我想在(国际航空航天科学)找下这类的资料~然后结合你自己的知识点,肯定能写出来的
随着全球化时代的到来,航空运输企业所起的作用越来越重要。下文是我为大家整理的航空公司的优秀论文的 范文 ,希望能对大家有所帮助,欢迎大家阅读参考!
浅析航空公司机供品成本管理
摘要:找出航空公司机供品成本管理的问题和薄弱环节,对症下药,采取各种手段,全员、全流程控制,提升机供品成本管控水平,降低成本、增强航空公司竞争能力。
关键词:机供品;成本管理;薄弱环节;提升
一、航空公司机供品成本简介
1.机供品成本的定义及范围。
机供品全称机上供应品,是为了保障航班机组和旅客的需要,配上飞机的各种消耗品和用具(不含餐食)。主要包括小食品(果仁、小饼干等)、饮料、酒类、服务用品(水杯、拖鞋、毛毯、小毛巾等)、卫生用品(香水、香皂、面巾纸等)、餐具(碗、盘、咖啡壶等)等几大类,特点是种类繁多,单位价值较低。
2.加强机供品成本管理的重要性。
机供品成本在航空公司营运成本中占比较低,但从绝对额来看,仍是一项金额较大的成本:以一个50架飞机规模的中型航空公司为例,每年的机供品支出大约在4000万元左右。当前油价高企,航空公司各项刚性营运成本居高不下,整个航空业在微利和亏损的边缘徘徊,各公司航油、起降等大项成本控制已经做得非常细致,下一步做好机供品这种相对小项成本控制,对航空公司的生存和发展有着举足轻重的作用。
二、当前航空公司机供品成本管理存在的问题和薄弱环节
(一)采购环节存在缺陷
1.对机供品成本重视程度不够。和航油、起降等大项成本相比,对机供品成本管控相对粗放,前端采购环节缺乏明确的流程和 规章制度 ,经常出现业务部门自购自用的违规现象。
2.采购协议签订流程不规范。采购协议的签订,财务等监督部门前期谈判参与力度不够,经常是协议主要条款基本确定后再由相关部门会签;前期供应商资质,行业情况调查等相关工作做的不细致,合作后容易出现因供应商提供商品质量不合格,开具的票据不合法等问题给公司带来风险和损失。
(二)库存和配送管理相对粗放
1.机供品库存管理分散,缺乏信息化手段。
因机供品种类繁多,很多公司是由客舱、机务、财务等多部门进行管理,比较分散且政策不统一,各部门基本上都是靠手工或者电子表格进行管理,缺乏专业的信息软件,效率低下,无法及时监控库存和降低不合理损耗。
2.配送计划不精细,缺乏灵活性。
业务部门的机供品航班配送计划往往是制定后很长一段期间不调整,缺少定期与实际执行情况进行对比分析的机制,不能根据实际情况的变化,灵活调整计划,容易造成机供品的浪费和不正常损耗。
(三)机上用品非正常损耗现象突出
1.野蛮使用造成的用具非正常损坏。
部分相关人员对机上用具不爱护,在配送和回收的过程中野蛮装卸,使用过程中不按照操作流程,盲目操作,导致餐用具的损坏率居高不下,大大增加了机供品成本。
2.机组和其他工作人员违规偷带造成的机供品非正常损耗。
各公司虽然大都出台了对员工偷带机上供应品的处罚规定,但因为缺少有效的监控手段和办法,各项规定基本上都停留在纸面上,很难切实的落实下去,该项机供品的非正常损耗依旧是居高不下。
三、提高航空公司机供品成本管理水平的几点做法
(一)加强机供品采购管理,强化前馈控制
1.由专业部门组织公开采购。
指定专门的部门负责机供品的采购,业务部门提出需求后,由采购部门牵头,联合业务、财务、纪检等部门成立采购小组对大项采购进行公开招标,避免由使用部门直接联系供应商进行采购。
2.细化协议签订流程、明确各部门权责。
出台合同管理规定,规范协议签订过程中各个操作环节,责任明确到部门,对大额合同需成立联合小组参与协议签订的全过程。
(二)提高库存管控能力,加强配送计划控制
1.细化库管制度,严抓落实。
建立严格的机供品库存管理制度,将机供品管理统一归集到库管部门,使用部门按规定流程领用,财务和纪检部门进行监督,定期组织实物盘点,严控库存损耗。
2.引进信息化手段,提高库管工作效率和质量。
根据公司规模大小适时引进相应的库存管理信息系统,如仓库管理软件、条码系统等,逐渐摒弃用手工账进行管理的方式,提高效率、节省成本。
3.建立配送计划的制定和跟踪分析流程。
加强对机供品配送计划制定质量的监督,建立对配送计划的跟踪分析机制,定期对配送计划的实际执行情况进行分析,根据情况的变化,不断地修正和调整配送计划,提高配送计划的精准度,这样不但可以降低配送成本,还可以减少回收环节的不正常损耗。
(三)加强机供品使用过程的监控,细化规定、落实责任
1.建立严格的机供品使用管理制度,明确管理责任。细化机上用具操作规范,建立针对机供品非正常损耗的奖惩制度,将每项机供品的管理责任落实到个人。
2.领导牵头成立联合小组,现场检查问题。由主管领导牵头,由纪检、业务等部门组成联合检查小组,采用暗访、突击检查等方式对航班机供品使用情况进行抽查,发现问题现场取证。
3.严格追责制度,发现问题按章处理。对违反机供品管理固定的人员,查实后严格按照奖惩制度进行处理,使其真正的因为违规违法行为受到严厉的惩罚,只有公平公正、严格按章办事,才能保证相关制度的真正落地。
(四)优化机供品回收流程,加强机供品的回收控制
1.梳理机供品回收流程,提高效率。
对机供品的回收流程进行认真梳理,对那些影响效率的工作环节进行重新设计,在满足内控需要的情况下尽量简化交接手续,有条件的可以借助信息化系统,用手持终端扫描等手段,提高效率。
2.建立奖惩制度,考核回收差错率。
出台机供品回收的管理规范,定期检查机供品回收情况,对回收差异率进行考核,及时将检查结果向计划制定部门通报,协助计划部门提升计划质量。
3.库房建立回收机供品存放区,单独管控。
在机供品库房设立回收机供品专用存放区,制定回收机供品再配送的详细流程和规定,加强对回收机供品的检查和数据统计,通过对回收机供品的单独管控,提升管控质量。
四、航空公司机供品管理的几点体会
1.机供品成本的全流程控制。
机供品的成本的管理重点不能仅放在财务审核环节,而是应扩大范围,从采购环节开始,控制采购成本;加强在使用过程中的管控,减少不合理损耗;细化账单审核和专项分析,做到对机供品业务的全流程控制。
2.机供品成本的全员控制。
机供品成本的管理仅仅通过财务部门的努力是很难推进和落实的,航空公司应该提高对该项成本的重视程度,强化制度建设和 文化 宣贯,使得采购、业务、库管以及其他部门的员工都能够认识到成本控制的重要性,发动全员加强对机供品成本的监控。
3.控制 措施 的持续落实和不断改进。
机供品管理规范和控制措施出台后,要真正实现优化成本的作用,必须严抓落实,对违规行为持续检查和处理,并根据实际情况不断地调整和改进管控措施,逐渐形成对机供品的全方位管控机制。
浅探航空公司风险防范体系建立
摘 要:
航空公司通过建立事件前期预防、过程控制、后期弥补的风险防控机制,在公司内部设立风险控制部门对有关工作进行统一管理。航空公司风险防控机制建设的目的是把航空公司的日常运营活动统一纳入法制化管理,以降低公司日常运营成本,提升航空公司日常运营效率,对航空公司的运营与发展进行制度保障与支持。
关键词:
企业风险;内部控制;管理体系;机制建设
1 风险的概念
