石英晶体谐振器:昂贵、精确电子振荡电路:便宜、不精确
石英晶体振荡器主要优点包括极高的品质因数,高达10^5~10^6,良好的频率稳定性和温度稳定性。缺点是由于石英晶体振荡器属于机械系统,所以其谐振频率不能超过大约250MHz。
石英晶体谐振器起振容易,频率准备。电子振荡电路正好相反,但输出幅度大,带载能力强,频率可调。
石英晶体振荡器又名石英谐振器,简称晶振,是利用具有压电效应的石英晶体片制成的。这种石英晶体薄片受到外加交变电场的作用时会产生机械振动,当交变电场的频率与石英晶体的固有频率相同时,振动便变得很强烈,这就是晶体谐振特性的反应。利用这种特性,就可以用石英谐振器取代LC(线圈和电容)谐振回路、滤波器等。由于石英谐振器具有体积小、重量轻、可靠性高、频率稳定度高等优点,被应用于家用电器和通信设备中。石英谐振器因具有极高的频率稳定性,故主要用在要求频率十分稳定的振荡电路中作谐振元件。
可怜的娃们、我弟今天也编这个这。还让我帮他办报纸,我就汗死
骨笛遐想——浅析小提琴发声、调音的物理原理一.选题意义据我国最早的物理史学家吴南薰先生考证,世界上第一个人工制作的物理仪器就是在兽骨或竹管上挖孔并能吹出声音来的笛子。这既是一种乐器,也是一种声学仪器;我国古代对共鸣、弦的振动、管的音调的研究等都是通过乐器来进行的;希腊哲学家毕达哥拉斯发现了琴弦的长短与音高有一定的关系;从近代物理学发展来看,声学依旧占据着相当重要的部分,且与我们的生活息息相关;……许多同学都会演奏一些乐器,但对于弦乐器的调试却无从下手。我们结合已经学过的振动学知识,浅析西洋擦弦乐器——小提琴的发声原理,并为演奏者检音、调试提供理论依据和实验结果参考。二.相关物理知识实际的乐音由基频、谐波(泛音)、分音三部分组成。每一个乐音即周期性的振动都可以分解为许多不同频率、不同相位、不同振幅的简谐振动的叠加。简单的简谐振动即正弦振动或余弦振动的传播产生的声波叫做纯音,实际的乐音如歌唱声、乐器声等都不是简单的纯音,而是许多的纯音的叠加。在这些简谐振动中,频率最低的叫做基频,基频的能量往往是最大的。频率是基频整数倍的叫做谐波,其余的高频振动叫做分音。现代的分析中表明,还有低于基频的次声。因此,从物理上讲,音乐声应由三部分组成:乐音、在音乐中使用的噪声(如锣、鼓、沙锤、梆子等没有固定音调的打击乐器和海涛、流水、风声等效果声音)以及对音色有影响的在谐波中存在的一部分超声。一般来说,发生体振动的频率越高,人们听起来音调也越高;发生体的振动频率越低,人们听起来音调就越低。但音调与频率之间并不是严格按比例对应的。一般认为,频率每增高一倍,音调听起来就高一个八度,这仅仅限于中频段。在高音部分,听感偏低,即频率增加一倍,听起来不到高八度,而是偏低,于是要把频率调高些,以适应人的听觉。低音段则听感偏高,于是需要把频率调低些。乐音听起来有一定的强弱,即音的响度,这是乐音的第二个主观量。声音的能量越大,声强越大,听起来响度就越大。但是,这二者也不是按比例一一对应的。至于音色,更是一种主观感觉了。从传统来讲,决定音色的主要因素是频谱,所以常常根据频谱模仿各种音色。但据资料显示,实践表明:音的起始与结尾的瞬间状况,即“音头”和“音尾”,也同音色大有关系。音色不仅与频谱的组成(即基频、谐波和分音的数目、长短、相对强度、分音的不谐和程度及瞬态)有关,还与基频和谐波在听音区的位置有关,这是由于人耳对于多种频率的响度反映不同。音色也与听者距声源的距离有关,这是因为一个音中的各种成分的衰减不同。三.相关音乐知识音程,就是两个音音高之间的距离。在音乐上,音程用“度”表示。几度就是把起始音算在内,沿着音阶数有几个音名。钢琴上相邻两个键(包括黑键)之间差半音,两个半音等于一个全音。这也是一种表示音程的方法。音程与频率基本上是一一对应的关系。把两个相差八度音程之间的音顺次排列,就成为音阶。规定音阶中各个音的由来及其精确音高的数学方法叫做律制。最常用的三种律制是十二平均律、五度相生律和纯律。音阶中的各个音都有音名,由于生律的方法不同,不同律制生成音律中的同名音(例如都是 )其频率是不一样的。十二平均律是我国明代科学家朱载堉最先发明的,比西欧早了几十年。他将一个八度音程(频率比为2)按等比数列均分为十二份,得十二律。当前的钢琴和所有键盘乐器以及带“品”的弦乐器等,用的都是这种律制。数学表示:相邻两音之间的频率比均为: 即从任何一个音开始,比该音高半音的音,其频率是该音的频率乘 ;比该音低半音的音,其频率是该音的频率乘 ;以此类推,可得出所有音的频率。十二平均律有许多优点,比如它易于转调,简化了不同调的升、降半音之间的关系。在小提琴中,假如以 音的弦长为基准,那么小字一组(其中的 比 高两个八度) 、 、 、 、 、 、 对应的弦长之间按照十二平均律可由频率关系确定一组固定比值。四.研究与实验小提琴的弦是一根两端固定的细钢丝。在拨、擦弦线时产生的波列经两固定端反射,叠加后形成驻波,但其中包含有许多频率的波。在这里,我们只对决定音调高低的基频振动做出分析研究。