热点领域的研究进展和未来方向进行综述和展望。该期刊在材料学领域具有重大影响力,每年仅出版6至8期,每期仅刊登3至6篇文章,2020年影响因子为,5年影响因子。该论文首先介绍了液态铅和铅铋共晶合金作为核反应堆冷却剂的优点以及应用前景、概括了结构材料(主要包括商用不锈钢)在液态铅和铅铋介质中面临的主要性能环境退化效应和相关抑制技术手段,然后详细综述了316L、15-15Ti和T91等三种结构钢在液态铅铋(和铅)环境中的液态金属腐蚀和液态金属脆化这两种最重要的性能退化现象的基本特点、关键影响因素和微观机理,并综述了抑制这两种性能退化效应的技术手段的优缺点,包括系统设计优化(优化堆内构件几何形状降低紊流等)、主动氧控(结合大量腐蚀数据绘制了详细的316L系列奥氏体不锈钢和9Cr/12Cr铁素体/马氏体钢的氧控边界图)、材料改进(合金化、表面涂层、新材料开发如高熵合金、MAX相等),论文最后总结了不锈钢的液态金属腐蚀和液态金属脆化性能的基本结论以及相关抑制技术措施、展望了铅基快堆材料近期和中长期发展方向。该综述论文对铅基快堆材料的发展具有重要参考作用。
航天控制不属于ei,南航学报只有英文版属于,中文版也不是。
EmDrive引擎只需十周就能将人类送上火星,但专家此前一直认为该想法不可能成真,因为它违反了基本物理定律。但这支由NASA约翰逊航空中心的哈罗德·怀特(Harold “Sonny” White)带领的研究团队的确检测到了微弱的推力。在这项最新研究中,研究人员对该设备在真空中的表现进行了测试,结果发现“前进时、后退时和静止时的推力数据显示,该系统可以产生每千瓦毫牛顿(正负波动)的推力,十分接近该系统在空气中运行的平均性能” 在真空中电磁推进器每千瓦功率可以产生毫牛顿的力,这一推力高达太阳帆的100多倍。2016年11月,在美国航空航天协会的《推进与动力期刊》一篇论文中介绍了NASA雄鹰工作实验室(Eagleworks Laboratories)开展的一系列成功测试。EmDrive引擎最初由英国研究人员罗杰·肖耶尔(Roger Shawyer)于十几年前发明。该引擎的原理是,让光子微波在密闭的锥体内部反弹,从而在锥体较细的一端产生推力,推动宇宙飞船向前飞行。但从牛顿的运动学第三定律来看,这是不可能实现的,因为任何运动都会产生大小相等的反作用力,而EmDrive引擎不会向外喷射任何废料。这东西就是说,在一个密封的铜质梯形柱容器里,用一个微波发生器对内部发送微波,在电力转化为微波进入这个两表面有面积差的容器之后,会推动整个仪器向面积小的部分产生推力。这东西就像离子引擎一样,用做廉价的低轨道LEO到高轨道GEO的运送引擎,或者是用作星际旅行。但是个人觉得效率不成哈,虽然没有反应质量损失是一大亮点,但是怎么看怎么好像是比麦田圈里的设计图上有点差。。。所以效率不佳。
简单地说,Eagleworks 实验室开发的 EmDrive 的原理是,电磁能(微波光子)在一个圆锥状的密闭空腔内反复弹射,从而产生推进力。当微波光子撞击空腔内壁的时候,它们就会推动装置向前移动,而该装置不会往外喷射任何物质。这和以往的推进器有很大的差别。一些 NASA 航天器中使用离子推进器,通过使推进燃料(一般是氙气)离子化产生动力,不过它们会向外喷射带电原子束。如果 EmDrive 能够承受住考验,将意味着未来的航天器不再需要成吨的推进燃料。轻装上阵是实现高速度、低成本、长距离太空旅行的关键。
有家书院、航空动力学报、载人航天、中国空间科学技术、推进技术等
航天控制不属于ei,南航学报只有英文版属于,中文版也不是。
推荐你参考以下期刊:航空学报宇航学报飞行力学推进技术航天控制固体火箭技术航空动力学报导弹与航天运载技术北京航空航天大学学报南京航空航天大学学报
航空学报、推进技术、宇航学报等。航天科工704所的核心期刊包括航空学报、推进技术、宇航学报等知识。《航空动力学报》期刊影响因子在航空航天类期刊中排名第二。
航天六院的<火箭推进>是核心期刊,还不收版面费,前段时间恰好投过,不错,望采纳