风险一词本身是中性的,即风险本身并无好坏之分。风险是人类活动的内在特征,它来源于对未来结果的不可知性。因此,风险通常被定义为对未来结果不确定性的暴露。不确定性可以被认为是一个或几个事件(结果)发生的概率分布。从风险管理的实践角度来讲,未来可能存在的结果及其服从的概率分布特征常常是不可知的。因此人们在管理风险的时候,常常需要对此进行主观的推断并制定出风向管理的制度和体系。航空公司的风险防范体系就是基于上述的认知来建立的。
2 航空公司风险防控工作的思路
前期预防是基石
如果仅仅只注重风险事件发生以后的有关补救工作的跟进,往往意味着更高的成本和更鸡肋一般的效果,而且经常是在有关事件转坏、有关事项进入法律程序阶段,由法院和仲裁等第三方介入解决,比航空公司内部直接采取措施的成本高出许多,且结果具有不确定性。例如,航空公司在涉及经济合同或 劳动合同 引起的纠纷时,有时从法律角度存在胜算,但因受法治环境、媒体舆论或宏观干预的影响而出现负面结果,或在胜诉后的执行过程中存在难度。又如,一些投资活动往往因事先防范措施不到位而导致失败。 而有效的事先防范,能促进航空公司加强自身免疫系统,防风险与未然,切实提高抗风险能力,保障航空公司正常、持续、健康的运转,达到事半功倍的效果。
过程控制是关键
如果前期注意了预防,但是在过程中忽略了控制跟进,万一风险事件发生并造成了无法挽回损失后再去想办法弥补,也正所谓形同亡羊补牢,不仅使公司陷入被动境地,而且多半于事无果。譬如某合约签订时对己公司非常有利,但在进入实施旅行阶段后依旧存在很多不确定因素,各种会议备忘录、谅解协议、补充协议等都会对原有的条款造成影响。又比如,让一些代理公司颇为头疼的欠款问题,多数也源于缺乏有效的过程跟进和控制。因此,风险的过程控制是风险防范的关键因素,事关风险管理的走向和成效,应将过程控制深深地融入于航空公司运作的每一个步骤、每一个职能部门,直到每一个工作岗位。只有过程控制到位了,才能保障航空公司风险防范体系切实发挥作用。
3 航空公司风险防控机制建设的要点
融合性
航空公司的风险防控机制作为公司整体管理体系的一个重要组成部分,其作用发挥应与其他管理体系相互融合统一,同时在建构成本和效益考量方面存在一致性。
整体性
航空公司风险防控机制建设应注重各个细节、每项内容和内部各个有关部门的密切协调,以紧密相连并密不可分的管理,来实现预期的前期预防和过程控制的目的。
实操性
航空公司风险防控机制建设要一定注意能够与公司现有的运营模式、人员现状、外部环境、 企业文化 等各个要素紧密结合,通过细化各项措施和强化对接模式,确保具有现实可操作。
4 航空公司风险管理的架构
设立风险管理委员会
由航空公司最高管理者负责,决策层领导和专业人士组成。负责组织领导航空公司风险防控工作,组织制定风险防控总体目标、工作方案和实施计划。
组建合规审查委员会
由专业职能部门组成,必要时邀请外部专家加入。负责对航空公司经营管理的合规性进行全面的分析检查,对于发现出现和将来可能出现的风险事件以及风险政策出现失误、失控的情形,及时提出改进方案。
设立风险管理委员会办公室
由相关业务人员组成。负责在管理委员会领导下制定航空公司风险管理制度,组织实施有关防控措施,拟定有关风险评估 报告 ,协调风险管理相关环节协作事宜等。
5 航空公司风险管理体系的内容
确立航空公司风险防控体制架构
航空公司风险防控体制的建构应基于航空公司管理的主要风险要素,具体有以下十九个:(1)资产管理;(2)采购业务;(3)工程项目;(4)资金活动;(5)合同管理;(6)销售业务;(7)人力资源;(8)生产运营;(9)信息系统;(10)组织机构;(11)内部信息沟通;(12)安全运行;(13)企业文化;(14)财务报告;(15)全面预算;(16)发展战略;(17)业务外包;(18)社会责任;(19)风险评估与应对。上述十九要素是航空公司风险管理的核心,可根据公司具体的情况逐步完善。
风险管理评估
航空公司风险防控体系的建构和运作具有长期性、连续性。根据宏观经济环境的变化及公司中长期运营战略的
不断调整,航空公司面临的风险也不断与时俱变。此时就需要重新评估公司所面临的各类风险变化,并及时对公司的风险防控机制进行合理调整。譬如,在前些年国家对当时实行 公司法 进行大幅修改后,当时商务活动的很多规则发生变化,如公司章程的重要性被大幅提高,从而对航空公司风险防控体系的完善提出新的要求,需对航空公司资产管理、采购业务、合同管理、生产运营、业务外包、工程项目等一系列风险管理项目予以调整。因此,要把对航空公司日常运营的风险评估形成规范化常态化管理。通过对航空公司日常运营各有关重要事项进行全面梳理调查,根据 年度 工作计划 ,拟订风险防控关键点,做好风险防控有效预案等各项工作。
6 航空公司风险防控机制建构顺序
尽职调查
航空公司风险防控机制所基于的十九个风险要素都具有一定的相对独立性,每个公司在建构自己的有关机制体系的时候都立足于自身不同的特点与实际现实状况,各航空公司在相关工作的开展过程中对日常管理中各主要风险要素的侧重也有所不同。为确保航空公司风险防控机制的各个风险要素与航空公司自身管理体系相匹配,以使各风险要素的构建具有实操性,首先需要进行周密的尽职调查。
体系建设
在周密严谨的尽职调查后,航空公司逐步建设风险防控机制的各要素,包括各要素模板、运作指南、风险提示、流程管控等,并将航空公司现有的相关制度纳入风险管理体系。
系统培训
航空公司上至管理层下至每个员工都应在日常工作中对航空公司风险防控机制的各风险要素有着充分的认识并自觉在工作中贯彻执行有关内容,相关培训工作应该在项目的初始阶段就应被充分考虑并与项目的开展同步实施。
具体实施
在航空公司风险防控机制的体系建设及相关培训宣贯工作完成后,进入具体实施阶段。次阶段的要点是要使公司的每个员工都能在自己所负责的日常工作中自觉自然自愿并一丝不苟地贯彻实施有关内容。
后续修正
在航空公司风险防控机制的具体实行中,对于所呈现的有关问题,由特设机构的人员进行及时有效地调整与修正,以确保体系有效运行。
总之,航空公司风险防控机制的体系建设对航空公司的健康有序发展至关重要,需要得到航空公司管理层的高度重视,对其作出科学合理的统筹安排,并辅以各部门各环节的紧密配合和有力执行。航空公司风险防控机制的体系建设的目标是把公司日常所有运营活动统一纳入都纳入风险和法治化管理,以降低公司日常运营成本,提升航空公司日常运营效率,对航空公司的运营与发展进行制度保障与支持。只有航空公司风险防控体系的各要素运行良好,才能确保航空公司风险整体可控,为航空公司可持续性的高效增长提供强有力的保障。
参考文献
[1]何庆光,王玉梅.内部控制与企业风险的防范和化解[J].经济与社会发展,2004,(8).
[2]王星.构建企业内部控制引入风险管理之研究[J].现代商业,2009,(6).
[3]高立法.企业全面风险管理实务(第二版) [M].北京:经济管理出版社,2012,(6).
[4]美国COSO制定发布,方红星,王宏译.企业风险管理—整合框架[M].沈阳:东北 财经 大学出版社,2005,(9).
[5]胡杰武,万里霜.企业风险管理[M].北京:北京交通大学出版社,2009,(9).
[6]上海国家会计学院.企业风险管理[M].北京:经济科学出版社,2012,(6).