驻波的基频振动所对应的为波长最长的振动,即弦长 。提琴弦线与指板之间的距离很小,用手指在指板上压紧琴弦不同位置而使得弦产生的形变量很小,可以忽略不计。则可认为弦上张力 ,及弦的质量线密度 保持不变,可得弦线中波速 近似恒定。因此,可认为有如下比例关系成立: 实验过程:一把小提琴,经专业乐师调音后,定下 音,再由一位有多年演奏经验的同学拨奏单音,多位乐感敏锐、受过专业训练的同学一起听辨,配合其他乐器校对各音高。记录及计算数据如下表。表中的k值定义如下:相差一个半音的两个音高对应 相差一个全音的两个音高对应 序号n 音高音名 比下音程差 弦长/mm 总长: 上述k值 第一次 第二次 第三次 平均值 计算值 理论值 误差率1 全音 全音 半音 全音 全音 全音 半音 其中弦长一栏为小提琴 弦(四根弦由粗到细依次叫作 、 、 、 弦,指的是该弦的空弦音)上对应各音高压指与琴码两固定点之间的距离,即参加振动的部分弦长。如上数据显示,平均误差率为,基本符合前文理论分析。五.结论我们总结出对于一把小提琴(邻弦相差五度)的自我调试方法:以一根弦,例如 弦,的空弦音 为标准,按音高关系计算出同一根弦上 所对应的弦的长度。取 音高即与 弦空弦音等高(这是小提琴的制作要求)。依次调整 弦的松紧、长度后,再算出 弦上 的音高,作为 弦的空弦音。……同理进行下去。此种方法适用于各类提琴及吉他等擦、拨弦乐器,但须注意:①对于比空弦音高出许多的音,计算方法误差较大。实验中在一根弦上进行多组数据测量只是为了便于计算、对比,得出结论;实际操作中应对各相邻琴弦依次校对。②大提琴与吉他相邻的弦空弦音相差四度,计算时应注意数据与小提琴不同。希望我们的研究能够对广大演奏弦乐器的音乐爱好者提供帮助。
一、选题的背景与意义: 优秀的跳远选手在跳远时,是在追求快速及有效率的助跑以及强力有效的起跳动作,并以适当的起跳角度起跳,但是这两者同时成立是非常困难的,因为助跑速度越快,往上跳跃就会更加困难。 在人体起跳的肌肉变化及弹簧振子运动方面,许多学者都进行过深入研究,但很少将两者结合起来,采用物理方法分析人体起跳的运动过程。本研究正是针对这一问题提出,有一定的理论创新意义。同时,在国际跳高、跳远等运动项目中,我国选手较为落后,本课题的研究成果可作为运动员调高、跳远运动项目的理论参考,对提高我们运动员的成绩具有较大的现实意义。 二、研究的基本内容与拟解决的主要问题: 三、研究的方法与技术路线: 拟研究大纲: 第一章 绪论 压缩弹簧弹起的物理原理 人起跳的条件 分段速度 起跳动作 起跳水平速度利用率 起跳垂直速度利用率 起跳角度 助跑速度利用率 速度 起跳技术 第二章 人起跳的物理原理 影响跳远成绩的主要因素 有关跳远助跑与助跑速度利用率的研究 有关跳远踩板研究 有关跳远起跳技术的研究 第三章 实验方法与步骤 研究对象 实验时间与地点 实验时间 实验地点 实验仪器 压缩弹簧压力部分 测量助跑分段速度部份 测量起跳动作部分 实验场地布置 受试者选取 受试者填写同意书及基本资料 建立选手基本资料 仪器校正与测试 实验目的与方法说明 基本能力测试 排定实验顺序 前测与后测 数据纪录、整理与分析 资料收集与处理分析 结果与讨论 第四章 结论与建议 研究结论 研究建议 四、研究的总体安排与进度: 五、主要参考文献: [1] 谢利民.弹簧振子运动的实际动力学分析[J].上海师范大学学报(自然科学版),,31(2):91-94. [2] 基特尔C.伯克利物理学教程,第一卷,力学[M].北京:科学出版社,1979. [3] 药树栋,宫建平.弹簧振子振动的探讨[J].大学物理,(2):22-24. [4] 肖波齐.基于Matlab的弹簧振子简谐振动研究[J].陕西科技大学学报,,26(6):116-119. [5] 卢德明主编.运动生物力学测量方法[M].北京体育大学出版社, 2001 [6] 李建英,李磊,郭甫. 十运会男子三级跳远运动员三跳技术运动学分析[J].成都体育学院学报.2008(03) [7] 宋亮,丁磊,巩磊. 对世界优秀男子三级跳远运动员运动技术的比较分析[J].体育科技.2008(01) [8] 罗陵,刘春伟. 三级跳远运动员李延熙三跳起跳技术的运动学分析[J].北京体育大学学报.2008(02) [9] 宋惠娟,王亚军. 我国部分优秀女子运动员三级跳远起跳若干速度指标的运动学分析[J].安徽体育科技.2006(05) [10] 王琨等.对肌肉生物力学研究有关问题的探讨[J].上海体育学院学报,,25(1):36-40. [11] Norris, Dave. (1988). Run~ups in the horizontaal jumps. Track Technique. 104. [12] Tidow, G.(1990). Model for teachi ng techniques and assessing movememts in athletics:The Long Jump Track Technique .113, 3607~3620.