浅谈多旋翼无人机任务系统的优秀论文
前言: 随着无人机产品的不断增加,市场之间的竞争力,也逐渐的提升,对此本项目研究出了更适合于工业控制、自动化装备等领域产品的多旋翼无人机,产品不仅定位合理,同时与其他产品存在一定的差异,该任务系统,是指先进智能装备数据链的无人多旋翼任务,存在较高的能量利用效率、载荷运输性能,是其它无人机产品,在技术方面不能相比的;制定合理的市场规划,会给企业带来一定的经济效益。
1 多旋翼无人机定义概述
我们常称无人飞行载具,为无人飞机系统,主要是利用无线电智能遥控设备,以及自带的控制程序装置,对于不载人的飞机进行操控。其中广义的无人机,包括狭义无人机以及航模。
多旋翼飞行器,主要由动力系统、主体、控制系统组成,动力系统包括电机、动力、电子调速器、桨;主体部分包括机架、脚架、云台;控制系统包括由遥控接收器、遥控组成的手动控制;地面站,以及由主控、GPS、IMU、电子陀螺、LED显示屏组成的飞行控制器。其中四旋翼,是一种4输入6输出的欠驱动系统;通过PID、,鲁棒、模糊、非线性、自适应神经网络控制。近年来,对于系统的控制功能的研究趋势,为大荷载、自主飞行、智能传感器技术、自主控制技术、多机编队协同控制技术、微小型化等方向。其中一些关键技术为,数学模型的建立、能源供给系统、飞行控制算法、自主导航智能飞行。
2 控制系统改进发展阶段
多旋翼无人飞行器的控制系统,最初是由惯性导航系统,借助了微机电系统技术,形成了EMES惯性导航系统;经过对于EMES去噪声的研究,有效的降低了其传感器数据噪音的问题,最后经过等速度单片机、非线性系统结构的研究、应用,最终在2005年,制作出了性能相对稳定的多旋翼无人机自动控制飞行器。对其飞行器的评价,可从安全性、负载、灵活性、维护、扩展性、稳定性几方面要素进行分析。具有体积小、重量轻、噪音小、隐蔽性强、多空间平台使用、垂直起降,以及飞行高度不高、机动强、执行任务能力强的特点;在结构方面,不仅安全性高、易于拆卸维护、螺旋桨小、成本低、灵活控制的特点。
3 技术原理
系统组成
无人多旋翼任务系统,总体技术方案框图如图1所示;如图所示,无人多旋翼任务系统,由无人机、地面工作站构成。无人机,由多旋翼无人机、任务载荷组成;地面工作站,由数据链通信单元、工业控制电脑、飞行控制摇杆等组成。
系统技术原理
多旋翼无人机,通过对于螺旋桨微调的推力,实现稳定的飞行姿态控制、维持。经过上述,对于多旋翼无人机、常规直升机、固定翼飞机的对比,可以明显的看出,多旋翼无人机,在任务飞行方面,具有多能量的优势,从而更好的执行完成飞行任务,改善了飞行姿态维持,消耗大量能量的缺陷,从而更好的保证了其能量利用率,直接产生续航时间、载荷运输性能的提升;在结构方面,做了大量的简化,省去了传动机构,使其运行噪音、故障概率、维护成本大大的降低。
无人机,与地面工作站之间的通信,通过设备数据链实现连接,起到通信中介的作用,同好也是无人机、地面工作站之间,实现地空信息交换的重要桥梁环节。以往无人机,对于地空信息的转换连接,只是普通的点对点通信,收到信号传输距离的影响,性能发挥受到严重的影响,只能实现一些简单遥控数据信号的传输。
但是本项目,对于无人多旋翼任务系统的研究,是通过数据链协议MAVLink的研究后,将其合理的嵌入到控制核心、地面数据链的ARM平台中,有效的改善了以往低空信息传输环节存在的问题,将其遥测、遥信、遥控、遥调、遥视这五遥很好的进行了统一,保证了通信之间的无障碍,从根本上解决了无人机和地面工作站的数据通信问题。其中涉及到的.五遥;其中遥测,是指对于远方的电压、电流、功率、压力、温度等模拟量进行测量;其中遥信,是指对于远方的电气开关、设备,以及机械设备的工作、运行等状态进行监视;遥控,是指对于远方电气设备、电气机械化装置工作状态的控制、保护;遥调,是指对于远方所控设备的工作参数、标准流程等进行设定、调整;遥视,是指对于远方设备的安全运行状态的监视、记录。
传统的无人机,在飞行时需要通过人工对于遥控器的操作,对其飞行姿态进行的控制,体现出其自动程序的不完善,功能单调等缺陷。但是本项目对于无人机的研究,在地面工作站,通过飞行任务规划软件的配套,有效的改善了以往功能单一的缺点,直接增加了其功能性。其中飞行任务规划软件,具备GoogleMap高速API接口,实现对于无人机飞行航线,在三维地图上的简易规划,同时也能对其航线进行启动,使其实现自动巡航、执行飞行任务、返航等操作。
4 技术关键点及创新点
技术关键点:
地空信息的的数据通信。
先进智能装备数据链协议MAVLink的应用,能够对其所有数据进行有效的整合,并全部归纳在数据链路中,整合五遥操作,有效的降低了多种通信制式、通信模块存在等方面的问题,提高了通信效率,保证了通讯功能得以有效发挥。
解决飞行姿态操控问题
嵌入式操作系统,在ARM处理器平台上的应用,加上陀螺仪等传感器、卡尔曼滤波等先进算法,从而更好的保证了控制系统的功能增加,除此之外,不仅实现了无人操作飞行,在飞行操纵方面,也有效的降低了能耗,增加了能量利用率。
在工业控制领域应用的扩展
本项目以同一载具+多种载荷的建设、研究思路,针对于型号相同的多旋翼飞行器,设计一样的数据、电气、机械接口的任务载荷,实现快速更换载荷,使其飞行任务之间,能够良好、稳定的切换、衔接,保证该系统的实用性,同时也减少了任务执行的成本。
增强地面工作站功能
通过C/S架构、C#语言、.net平台、三维GoogleMap、SQL数据库,以及地面任务规划软件、分析数据分析软件,从而更好的增强地面工作站的功能,以及自动化、智能化的程度,更好的为用户操作,带来更多的便利。
项目的技术创新性
在无人机、地面站,在植入数据链MAVLink的同时,加强整体系统功能的改进,有效的实现了五遥的综合统一。
卡尔曼滤波、四元数算法,加上嵌入式ARM平台,对其飞行姿态实现有效控制。
同一载具+多种载荷思路的研究,实现了无人机,对任务执行模式的有效转换。
同时地面任务规划软件、分析数据分析软件的应用,提高了系统的控制功能,以及系统智能化程度。
5 总结
综上所述,通过对于无人多旋翼任务系统的分析,发现我国针对于此方面的研究,仍存在很多不完善的地方,该项目通过C/S架构、C#语言、先进智能装备数据链、分析数据分析软件等,照比以往的无人机飞行器,在系统功能改进方面,实现了遥测、遥信、遥控、遥调、遥视的统一;在任务执行模式方面,实现了灵活转换;在飞行姿态方面,实现了智能操控;是在已有多旋翼飞控技术的基础上,有效的规避了其以往的缺陷,同时自主飞行控制软件编程,这种飞控任务的提供,有效的实现了飞行中,自主导航智能飞行。