本实用新型是一种大功率自动高频高压恒流直流电源,它主要由整流滤波,高频逆变,高压输出及控制部分组成,特别是:a.所述高频逆变部分是采用多个最新的大功率电力电子器件IMOSFEET分布在散热器中并配以高频逆变电路组成;b.所述高压输出部分是由若干层线包叠加而成,外接高压输出棒,每层线包接装有两组整流桥;本实用新型解决了现有逆变式高压恒流电源功率小,适应范围规格偏低的问题,其动态特性好,适应电场范围宽,系统功率大大提高,主要应用于高压静电除尘器配套的高压发生源,广泛应用于冶金、化工发电、建材部门。
毕业论文格式 (1)论文要求一律用A4白纸打印; (2)封面:论文一律用统一封面 (3)任务书:毕业论文任务书内容包括论文要求、主要内容、进度安排等(格式见清华网格学堂/学生手册附件),其中,第二、三项由指导教师填写,其余内容由学生填写; (4)摘要:论文要有150-200字的摘要,并列出论文的关键词(中、英文对照); (5)正文:论文正文打印格式及尺寸要求,版面尺寸为15CM×23CM,统一用小四号字体、倍行间距打印; (7)参考文献:论文正文后须附参考文献,著明论文所依据的文献资料情况,文献著录格式主要有下列几种: 连续出版物:作者.文题.刊名,年,卷号(期号):起~止页码 专(译)著:作者.书名(,译者).出版地:出版者,出版年. 起~止页码 论 文 集:作者.文章标题:编者,文集名.出版地:出版者,出版年. 起~止页码 互联网资料:作者. 文章标题,完整网址,年代 (8)鸣谢:本页内,学生可以表达对论文指导教师和在论文写在过程中给予帮助和支持的其他人的感谢。正弦振荡电路 在电子工程中,常常用到正弦信号,作为信号的源的振荡电路,主要的要求是频率准确度高、频率稳定性好、波形失真小和振幅稳定度高等,但对高频能源的振荡电路有以下几种: (1)LC振荡电路:它适用于几十千赫至几百兆赫的频率范围(高频率和超高频) (2)RC振荡电路:适用于声频和超声频范围(从几赫至1赫) (3)晶体振荡电路:用于生产频率稳定度较高的振荡电路,频率低于3千赫时常用音叉振荡电路代替,而频率高于几十兆赫时常用泛音晶体振荡电路,随着集成化技术的发展,已有多种晶体振荡器的集成电路,如国产的ZWB-1和ZWB-2型等。 相位和振幅平衡条件: 反馈式的振荡电路主要是由基本放大器和反馈网络组成,如图91所示,因此,振荡电路实际上是一个闭环的正反馈电路,其闭环增益为: Kf=Uf/Ui=KF= 要使电路产生振荡,则必须反馈电压Uf和输入电压Ui同相,所以本位平衡条件为 Φk+Φf=2nπ------------------------------------式一 (n=0,1,2,........ 而且,要求|Uf|≥|Ui|,所以振幅平衡条件为: KF≥1-----------------------------------------式二 如果满足了这两个平衡条件,则电路产生振荡,由于振荡器的晶体管工作在非线性区域,所以包含了丰富的谐波成分,而只有某一频率才能满足上述的两个平衡条件,从而产生了单一频率的正弦振荡。 图1 图2 一、变压器反馈式振荡电路 图2(a)为变压器反馈振荡电路,其正反馈过程是:若输入Ui为上正下负,对于振荡频率,回路谐振的并联阻抗为电阻性,所以输出电压Uo与Ui反相,即Uo为上负下正,由于同名端决定了Uf为上正下负,Uf正好与Ui同相,只要晶体管的β足够大和变压器的匝数比合适,电路一定能够振荡,还可以证明电路的起振条件和振荡频率分别为: β≥rbeRC/M------------------------式3 f≈1/2π-----------------------式4 式中:rbe为基极与射极度之间的交流等效电阻,R为次级折算到初级的等效电阻,M为互感系数。 二、三点式振荡电路 1、三点式电路相位条件的判别法 图3(a)为三点式振荡器的交流等效电路,从相平衡条件可以推论出:凡与晶体管发射极相接的电抗Xbe、Xce应性质相同,而不与发射极连接的另一电抗元件,Xcb的性质应与前两者相反。 