轧机振动研究已经经历了半个多世纪,许多学者和专家重点研究冷连轧机、平整机组、热连轧机和中板轧机等出现的振动现象。通过阅读大量参考文献和承担10条连轧机组振动问题的研究项目,对轧机振动问题的研究进行了概括和总结。概括起来,轧机振动研究的内容主要围绕着轧机怎样振动、轧机为何振动和如何抑制振动3个方面来展开研究,具体研究内容及进展分别叙述如下。在研究轧机固有的动力学特性方面,由过去用“弹簧-质量”模型来研究轧机的振型和固有频率发展到用有限元来建立模型并求解模态,使研究方法上了一个新台阶。在研究轧机振动传递方面,由过去认为轧机振动是传动系统减速机齿轮、齿轮座齿轮和弧形齿接手等的啮合频率造成轧机振动到引入非线性振动理论来求解振动的传递,使研究的问题变得更加复杂。在现场轧机振动捕捉方面,由过去采用的以光线示波器和磁带机为代表的临时测试方法发展到用工控机来采集和分析的在线监测系统,使轧机振动现象测试信号更加可靠和精准,分析内容更加丰富,为轧机振动机理研究提供了第一手可靠资料。
轧机是实现金属轧制过程的设备。泛指完成轧材生产全过程的装备﹐包括有主要设备﹑辅助设备﹑起重运输设备和附属设备等。据说在14世纪欧洲就有轧机,但有记载的是1480年意大利人 达·芬奇(Leonardo da Vinci)设计出轧机的草图。轧机是实现金属轧制过程的设备。泛指完成轧材生产全过程的装备﹐包括有主要设备﹑辅助设备﹑起重运输设备和附属设备等。 实现金属轧制过程的设备。泛指完成轧材生产全过程的装备,包括有主要设备、辅助设备、起重运输设备和附属设备等。但一般所说的轧机往往仅指主要设备。据说在14世纪欧洲就有轧机,但有记载的是1480年意大利人 达·芬奇(Leonardo da Vinci)设计出轧机的草图。1553年法国人布律列尔(Brulier)轧制出金和银板材,用以制造钱币。此后在西班牙、比利时和英国相继出现轧机。图1为1728年英国设计的生产圆棒材用的轧机。
英国于1766年有了串列式小型轧机,19世纪中叶,第一台可逆式板材轧机在英国投产,并轧出了船用铁板。1848年德国发明了万能式轧机,1853年美国开始用三辊式的型材轧机,并用蒸汽机传动的升降台实现机械化。接着美国出现了劳特式轧机。1859年建造了第一台连轧机。万能式型材轧机是在1872年出现的;20世纪初制成半连续式带钢轧机,由两架三辊粗轧机和五架四辊精轧机组成。中国于1871年在福州船政局所属拉铁厂(轧钢厂)开始用轧机;轧制厚15mm以下的铁板,6~120mm的方、圆钢。1890年汉冶萍公司汉阳铁厂装有蒸汽机拖动的横列双机架2450mm二辊中板轧机和蒸汽机拖动的三机架横列二辊式轨梁轧机以及 350/300mm小型轧机。随着冶金工业的发展,现已有多种类型轧机,由轧辊、轧辊轴承、机架、轨座、轧辊调整装置、上轧辊平衡装置和换辊装置等组成。
第四章 机械原理实验 第一节 机构运动简图测绘实验 一,实验目的 1.学会绘制机构运动简图的原理和方法. 2.验证和巩固机构自由度计算及机构具有确定运动条件等知识. 二,实验设备及工具 1.缝纫机头或各种机构模型. 2.铅笔,直尺,文具及图纸等. 三,实验原理及方法 1.机构运动简图 机构运动简图是研究机构结构分析,运动分析,动力学不可缺少的一种简单图形,它表达机构的整体和局部的结构型式,在机械设计初期用以表达设计方案和进行必要的尺寸计算. 由于机构的运动状态仅与组成机构的构件数目及连接这些构件间的运动副种类和数目及相对 置有关,故可抛开构件复杂的外形,材质和运动副的具体结构用简单的线条和规定的符号(见表4-1)代表每一个构件和运动副,并按着一定的比例尺准确地将实际机构的运动特征表达出来,这种简单的图形即为机构运动简图. 2.测绘方法及步骤 (1)机构运动分析,判别运动副种类. 使机构缓慢运动,仔细观察机构运动情况.从原动件(连架杆之一)开始,首先判定它与机架之间运动副种类,依次判断与其相连构件之间运动副种类,直到最终运动输出构件(亦为连架构件)为止,从而确定组成机构的构件数目,运动副的种类和数量以及连接顺序. (2)合理选择视图平面 视图平面的选择以最能清楚表达组成机构的构件数量,运动副种类和数量以及各构件间相对运动关系为原则.对平面机构,一般选择平行于各点运动平面的平面为视图平面,也可选择与该平面垂直的平面作为视图平面. (3)选择适当比例尺 选择机构运动中适当位置并令其停止不动,认真测量各运动副间的距离(构件尺寸),机械工程中常用长度比例尺定义如下: 表4-1 绘制机构运动简图常用符号 式中 LAB为构件实际长度,m. lab为图上线段长度,mm. 根据构件实际长度和图纸的尺寸确定合理的比例尺μL,使简图与图纸比例适中. (4)绘制运动简图 计算出各运动副间图纸上长度,即: 画出各运动副相对位置,用线条连接各运动副,即得机构运动简图(机构运动瞬时各构件位置图). 机械工程设计中,没有按准确比例尺画出的机构运动简图称为机构示意图,由于作图简单,亦能基本表达机构的结构和运动情况,故常用机构示意图代替机构运动简图. (5)计算机构自由度 根据下面公式计算机构自由度 式中 n为活动构件数; PL为低副数(移动或转动副); PH为高副数. 四,实验报告要求 1.缝纫机头机构运动简图测绘. (1)各专用机构运动简图和计算. (2)缝纫机头总的机构示意图 2.其它机构运动简图 学生在各种机构模型中任选5个以上机构,并画出机构运动简图,格式参考专用机构运动简图和计算. 3.思考题 (1)正确的机构运动简图应说明那些内容 (2)原动件在绘制机构运动简图时的位置为什么可以任意选定 (3)机构自由度的意义是什么,原动件数目与机构自由度数的关系如何 第二节 齿轮范成原理实验 一,实验目的 1.掌握用范成法加工渐开线齿轮的切齿原理. 2.了解渐开线标准齿轮产生根切现象的原因和避免根切的方法. 3.分析比较渐开线标准齿轮和变位(正)齿轮齿形的异同点. 二,实验设备及工具 1.齿轮范成仪. 2.圆规,比例尺,铅笔,剪刀等文具. 3.圆图纸,Φmin=260mm. 三,实验原理及方法 1.范成法切齿原理 范成法是加工渐开线齿廓最常用的方法之一.可以用一把刀具加工出模数,压力角相同而齿数不同的标准和各种变位齿轮齿廓且加工精度高. 范成法是利用一对齿轮互相啮合时其共轭齿廓互为包络线的原理来加工齿廓的.加工时,刀具与齿坯之间的运动和一对齿轮(齿条)啮合传动相同即保持着固定传动比的同时(啮合传动),刀具还沿着齿坯轴线作切削运动.这样得到的齿廓就是刀具在各个位置的包络线,刀具齿廓为渐开线(直线)则其包络线必为渐开线,标准刀具的节圆(节线)与齿坯分度圆相切时即切出标准齿轮齿廓.由于实际加工时看不到刀具在各个位置形成包络线的过程,通过齿轮范成仪,用铅笔将刀具刀刃各瞬时位置描绘在图纸上,这样就可清楚地观察到范成法形成齿廓的全过程. 2.齿轮范成仪 范成仪的工作原理如图4-1所示,圆盘1绕轴心O 转动,刀具2利用圆螺母4和托板3固联,圆盘1的背面固联一齿轮与与托板3上的齿条相啮合.当托板3在机架导轨上水平移动时,圆盘1相对托板3转动,完成范成运动.刀具2参数为:α=20°;m=20mm;ha*=1;c* =. 当刀具中线与齿坯分度圆相切时即可切制出标准渐开线齿廓,移动刀具用铅笔依次描下刀具瞬时位置,即可包络出齿廓. 四,实验步骤 要求切制 z=10的两个齿轮,其中标准齿轮与正变位(不根切)齿轮各一个. 1.绘制标准齿轮(x=0)z=10 (1)齿坯制作 已知α=20°;m=20mm;ha*=1;c* =;z=10;cos20°=,计算下面数据. 分度圆直径:d=mz= 齿顶圆直径:da=d+2ha* m= 齿根圆直径:df =d-2hf =d-2(ha*+ c*)m= 基圆直径:db = dcosα= 中心孔直径:Φ=40mm,Dmax=265mm (2)将齿坯固定在范成仪上. (3)对刀,调整刀具位置使其中线恒与齿坯分度圆相切. (4)范成齿廓. 将刀具推向一边极限位置依次移动刀具(每次不超过1mm)并用铅笔描出刀具各瞬时位置,要求范成出2-3个以上完成的齿形即可. (5)测量分度圆齿厚S和齿间e并与计算值比较. (6)观察根切现象. 2.绘制变位齿轮(不根切)z=10 (1)计算变位(移距)系数x和移距X. 标准齿轮:zmin=17 取:x= 则移距X=xm= (2)分度圆,基圆,齿顶圆,齿根圆尺寸. 分度圆:d=mz= 基 圆:db=dcosα= 齿顶圆:da=d+2ha*m+2z =d+2ha*m+2xm= 齿根圆:df=d-2hf+2xm= (3)首先对刀,使刀具中线与分度圆相切;松开刀具固定旋扭使刀具中线远离分度圆X=xm,将刀具推向一边依次移动刀具,用铅笔描出刀具瞬时位置,刀具包络出2-3个完整齿形. (4)测量分度圆齿厚S和齿间e并与标准齿轮比较. (5)比较标准齿形与正变位齿形的异同点. 3.绘制负变位齿轮(选作) 五,实验报告要求 1.齿条刀具的主要参数 模数:m;齿廓角:α;齿顶高系数:ha*;径向间隙系数c*. 2.分别计算标准齿轮和变位齿轮的尺寸参数并填入表格. 3.思考题 (1)用范成法加工齿轮时齿廓曲线是如何形成的. (2)试比较标准齿轮与正变位齿轮的齿形有什么不同,并分析其原因. (3)影响根切的因素有哪些,在加工齿轮时如何避免根切现象. (4)简述正变位齿轮特点. 第三节 齿轮参数测定实验 一,实验目的 1.掌握测定渐开线直齿圆柱齿轮基本参数的方法. 2.巩固并熟悉齿轮的各部尺寸的名称,参数及渐开线性质. 二,实验设备及工具 1.各种齿轮(奇数齿,偶数齿,标准齿轮,变位齿轮均有). 2.游标卡尺. 3.文具,纸张等. 三,实验原理和方法 渐开线直齿圆柱齿轮的基本参数有:齿数z;模数m;分度圆压力角;齿顶高系数;径向间隙系数,和变位系数x.除了齿数z可直接查出外其余均需测量计算,圆整而知. 1.确定模数m(或径节Dp)和分度圆压力角 我们采用测基圆齿距加查表的方法一次确定m和. 测量原理如图4-2所示,由渐开线性质,渐开线的法线恒切于基圆,其长度等于基圆上两渐开线起点间的弧长跨n个齿的公法线与跨(n+1)个齿的公法线,仅短一个基圆齿距pb,为了保证卡脚与齿廓的渐开线部分相切,对不同齿数规定跨齿数n(表4-2). 若卡尺跨n个齿,其公法线长度为 同理,若卡尺跨n+1个齿,其公法线长度则应为 所以 表4-2 跨齿数n z 12~18 19~27 28~36 37~45 46~54 55~63 64~72 73~81 n 2 3 4 5 6 7 8 9 又因 所以 虽然m和都已标准化了,但压力角除20°外尚有其它值,故应分别代入,算出其相应的模数,其数值最接近于标准值的一组和m,即为所求的值.否则应按径节制计算. 根据测得的基圆齿距pb,利用表4-3可直接查出与测量结果相等或相近的m(或DP)和值. 2.确定变位系数 由前面公式知 又由渐开线性质知,基圆齿厚 由此得 注:若求得x小于1%则认为该齿轮为标准齿轮. 3.确定齿顶高系数,和径向间隙系数c* 这两个系数与齿顶圆直径da 和齿根圆直径df 有关,测量齿顶圆,齿根圆直径,即为关键.对于尺寸不太大的偶数齿齿轮可用卡尺直接测量,而对于奇数齿则采用转化法间接测量. 又因为 则 表4-3 基圆齿距的数值 模数m 径节Dp 1 2 3 4 5 6 7 8 9 1. 11 12 13 14 15 16 18 20 22 25 28 30 33 36 40 45 50 按国家标准值圆整,正常齿:, 短齿:, 四,实验步骤 1.任选两个齿数(奇数,偶数各一个)查出齿数z1,z2. 2.分别测出ln,ln+1,,要求每一组尺寸均测三次取其平均值作为测量结果. 3.分别计算查表确定,,,,,,,,,并进行必要的圆整处理. 五,实验报告要求 1.确定模数和分度圆压力角 2.测定齿顶圆直径da和齿根圆直径df 分别选择偶数齿和奇数齿实验. 3.齿轮其它参数确定和尺寸计算 (1)变位系数. (2)齿顶高系数. (3)径向间隙系数. 4.思考题 (1)决定齿廓形状的参数有哪些 (2)测量时卡尺的卡脚若放在渐开线齿廓的不同位置上对测量的ln,ln+1有无影响,为什么 (3)齿轮的哪些误差会影响到本实验的测量精度 第四节 刚性转子动平衡实验 一,实验目的 1.掌握用动平衡机对刚性转子进行动平衡的原理和方法. 2.巩固所学过的转子动平衡的理论知识. 二,实验设备和工具 1.闪光式动平衡机. 2.实验用转子. 三,实验原理及方法 1.刚性转子动平衡 转子在运转中产生的不平衡惯性力系将在运动副中产生附加的周期变化的动压力,对机械的正常工作和使用寿命以至周围机械工作,厂房建筑都会产生到影响甚至破坏,因此,必须设法将构件不平衡惯性力加以消除或减小,即进行机械平衡,由平衡理论可知,对于任何动不平衡的刚性转子,无论其具有多少个偏心质量,以及分布于多少个回转平面内,只要在选定的两个平衡基面内分别各加上或者除去一个适当的平衡质量,即可得到完全平衡,即动平衡(双面平衡)后静平衡自然满足. 2.闪光式动平衡实验机 实验机如图4-3和图4-4所示,主要由主机和操作箱两部分组成.主机上有能够水平摆动的左右两个支承座2,每个支承座的两端各有一个钢支承板与之相固接,而钢支承板5的另一端固接在底座6上,构成能水平摆动的硬支承.每个支承座都可以利用搬把来"锁住"或"放开".被测的回转件水平地放在这两个支承座的支承处(V型槽中),回转件通过传动带由电机带动其转动(传动带及电机在图中未示出)来进行动平衡实验.传感器1与支承座相连,用来测取振动信号;闪光灯4用来测读回转件的不平衡"重点"或"轻点"的方位.传感器和闪光灯的电路均安装在操作箱内. 图4-3 主机 图4-4 操作箱 1―传感器;2―支承座;3―回转件 8―电源开关;9―"重""轻"点转换拨钮; 4―闪光灯;5―支承板;6―底座; 10―微安表; 11―微安表量程调节钮; 7―不平衡质点; 12―电源指示灯;13―"左","右"转换拨钮; 14―衰减调节 3.工作原理 回转件(实验件)3,其两端各具有一个轴颈和一个校正面.两个轴颈放在两个支承座2的V型槽中(两个支承座的V型槽要求平行和同轴).两个校正面在回转体两侧的最外端,它们的外圆上刻有等距的顺序数(或均匀的刻度),可以用来识别"重点"或"轻点"的方位.当回转件旋转时,由于它存在不平衡质点7(进行教学实验时,可以在实验用的回转件的校正平面上人为地加上―定的不平衡重量.