可以从相量图来检查上述结论的正确性,设Xbe、Xce为容性,Xcb为感性;因振荡时回路谐振于振荡频率,回路呈电阻性:所以Uo、Ui反相及Ic、IL反相;又因Xbe、Xce为容性,故IC比UO超前90度。因Xcb为感性,所以Uf比IL滞后90度,其相量图如图3(b)示,从图可见,Uf与Ui同相,上述结果得到证明。图3 图4 2、电容三点振荡电路(考毕兹电路) 图4(a)为三点振荡电路及其交流等效电路,从图4(b)看出,与发射极相接为电容,集电极与基极之间接电感,服从于共射三点振荡电路对电抗性的要求,故能振荡,该电路的起振条件和振荡频率为: β≥C2/C1----------------------------------式5 f≈-(1)/ --------------------------式6 一般反馈系数F=C1/C2取之间,由于该电路的输入端接电容,而容抗又随频率增加而减小,所以输入电压中的高次谐波分量将明显地受到抑制,使输出波形良好,该电路的缺点是:用调节电容来改变频率时,会使反馈系数改变,所以通常用改进型的电容三点振荡电路。
工作原理 它主要由高频振荡电路、三倍压整流电路和高压电击网DW三部分组成。 当按下电源开关SB时,由三极管VT和变压器T构成的高频振荡器通电工作,把3V直流电变成18kHz左右的高频交流电,经T升压到约500V(L3两端实测),再经二极管VD2~VD4、电容器C1~C3三倍压整流升高到1500V左右,加到蚊拍的金属网DW上。当蚊蝇触及金属网丝时,虫体造成电网短路,即会被电流、电弧杀灼或击晕、击毙。 使用时,手握网拍把柄,按下按钮开关,像使用普通蚊蝇拍一样挥拍,让网面触及飞动的蚊子(或苍蝇、飞蛾),即可迅速将其击毙。该电蚊拍耗电省,工作电流实测约120mA左右,(瞬间短路电流实测≤),故对人及宠物绝对安全。当人体不慎触及网面时,仅会发生局部短暂麻刺。但注意不要在严禁烟火的场所或水中使用。当网面上粘有残余虫骸时,可用毛刷清除或直接抖落,勿用湿布或水擦洗,必要时可用棉花浸酒精清擦。 朋友,正好我有一把电蚊拍,今天做了实验,自己分析认为: 蚊虫被电,不需要有肢体接触在电网的两极!!! 我今天捉了几只小蚂蚁(蚂蚁身长只有约外层与中层电网距离的一半,肢体根本无法搭在两极上)。但是我一按充电钮,蚂蚁还是被电。我仔细观察了一下,发现两网间的电流是从蚂蚁身上流过,然后击穿空气。 物理常识:利用已知一般空气在电场强度超过3 ×106V/m 的条件之下会被游离而开始导电的物理特性 以下完全本人推理(非粘贴): 当一个蚊虫(假设它肢体伸开比外层与中层电网距离短,即不能同时接触外内层电网)进入到外内层电网之间,强大的电场会使蚊虫带电(或部分带电,类似用磁体磁化铁棒)。与正极靠近的带负电,与负极靠近的带正电。正负相吸,于是被极化蚊虫就被强大的电场伸展开了。但蚊虫总不能在中间悬空啊?,其肢体上有一点一定是和某边电网接触的。于是,这个蚊虫就成了这个网上最突出的一点,也就是最接近另一极的一点(两个电网之间有几乎处处相等的安全距离)。联想一下,雷雨天雷为什么回打在尖耸的物体上。同理,蚊虫所接触的网上的电荷就会在它身上聚集最多。此时,一是因为此点电荷密度大,二是因为此点距另一极电网已小于了安全距离。 接下来就电流就会在此点击穿空气,向另一极电网放电。同时在空气中产生电火花,震动空气发出“啪”的声音。你想想,这高压瞬时电流就通过了蚊虫的身体,于是它就屁颠屁颠的升天了~~~ 就算有些比较大的蚊虫,电到他们的时候也不需要他们同时接触两极,也许就在他们快要接触两极的一瞬间,就击穿空气放电了。。你们想想问什么会有“啪”的声音出现,那就说明一定是要击穿空气的。若蚊虫肢体死死的搭在两极上,是不会出现“啪”声,直接就短路发热了。
21世纪是知识爆炸的时代,大学物理也不例外。这是我为大家整理的大学物理学术论文,仅供参考!