显然,在这种情况下,不平衡重量的方位就是"重点"的方位,而与其相反(相位差180°)的方位就是"轻点"的方位),就产生不平衡离心力,并作用到支承座上.由于回转件是旋转的,不平衡离心力将会作用在支承座各圆周方向上,但实验机的机构限制了支承座在其它各方向的运动,只允许由两个钢支承板5支承的支承座2在水平方向往复摆动,从而便于对回转件进行动平衡实验. 支承座2与传感器1相连,当回转件转动时,由于存在不平衡而使支承座摆动,传感器将感受到振动信号,并通过电子线路,一方面在微安表上指示出反映不平衡量大小的微安数,另一方面又分出一路信号,这路信号可用转换拨钮9将相应"重点"和"轻点"的相位差为180°信号进行倒相处理,再通过波形转换和微分处理,使信号成为窄脉冲去触发闪光发光管4闪光.发光管的闪光照射到校正面外圆上的顺序数字或刻度上,由于闪光与支承座振动同步,用人眼观察时就可以看到似乎停止不动的数字或刻度,这数字和刻度的方位也就是要测定的"重点"或"轻点"的方位.测"重点"时,操作箱上的拨钮9拔向"重"一侧,测"轻点"时则拨向"轻"一侧. 测定了"轻","重"的方位后,可以在"轻"点方位的半径上(最好在最大半径处的凹槽内)试加一定质量的象皮泥来配重.然后,再开机进行动平衡实验,可以看到微安表的读数会比配重前有所减小.再反复配重和动平衡测验,直到微安表指示达到最小值,就可以认为回转件已校正到动平衡的要求. 四,实验步骤 1.实验前,检查机械传动部分是否灵活,在两轴颈处各滴2-3滴润滑油. 2.在回转件的两个校正平面的任一个半径上各加一个适当重物(即加入人为的不平衡重量). 3.先让左端的支承座放开,而将右端的支承座锁住. 4.接上电源,打开操作箱上的电源开关8,回转件旋转.转换拨钮13拨向"左". 5.转动量程调整旋钮11,使微安表10的电流指示值在60~80μA.如超量程,可适当衰减. 6.将闪光灯4水平地对准在左侧支承座一侧的回转体校正面的外径圆柱面上(刻有顺序数或刻度的表面上),将操作箱上的转换拨钮9拨向"轻"的一侧.这时即可从闪光灯照射处读到"轻点"的方位指示.同时,记下微安表读数. 7.关闭电源开关8,用适量橡皮泥在"轻"点方位的半径上试配重. 8.再次打开电源开关,开动动平衡实验机,观察微安表指示.一般情况下,微安表的读数会有所降低,但还没有达到动平衡要求. 9.重复上述6~8各步骤,经过多次配重到微安表指示达到最小值.这时,回转件左端达到了动平衡要求. 10.放开右端支承座,锁住左端支承座. 11.重复上述4~9各步骤,使回转件的右端也达到动平衡要求. 12.至此,回转件的动平衡实验即告完成. 五,实验报告要求 1.简述左(右)平衡基面平衡过程. 2.思考题 (1)何为动平衡,哪些构件需要进行动平衡 (2)平衡基面如何选择 第五节 凸轮廓线检测实验 一,实验目的 1.掌握凸轮廓线检测的原理和方法. 2.巩固和加深凸轮基本理论. 二,实验设备及工具 1.凸轮廓线检测仪. 2.被检测齿轮. 三,实验原理和方法 1.检测仪组成 凸轮廓线检测仪由机械分度头,大量程百分表,横移座,纵移座和工作台等主要部分组成.如图4-5所示. 被测凸轮由FW-100机械分度头带动下转动并读取角度.分度头定数为40,分度手柄转数n=40/z,z为工件所需的等分数.如利用分度盘上54孔的孔盘,分度手柄转过一个孔(相当于n=1/54)则工件的等分数z=40×54=2160,即转过10′. 百分表用来指示凸轮极径或从动杆位移,量程为30mm,刻度值.百分表测杆的端部有不同形式的结构:平底,尖顶,小滚子Φ20mm,大滚子Φ30mm等. 横向丝杆能调整横向座的位置,改变导路位置以分别为对心和偏心凸轮机构.调整范围为±20mm. 其余丝杠分别调整百分表架高度,以适应不同尺寸(径向,轴向)凸轮的检测. 2.检测原理 凸轮廓线检测原理一般分为两类,一是检测凸轮廓线极坐标图,二是检测出凸轮廓线所决定的从动杆位移曲线. 检测凸轮廓线极坐标图,无论什么形式从动杆的盘状齿轮,一律按对心尖顶直动从动杆盘状齿轮机构原理进行.通常把极轴取在齿轮廓线上开始有位移点的极径处,用分度头带动凸轮转动并指示极角,用大量程百分表指示极径的变化,再利用已知直径的检测棒或心轴或块规就可得出凸轮廓线的极径值. 检测凸轮机构的位移曲线就比较复杂了,因为从动件的位移不仅取决于凸轮实际廓线,还与偏心距,从动件结构形状,滚子半径大小都有关.只有对心尖顶直动从动件盘状凸轮机构位移变化量与廓线极径变化量相等,凸轮转角与廓线转角相等,检测位移曲线与检测极坐标图一样进行.其它形式的凸轮机构,从动杆位移与凸轮廓线极径,凸轮转角和廓线极角,检测位移曲线与检测极坐标图等完全不同.上述这些就是凸轮廓线检测基本原理. 3.实验内容 (1)用小滚子测头按对心直动从动杆盘状凸轮机构原理测从动件位移. (2)用尖顶测头按对心直动从动杆盘状凸轮机构原理测凸轮极坐标图. (3)用小滚子测头按偏置直动从动杆盘状凸轮机构原理测从动杆位移,偏距e=5mm. (4)用大滚子测头按对心直动从动杆盘状凸轮机构原理测从动杆位移. (5)用平底测头按对心直动从动杆盘状凸轮机构原理测从动杆位移. 为了计算和绘图方便,测头(从动杆)在起始位置时百分表读数置零.从动杆起始位置是测头与凸轮实际基圆段端点接触时位置,此时从动杆处于最低位置.将测头对心安装,借助尺寸已知的标准圆盘,心轴或块规可以测得极径及基圆半径的尺寸. 四,实验步骤 1.安装找正凸轮,使凸轮轴线与分度头主轴轴线重合. 2.把百分表装上小滚子测头,并调整偏距为零.转动凸轮找到测量起始位置,旋转百分表刻度盘将指针置零,再通过标准心轴或块规测此位置的极径绝对尺寸――凸轮实际基圆半径,此基园半径也可事先测好给出. 3.转动凸轮,每隔,测一次从动杆位移. 4.将测头移向操作者方向,调偏心距e为5mm,按偏置直动从动杆原理测从动杆位移. 5.换尖顶测头,按对心原理测从动杆位移. 6.将测头换成大滚子,按对心原理测从动杆位移. 7.将测头换成平底,按对心原理测从动杆位移. 五,实验报告要求 1.凸轮试件原始数据 凸轮转向,理论基圆半径,大滚子半径,小滚子半径,升程推程运动角,远休止角,回程运动角,近休止角,偏心距. 2.记录测量数据. 3.思考题 (1)测凸轮极坐标图和测位移有什么不同,画出凸轮实际廓线极坐标图. (2)摆动从动杆盘状凸轮的极坐标图如何检测 第六节 机械运动参数测试实验 一,实验目的 1.通过实验,了解位移,速度,加速度的测定方法;角位移,角速度,角加速度的测定方法. 2.通过实验,初步了解"MEC-B机械动态参数测试仪"及光电脉冲编码器,同步脉冲发生器(或称角度传感器)的基本原理,并掌握它们的使用方法. 3.通过比较理论运动线图与实测运动线图的差异,并分析其原因,增加对速度,角速度,特别是加速度,角加速度的感性认识. 4.比较曲柄摇杆机构与曲柄滑块机构的性能差别. 二,实验设备 1.机械动态参数测试仪. 2.曲柄滑块摆杆组合机构. 三,实验原理和方法 实验系统如图4-6所示,各组成部分说明如下: 1.实验机构 测试机构为曲柄滑块机构及曲柄导杆机构(也可采用其他各类实验机构),其原动力采用直流调速电机,电机转速可在0~3600r/min范围作无级调速,机构的曲柄转速为0~120r/min. 图4-7所示为实验机构的简图,利用固接在作往复运动的滑块上齿条推动与齿轮固接的光电脉冲编码器,输出与滑块位移相当的脉冲信号,经测试仪处理后将可得到滑块的位移,速度及加速度.图4-7(a)为曲柄滑决机构的结构形式;图4-7(b)为曲柄导杆机构的结构形式. 机械动态参数测试仪 MEC-B机械动态参数测试仪的外形结构如图4-8所示. 测试仪主体的整个测试系统的原理框图如图4-9所示. 在实验机构的运动过程中,滑块的往复移动通过光电脉冲编码器转换出具有一定频率(频率与滑块往复速度成正比)的两路脉冲,接入测试仪数字通道由计数器计数.也可采用接模拟传感器,将滑块位移转换为电压值,按入测试仪模拟通道,通过A/D转换口转变为数字量. 图4-7实验机构简图 (a)曲柄滑决机构 (b)曲柄导杆机构 l―同步脉冲发生器;2―蜗轮减速器;3―曲柄;4―连杆;5―电机;6―滑块; 7―齿轮;8―光电脉冲编码器;9―导块;10―导杆 图4-8 机械动态参数测试仪的外型结构 (a)测试仪的正面结构 (b)测试仪的背面结构 测试仪具有内触发和外触发两种采样方式.当采用内触发方式时,可编程定时器按操作者所置入的采样周期要求输出定时触发脉冲;同时微处理器输出相应的切换控制信号,通过电子开关对锁存器或采样保持器发出定时触发信号,将当前计数器的计数值或模拟传感器的输出电压值保持.经过一定延时,由可编程并行口或A/D转换读入微处理器中,并按一定的格式存贮在机内RAM区中.若采用外触发方式,可通过同步脉冲发生器将机构曲柄的角位移信号转换为相应的触发脉冲,并通过电子开关切换发出采样触发信号.利用测试仪的外触发采样功能,可获得以机构主轴角度变化为横坐标的机构运动线图. 机构的速度,加速度数值由位移经数值微分和滤波得到. 测试系统测试结果不但可以以曲线形式输出,还可以直接打印出各点数值. 图4-9 测试系统的原理框图 3.光电脉冲编码器 光电脉冲编码器又称增量式光电编码器,它是采用圆光栅通过光电转换成电脉冲信号的器件.它由灯泡,聚光透镜,光电盘,光栏板,光敏管和光电整形放大电路组成.光电盘和光栏板是用玻璃材料经研磨,抛光制成.如图4-10所示. 在光电盘3上用照相腐蚀法制成有一组径向光栅,而光栏板4上有两组透光条纹.每组透光条纹后都有一个光敏管,它们与光电盘透光条纹的重合性差1/4周期.光源发出的光线经聚光灯聚光后,发出平行光.当主轴带动光电盘3一起转动时,光敏管5就接收到光线亮,暗变化信号,引起光敏管所通过的电流发生变化,输出两路相位差90°的近似正弦波信号,它们经放大,整形后得到两路相位差90°的主波d和d′.d路信号经微分后加到两个相位相反的方波信号,分别送到与非门剩下的两个输入端作为门控信号,与非门的输出端即为光电脉冲编码器的信号输出端,可与双时钟可逆计数的加,减触发端相连.当编码器转向为正时(如顺时针),微分器取出d的前沿A,与非门1打开,输出一负脉冲,计数器作累加计数;当转向为负时,微分器取出d的另一前沿B,与非门2打开,输出一负脉冲,计数器作减计数.某一时刻计数器的计数值,即表示该时刻光电盘(即主轴)相对与光敏管位置的角位移量,如图4-11,图4-12所示.
我了解的国内铜加工行业精轧机实际使用的基本上在200吨以内,包括很多进口轧机,额定在300吨以内,宽度630mm轧件,参考文献铜加工有铜合金及其加工手册,中南大学出版,黑色不太清楚
中文名称:飞机燃油系统英文名称:aircraft fuel system 定义:发动机二级增压泵前的燃油系统的总称。 应用学科:航空科技(一级学科);航空机电系统(二级学科)
该燃油系统工作时,副油箱和后油箱的油,分别在增压空气与输油泵作用下,输往前油箱。然后,再由前油箱的增压油泵送往发动机的燃油泵。由于副油箱要在空战前扔掉,而后油箱离发动机高温区很近,所以,用油顺序是先用副油箱的油,再用后油箱的油,最后用前油箱的油。但是,为了使前油箱的油不致过满,左、右副油箱是在前油箱用掉少许之后才开始同时输油。再者,如果后油箱的油用完时,前油箱存油过多,飞机重心会过于靠前。因此,在副油箱的油用完后,并不立即使用后油箱的油,而是再从前油箱用掉一小部分后,才使用后油箱的燃油。用油顺序要根据飞机的具体情况来确定。
1、优缺点:汽油喷射发动机与化油器式发动机相比,突出的优点是能准确控制混合气的质量,保证气缸内的燃料燃烧完全,使废气排放物和燃油消耗都能够降得下来,同时它还提高了发动机的充气效率,增加了发动机的功率和扭矩。电子控制燃油喷射装置的缺点就是成本比化油器高一点,因此价格也就贵一些,故障率虽低,一旦坏了就难以修复(电脑件只能整件更换),但是与它的运行经济性和环保性相比,这些缺点就微不足道了。 2、分类:汽油喷射型式分为机械式和电子控制式两种。机械式汽油喷射装置是一种以机械液力控制的喷射技术,早在30年代就应用在飞机发动机,50年代开始应用在德国奔驰300BL轿车发动机上。集成电路的出现使电子技术能在发动机上得到应用,一种更好的汽油喷射装置――电子控制汽油喷射技术也就应运而生了。 3、结构:任何一种电子控制汽油喷射装置,都是由喷油油路,传感器组和电子控制单元(微型电脑)三大部分组成。当喷射器安装在原来化油器位置上,称为单点电控燃油喷射装置;当喷射器安装在每个气缸的进气管上,称为多点电控燃油喷射装置。 4、原理:喷油油路由电动油泵,燃油滤清器,油压调节器,喷射器等组成,电控单元发出的指令信号可将喷射器头部的针阀打开,将燃油喷出。传感器好似人的眼耳鼻等器官,专门接受温度,混合气浓度,空气流量和压力,曲轴转速等数值并传送给"中枢神经"的电子控制单元。电子控制单元是一个微计算机,内有集成电路以及其它精密的电子元件。它汇集了发动机上各个传感器采集的信号和点火分电器的信号,在千分之几十秒内分析和计算出下一个循环所需供给的油量,并及时向喷射器发出喷油的指令,使燃油和空气形成理想的混合气进入气缸燃烧产生动力。 5、历史:从60年代起,随着汽车数量的日益增多,汽车废气排放物与燃油消耗量的不断上升困扰着人们,迫使人们去寻找一种能使汽车排气净化,节约燃料的新技术装置去取替已有几十年历史的化油器,汽油喷射技术的发明和应用,使人们这一理想能以实现。早在1967年,德国波许公司成功地研制了D型电子控制汽油喷射装置,用在大众轿车上。这种装置是以进气管里面的压力做参数,但是它与化油器相比,仍然存在结构复杂,成本高,不稳定的缺点。针对这些缺点,波许公司又开发了一种称为L型电子控制汽油喷射装置,它以进气管内的空气流量做参数,可以直接按照进气流量与发动机转速的关系确定进气量,据此喷射出相应的汽油。这种装置由于设计合理,工作可靠,广泛为欧洲和日本等汽车制造公司所采用,并奠定了今天电子控制燃油喷射装置的邹型。至1979年起美国的通用,福特,日本的丰田,三菱,日产等汽车公司都推出了各自的电子控制汽油喷射装置,尤其是多气门发动机的推广,使电子控制喷射技术得到迅速的普及和应用。到目前为止,欧美日等主要汽车生产大国的轿车燃油供给系统,95%以上安装了燃油喷射装置。