中学物理中的物理模型
摘要:本文阐述了物理模型的概念、功能,中学物理教材中常见的六种物理模型,物理模型在中学物理教学中地位和作用,以及中学阶段在物理模型的教学过程中应该注意的若干问题。
关键词:中学物理;教学;物理模型
一、物理模型的概念及功能
物理学所分析、研究的实际问题往往很复杂,有众多的因素,为了便于着手分析与研究,物理学往往采用一种“简化”的方法,对实际问题进行科学抽象化处理,保留主要因素,略去次要因素,得出一种能反映原物本质特性的理想物质(过程)或假想结构,此种理想物质(过程)或假想结构就称之为物理模型。
物理模型按其设计思想可分为理想化物理模型和探索性物理模型。前者的特点是突出研究客体的主要矛盾,忽略次要因素,将物体抽象成只具有原物体主要因素但并不客观存在的物质(过程),从而使问题简化。如质点模型、点电荷模型、理想气体模型、匀速直线运动模型等等。后者的特点是依据观察或实验的结果,假想出物质的存在形式,但其本质属性还在进一步探索之中。如原子模型、光的波粒二象性模型等等。
人们建立和研究物理模型的功能主要在于:
一是可以使问题的处理大为简化而又不会发生大的偏差,从中较为方便地得出物体运动的基本规律;
二是可以对模型讨论的结果稍加修正,即可用于对实际事物的分析和研究;
三是有助于对客观物理世界的真实认识,达到认识世界,改造世界,为人类服务之目的。
二、中学物理教材中经常碰到的几种物理模型
物理模型就它在实际问题中所扮演角色或所起作用的不同,可分为:
1.物理对象模型 即把物理问题的研究对象模型化。
例如质点,舍去和忽略形状、大小、转动等性能,突出它具有所处位置和质量的特性,用一个有质量的点来描述,又如点电荷、弹簧振子、单摆、理想变压器、理想电表等等,都是属于将物体本身的理想化。
另外诸如点光源、电场线、磁感线等,则属于人们根据它们的物理性质,用理想化的图形来模拟的概念。
2.物理过程模型 即把研究对象的实际运动过程进行近似处理。排除其在实际运动过程中的一些次要因素的干扰,使之成为理想的典型过程。
如研究一个铁球从高空中由静止落下的过程。首先应考虑吸引力,由公式F=GMm�r2可知,铁球越接近地面,F就越大,其次还要考虑空气阻力、风速、地球自转等影响。这样考查铁球下落运动过程就显得十分复杂,研究起来十分不便。为此,我们在研究过程上突出铁球下落的主要因素,即受重力作用,而忽略其它次要影响,并把重力视为恒力,通过如此简化,使研究问题简化,其研究结果也不致影响到基本规律的正确性。从而成为物理学中一个典型的运动过程,即自由落体运动。这种物理模型称之为过程模型。
教材中的匀速直线运动、简谐振动、弹性碰撞;理想气体的等温、等容、等压、绝热变化等等都是将物理过程模型化。
3.物理条件模型 如自由落体运动规律就是在建立了“忽略空气阻力,认为重力恒定”的条件模型之后才得出来的。力学中的光滑斜面;热学中的绝热容器;电学中的匀强电场、匀强磁场等等,也都是把物体所处的条件理想化了。
4.物理等效模型 即通过充分挖掘原有物理模型的特征去等效具有相似性质或特点的现象和相似运动形态的物质和运动。如将理想气体分子等效为弹性小球,并用弹性小球对器壁的碰撞去解释和推导气体压强公式,用单摆振动模型去等效类比电磁振荡过程等等。
5.物理实验模型 在实验的基础上,抓住主要矛盾,忽略次要矛盾,然后根据逻辑推理法则,对过程作进一步的分析,推理,找出其规律,得出实验结论。
如伽利略就是从斜槽上滚下的小球滚上另一斜槽,后者坡度越小,小球滚得越远的实验基础上提出了他的理想实验――在无摩擦力情况下,从斜槽滚下的小球将以恒定的速度在无限长的水平面上永远不停地运动下去,从而推翻了延续两千多年的“力是维持物体运动的不可缺少”的结论,为惯性定律(牛顿第一定律)的产生奠定了基础。
再如在研究电场强度时,设想在电场中放置一个不会引起电场变化的点电荷,去考查它在各点的F�q值等等。
6.物理数学模型 即建立以物理模型为描述对象的数学模型,进行对客观实体近似的定量计算,从而使问题由繁到简。如单摆的摆线与竖直方向的夹角不得大于50,使弧线计算转化为三角计算等等。
三、物理模型在中学物理教学中的地位和作用
1.建立正确鲜明的物理模型是物理学研究的重要方法和有力手段之一
物理学所研究的各种问题,在实际上都涉及许多因素,而模型则是在抓住主要因素,忽略次要因素的基础上建立起来的。它具有具体形象、生动、深刻地反映了事物的本质和主流这一重要属性。
如“质点”模型,在物体的宏观平动运动中,描述运动的物理量位移、速度、加速度等对同一物体来说其上各点都相同,在这些问题的研究中,运动物体的大小和形状是可不考虑的,故可将运动物体质点化,即用质点模型来取代真实运动的物体。
2.正确鲜明的物理模型本身就是重要的物理内容之一,它与相应的物理概念、现象、规律相依托
人们认识原子结构的进程中,从汤姆逊模型到卢瑟福模型的飞跃就是生动的反映。
爱因斯坦光电效应方程的建立成功地解释了光电效应,而它是建立在反映光粒子性的“光子”模型之上的。
诸多的事实都在说明大凡物理现象、过程、规律都直接与之相应的物理模型关联着;一定的物理模型又是最生动最集中地反映着相应的物理概念、现象、过程和规律,二者密不可分。
3.正确鲜明的物理模型的建立,使许多抽象的物理问题变得直观化、具体化、形象化
例如,电场线对电场的描述,磁感线对磁场的描述。分子模型对理解分子动理论的基本观点,原子核式结构对a粒子散射实验现象的解释;光子模型对光的粒子性的理解等等,凡是学物理的人都会感受到物理模型所给予的无可争辩的重要作用。
四、物理模型的教学要着眼于学生掌握建立正确鲜明的物理模型这一根本方法