电控发动机与化油器式发动机最大的不同在燃油供给系。电控发动机的燃油供给系取消了化油器,却增加了不少电子自动控制装置。其中包括许多传感器,执行元件和ECU。电控发动机不仅要完成化油器所要完成的任务,而且要完成化油器难以完成的任务。例如,使可燃混合气的空燃比浓度能控制在所需要的范围内。化油器式发动机油路和电路划分的非常清楚,互相影响不大。而电控发动机燃油供给系统增加了电子控制部分,这就使得油路和电路相互联系,它不仅影响发动机燃油系的工作,而且还影响发动机的正常运行。由于电控发动机电子控制装置的增加,这就使发动机的整个结构(包括电控系)更为复杂。快速导航结构组成 工作原理 待测参数 优点基本思想在初期,是以电子技术替代机械控制技术实现系统的功能,并对其功能进行扩展,使性能得到大幅度提高;发展到一定程度后,电子技术可以促使系统原理发生本质变化,从而可以突破局限,使发动机性能得以大幅度提高。电控发动机结构组成电子控制单元电控单元(ECU)是发动机电子控制系统的核心。它完成发动机各种参数的采集和喷油量、喷油定时的控制,决定整个电控系统的功能。传感器传感器(Sensor)将发动机工况与环境的信息通过各种信号即时、真实的传递到ECU。换句话说,ECU所了解到的只是一个由诸多信号所构成的发动机。所以,传感器信息的准确性、再现性与即时性就直接决定控制的好坏。执行器电控系统要完成的各种控制功能,是靠各种执行器来实现的。在控制过程中,执行器将ECU传来的控制信号转换成某种机械运动或电器的运动,从而引起发动机运行参数的改变,完成控制功能。工作原理以发动机转速和负荷作为反映发动机实际工况的基本信号,参照由试验得出的发动机各工况相对应的喷油量和喷油定时脉谱图来确定基本的喷油量和喷油定时,然后根据各种因素(如水温、油温、、大气压力等)对其进行各种补偿,从而得到最佳的喷油量和喷油正时或点火定时,然后通过执行器进行控制输出。
毕业论文答辩陈述汇报
尊敬的各位老师,上午好! 我叫×××,是××级水彩班的学生,我的论文题目是《浅谈水彩画中水的功能和趣味》,论文是在指导老师党老师的悉心指点下完成的,在这里我向党老师表示深深的谢意,向各位老师不辞辛苦参加我的论文答辩表示衷心的感谢。下面我将本论文的写作目的、现实意义以及主要内容向各位老师作一汇报,恳请各位老师批评指导。
首先,我想谈谈这篇论文的写作目的及现实意义。
我们知道水彩画源于16世纪的英国,18——20世纪才在西欧各国发展起来。我们在研究西方水彩画时不难发现,西方的水彩画强调色彩、光影、质感,在技法上继承了油画技法,采用写实的手法来表现事物。而现当代的水彩画艺术,特别是中国的水彩画艺术,则已经摆脱了西方绘画思想的禁锢,运用大量的水,强调画面的水韵和抒情风格。水分的运用成为水彩画的核心,或者水是灵魂。我们通常说,有水无彩不叫水彩,有彩无水也不叫水彩,在这里,我更强调前者,认为水是水彩画的首要构成要素。当代国内的水彩画家黄铁山、张洪英等前辈就强调水是决定水彩画成败的关键。但是还有许多学者没有意识到这一观点的重要性,没有进行系统的、深入的研究。所以我才对这一课题进行剖析,摆正其水在水彩画中的地位。这将对当代水彩画的发展,尤其是对中国的水彩画发展方向起到了指引作用。
其次,我想谈谈这篇论文的结构和主要内容。
这篇论文是采用总分总和总分的写作思路进行的。论文由两部分构成。第一部分是水在水彩画中的地位和作用,这一部分的论文的核心部分。我们知道水彩画是用水来调和颜色作画的,这就意味着水对颜色具有稀释、调和、媒介作用,不仅如此,水彩画的各种技法、肌理效果,都依赖于水的作用。因此,可以说,水是水彩画的命脉,或灵魂,贯穿于水彩画的各个方面。在文章通过三个论据来对这中心论点进行论证,进一步说明水是水彩画的命脉或核心。一是水彩画中水的`特质;二是肌理效果中的水色渗化;三是水彩画技法的用水之道。
第二部分是中国水彩画中尚水的独特趣味,尚水就是喜欢用水,善于用水。这一部分是对第一部分的肯定与延伸。这一部分剖析了中国水彩画中尚水的根源。其根源有三:一是中国传统文化对水彩水味的影响;二是中国传统绘画艺术对水彩水味的影响;三是中国地域环境对水彩水味的影响。而对论文的最后总结我认为水,是水彩画的命脉,水分的正确使用,直接影响水彩画技法的正常发挥。但是,又不能死守水彩画特性的教条,需要结合本民族各种文化的精髓和民族特色,才能创造出具有中国特殊水色语言的水彩艺术精品。
最后,我想谈谈这篇论文和系统存在的不足。
这篇论文的写作过程,也是我越来越认识到自己知识与经验缺乏的过程。虽然,我尽可能地收集材料,竭尽所能运用自己所学的知识进行论文写作。但由于识识能力的不足,在理解上有诸多偏颇和浅薄的地方,有些观点是幼稚的;也由于理论功底的薄弱,存有不少逻辑不畅和辞不达意的问题;请各位评委老师多批评指正,让我在今后的学习中学到更多。
我的论文陈述完毕,请各位老师提问和指点。
飞机是如何启动的,锦飞浅谈民航飞机通电启动过程,及28v/400hz航空地面电源的作用。在飞机断开地面电源之前会先启动APU,不然一断电源飞机会彻底断电,只剩下电池片供电,启动APU后飞机由APU供电,此时地面电源就可以撤掉了,推出开车要关闭空调,开车之后开启引擎供电,此时APU就可以关闭了,落地关车之前要确保APU启动,不然一关车就又停电了,综上所述,飞机的供电系统主要来源于 地面电源,APU,引擎几个方面,APU是要烧油的,所以长期停场一般还是接通地面电源。
当航空发动机不工作时(如地面测试时),主电源也不工作,这时靠辅助电源供电。飞机蓄电池或辅助动力装置(一种小型机载发动机、发电机和液压泵等构成的动力装置)是常用的辅助电源。飞行中主电源发生故障时,蓄电池或应急发电机即成为应急电源。机载用电设备要求较高的供电质量,电压调整精度、频率调整精度、交流电压波形正弦度、电压浪涌和尖峰等都有一定的技术标准。通常一台发动机上有1~2台发电机,因此多发动机飞机上装有许多台发电机。直流电源系统中的发电机都并联工作。交流发电机有的并联工作(如波音 707飞机的4台发电机),有的不并联工作(如“三叉戟”飞机的3台发电机)。不并联工作的交流电源系统较为简单;并联系统则比较复杂,但电源容量大,负载的波动对电源电压和频率的影响较小,故电能质量高,且不易中断供电。
毕设要求有没,根据要求可以做的
要不你去(国际航空航天科学)里面去看下~找下有没有这样的资料可以让你参考的
我知道你是航院的,也知道你是应付老师布置的作业,但是咱不能恁直接是不
同学,你不要这么直接好吧,我也是在那上课的,也是上网搜就行了,唉,,,木有办法。哈哈。。。这个老师应该会让咱们过吧