物理模型是物理基础知识的一部分,属物理概念的范畴。学习前人为我们创造的各种物理模型是完成教学内容的重要组成部分,培养学生掌握这一方法,即对一个具体的物理内容、现象或过程能反映出一幅鲜明的“物理图景”,是培养学生科学思维能力的一个重要方面。为此,我们在教学中应注意如下几点:
1.讲清各物理模型设计的依据。物理模型看上去是独立的,但设计物理模型的思想是相通的。
2.讲授物理模型要前后呼应,触类旁通。运动学中建立的“质点”模型,发展到质点动力学中,万有引力定律中,以至物体转动问题中,还可引伸到单摆中的摆球,弹簧振子中的振子,甚至帮助我们建立电学中的点电荷模型,光学中的点光源模型。
3.物理模型思维贯穿在物理教学的过程中,随着人们对某个物理问题认识的不断深刻和提高,物理模型也必将随之完善和准确。例如对于光本性的问题,人们从牛顿的微粒说,惠更斯的波动说、电磁说、粒子说到波粒二象性,在此发展过程中光的模型也随之一次次地得到深化。
4.在平时的例题教学中也是处处体现了物理模型的重要地位和作用。解答各类物理习题,学生能否依据题意建立起相应的物理模型,是解题成败的重要环节。如果解题者所理解的题意中的物理模型与命题者的设计模型一致,题意就必然变得清晰鲜明,习题的难点便会随之而突破,这种例子是垂手可得的。
总之,物理模型的教学确实需要我们予以足够的重视,这个问题对提高我们的物理教学水平关系甚大。
物理猜想与中学物理教学
【摘 要】阐述物理猜想在中学物理教学中的意义及教师在物理课堂教学中引导学生进行物理猜想的方法。
【关键词】中学 物理猜想 物理教学
【中图分类号】 G 【文献标识码】 A
【文章编号】0450-9889(2014)11B-0076-02
随着基础教育课程改革的逐步深入,在新课程标准中,对高中生在学习物理过程中的学习能力提出了更高的要求,由此教会学生运用物理猜想方法可以让学生更有效地学好物理。为了促进中学生学会运用物理猜想方法,新课程的物理教材刻意设计了许多研究物理现象的活动。以此增进学生对物理知识的理解,提高学生学习物理知识的能力,例如提出问题、猜想与假设、合作与交流等能力。这些基本能力是确保科学研究各种物理现象得以顺利进行的前提和基础。只有通过猜想、假设,并经过许多的研究活动,才能使研究物理现象过程顺利完成。根据笔者这十多年的教学经验,总结出物理猜想对高中物理教学的作用以及如何通过物理猜想提高物理教学的经验,现浅谈自己的看法。
一、物理猜想对中学物理教学有着重要的意义
新课标义务教育阶段的物理课程中,提出要鼓励学生积极大胆地进行科学研究,使学生从基本的科学研究过程中学到科学研究的方法,最终达到提高他们的科学研究能力的目的。使学生养成尊重事实、大胆想象的科学习惯,发扬研究真理的科学精神;培养学生敢于质疑、勇于创新、战胜困难的信心和决心。在中学物理教学中教师的作用是引导学生进行科学猜想,引导学生进行科学探索活动,提升他们的科学探索创新能力。鼓励他们在研究活动过程中,根据已经了解的物理知识和物理现象,进行猜想与假设,然后设计实验,通过亲自动手做实验来验证自己的猜想与假设。因此,要达到新课标中的要求,笔者认为猜想在新课程标准的教学过程中的运用起到了关键的作用。物理猜想的运用是教育教学发展的要求,也是促进物理教育教学改革和发展的需要。笔者认为运用物理猜想法在中学物理教学中有以下几个重要的意义。
1.提高学生学习兴趣和增进学生学习主动性
学生往往对新生事物比较好奇,都希望能够尽快了解其中的知识、规律和奥秘。如果在中学物理教学过程中多鼓励学生对所要学习的物理现象猜想出其可能出现的某些现象或规律,那么不但能增强学生的新奇心,而且还能激发学生的探究意识和能力,使他们更能积极地深入到学习新知识当中。锻炼和培养中学生的物理猜想能力,能提高学生对研究物理问题的兴趣和欲望。兴趣和欲望正是学生学习物理知识的动力。因此,物理猜想是提高学生学习兴趣和增进学生主动学习的好方法。
2.提高学生的思维能力
在中学物理教学过程中,教师要经常通过提出问题并引导学生根据他们现有知识和理解问题的能力进行猜想,经过观察、实验、归纳、总结等进行严格推理和验证,使学生在学习物理知识的过程中逐渐提高他们的发散思维能力,也使他们思想更加灵活。因此通过猜想法不仅使学生容易理解和掌握物理知识,而且有利于提高学生的思维能力。
3.有利于学生巩固所学的物理知识
物理猜想是学生根据自己的思维意识进行推测,是开放性的思维方式。经过对事物仔细观察和辩别认识,提高了学生对事物整体性的研究,促进学生的思维进程,使学生迅速地理解和掌握新知识。如果这些新知识是由学生自己主动猜想后经过验证推理得来的,那么学生就比较容易接受。因此,这些物理现象及规律就会深深刻印在学生的心里,巩固这些新的物理知识。
4.培养学生创新能力
在新课程标准中,特别着重对中学生创新能力培养。科学的物理猜想是培养中学生创新能力的主要方法之一。科学的物理猜想对中学生创新能力的培养起着积极的作用,它能提高学生的反应能力和灵活解题能力。因此,科学的物理猜想能够非常有效地提高中学生的创新能力。
二、教师在物理课堂教学中引导学生进行物理猜想的方法
教师在教学过程中为了尽可能地发挥学生的想象能力,要根据学生现已掌握的物理知识、兴趣爱好和想象能力等引导学生提出猜想。教师如何更好地引导学生运用已掌握的物理知识和技能来构建出新的物理猜想呢?笔者认为,教师在实际教学过程中需要讲究提出猜想一些方法。
1.启发学生根据自己各种经历、各种经验和已学的知识提出猜想
科学发展的经验告诉我们,科学的猜想并非胡乱猜测,它需要有科学依据,要根据学生的经历、经验、生活常识等提出猜想。爱因斯坦创立的“相对论”起初就是根据前人的经验、自己的经历以及自己掌握的科学知识提出的猜想,然后通过观察、推理、推导、证明,才提出了理论依据,最后才建立了举世闻名的“相对论”。例如,在学习“自由落体运动”时,先让学生观察羽毛和铁片在有空气的玻璃管中同时下落的情况,再启发他们猜想如果将玻璃管中的空气抽出后,再让羽毛和铁片同时下落会出现什么情况。让学生猜想并记下这些猜想,然后通过演示实验让学生观察,最后得出结论。这种通过启发学生猜想和实验演示相结合的教学方法,更能加深学生理解所学的物理知识。
2.激励学生讨论,诱发物理猜想
在教学过程中学生引导学生进行猜想时,应该将学生分成几个组,让各组提出各自不同的猜想,并由他们各自陈述自己猜想的理由和依据。激励他们讨论、争辩,经过讨论和争辩提高他们对物理猜想的兴趣和对物理猜想的积极性。例如,在学习“牛顿第二定律”时,将同学们分成两个小组,一组猜想物体的加速度与力的关系,另一组猜想物体的加速度与质量的关系,然后让他们分别做实验,得出结论。教师在课堂中认真听取各组学生的观点后,引导诱发他们讨论并猜想加速度与力及质量的关系,最后总结出牛顿第二定律。这样能更好地完成教学任务,取得更好的教学效果。
3.鼓励学生大胆猜想
在教学过程中许多学生由于害怕自己提出的猜想被其他同学取笑或者自己提出的猜想不正确被老师责怪而羞以启齿,这时教师应该鼓励、引导学生大胆猜想,消除他们的顾虑。例如,研究玻璃的折射率时,可以猜想单色光通过平行玻璃砖后传播方向是否发生改变。先鼓励学生大胆进行猜想其出射的方向,并记下来。不管他们的猜测是否合理、准确,教师都要持平和的态度,让实验验证结果。只有这样才能提高学生的学习积极性,增强学生科学猜想的意识。
4.创造良好的猜想条件
在教学过程中,当教学到有利于培养学生猜想能力的内容时,教师应该积极引导鼓励学生进行猜想。例如,在“楞次定律”教学中,教师在课堂演示让磁体的N极靠近闭合的铝环的实验之前,先启发学生猜想让磁体的N极靠近闭合的铝环时会看到什么现象,让磁体的N极去靠近有缺口的铝环时又会看到什么现象。然后通过实验引导学生注意观察实验现象。同样,让磁体的S极去靠近闭合的铝环时又会出现什么情况。总之,教师要尽最大可能为学生进行猜想创造条件。
物理猜想既是一种自由尝试,也是一种严谨的创造,因此,在教学过锃中,教师要善于抓住每一个有利于提高学生猜想能力的机会,鼓励学生大胆猜想,从而提高他们的思维能力,增加他们学习物理的兴趣,进而提高物理教学的效率。
【参考文献】
[1]王较过,孟蓓.物理探究教学中培养“猜想与假设”能力的策略[J].当代教师教育,2008(6)
[2]付红周.新课程下全方位认识猜想及其在物理教学中的培养・高中物理[M].北京:人民教育出版社,2012
[3]林东槟.物理探究教学中培养猜想与假设能力的策略[J].实验教学与仪器.2013(4)
[4]蔡严娟.新课改物理探究教学中猜想与假设能力的培养[J].现代教育科研论坛.2011(5)
高一物理知识点总结 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=。 注: (1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式; (4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。 2)自由落体运动 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh 注: (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a=g=≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 (3)竖直上抛运动 1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=≈10m/s2) 3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 注: (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值; (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性; (3)上升与下落过程具有对称性,如在同点速度等值反向等。 二、质点的运动(2)----曲线运动、万有引力 1)平抛运动 1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt 3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2 合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0 7.合位移:s=(x2+y2)1/2, 位移方向与水平夹角α:tgα=y/x=gt/2Vo 8.水平方向加速度:ax=0;竖直方向加速度:ay=g 注: (1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成; (2)运动时间由下落高度h(y)决定与水平抛出速度无关; (3)θ与β的关系为tgβ=2tgα; (4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。 2)匀速圆周运动 1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf 3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合 5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr 7.角速度与转速的关系ω=2πn(此处频率与转速意义相同) 8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。 注: (1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心; (2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的2)力的合成与分解 1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2) 2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 注: (1)力(矢量)的合成与分解遵循平行四边形定则; (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小; (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。 四、动力学(运动和力) 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F´{负号表示方向相反,F、F´各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理} 5.超重:FN>G,失重:FN
骨笛遐想——浅析小提琴发声、调音的物理原理一.选题意义据我国最早的物理史学家吴南薰先生考证,世界上第一个人工制作的物理仪器就是在兽骨或竹管上挖孔并能吹出声音来的笛子。这既是一种乐器,也是一种声学仪器;我国古代对共鸣、弦的振动、管的音调的研究等都是通过乐器来进行的;希腊哲学家毕达哥拉斯发现了琴弦的长短与音高有一定的关系;从近代物理学发展来看,声学依旧占据着相当重要的部分,且与我们的生活息息相关;……许多同学都会演奏一些乐器,但对于弦乐器的调试却无从下手。我们结合已经学过的振动学知识,浅析西洋擦弦乐器——小提琴的发声原理,并为演奏者检音、调试提供理论依据和实验结果参考。二.相关物理知识实际的乐音由基频、谐波(泛音)、分音三部分组成。每一个乐音即周期性的振动都可以分解为许多不同频率、不同相位、不同振幅的简谐振动的叠加。简单的简谐振动即正弦振动或余弦振动的传播产生的声波叫做纯音,实际的乐音如歌唱声、乐器声等都不是简单的纯音,而是许多的纯音的叠加。在这些简谐振动中,频率最低的叫做基频,基频的能量往往是最大的。频率是基频整数倍的叫做谐波,其余的高频振动叫做分音。现代的分析中表明,还有低于基频的次声。因此,从物理上讲,音乐声应由三部分组成:乐音、在音乐中使用的噪声(如锣、鼓、沙锤、梆子等没有固定音调的打击乐器和海涛、流水、风声等效果声音)以及对音色有影响的在谐波中存在的一部分超声。一般来说,发生体振动的频率越高,人们听起来音调也越高;发生体的振动频率越低,人们听起来音调就越低。但音调与频率之间并不是严格按比例对应的。一般认为,频率每增高一倍,音调听起来就高一个八度,这仅仅限于中频段。在高音部分,听感偏低,即频率增加一倍,听起来不到高八度,而是偏低,于是要把频率调高些,以适应人的听觉。低音段则听感偏高,于是需要把频率调低些。乐音听起来有一定的强弱,即音的响度,这是乐音的第二个主观量。声音的能量越大,声强越大,听起来响度就越大。但是,这二者也不是按比例一一对应的。至于音色,更是一种主观感觉了。从传统来讲,决定音色的主要因素是频谱,所以常常根据频谱模仿各种音色。但据资料显示,实践表明:音的起始与结尾的瞬间状况,即“音头”和“音尾”,也同音色大有关系。音色不仅与频谱的组成(即基频、谐波和分音的数目、长短、相对强度、分音的不谐和程度及瞬态)有关,还与基频和谐波在听音区的位置有关,这是由于人耳对于多种频率的响度反映不同。音色也与听者距声源的距离有关,这是因为一个音中的各种成分的衰减不同。三.相关音乐知识音程,就是两个音音高之间的距离。在音乐上,音程用“度”表示。几度就是把起始音算在内,沿着音阶数有几个音名。钢琴上相邻两个键(包括黑键)之间差半音,两个半音等于一个全音。这也是一种表示音程的方法。音程与频率基本上是一一对应的关系。把两个相差八度音程之间的音顺次排列,就成为音阶。规定音阶中各个音的由来及其精确音高的数学方法叫做律制。最常用的三种律制是十二平均律、五度相生律和纯律。音阶中的各个音都有音名,由于生律的方法不同,不同律制生成音律中的同名音(例如都是 )其频率是不一样的。十二平均律是我国明代科学家朱载堉最先发明的,比西欧早了几十年。他将一个八度音程(频率比为2)按等比数列均分为十二份,得十二律。当前的钢琴和所有键盘乐器以及带“品”的弦乐器等,用的都是这种律制。数学表示:相邻两音之间的频率比均为: 即从任何一个音开始,比该音高半音的音,其频率是该音的频率乘 ;比该音低半音的音,其频率是该音的频率乘 ;以此类推,可得出所有音的频率。十二平均律有许多优点,比如它易于转调,简化了不同调的升、降半音之间的关系。在小提琴中,假如以 音的弦长为基准,那么小字一组(其中的 比 高两个八度) 、 、 、 、 、 、 对应的弦长之间按照十二平均律可由频率关系确定一组固定比值。四.研究与实验小提琴的弦是一根两端固定的细钢丝。在拨、擦弦线时产生的波列经两固定端反射,叠加后形成驻波,但其中包含有许多频率的波。在这里,我们只对决定音调高低的基频振动做出分析研究。驻波的基频振动所对应的为波长最长的振动,即弦长 。提琴弦线与指板之间的距离很小,用手指在指板上压紧琴弦不同位置而使得弦产生的形变量很小,可以忽略不计。则可认为弦上张力 ,及弦的质量线密度 保持不变,可得弦线中波速 近似恒定。因此,可认为有如下比例关系成立: 实验过程:一把小提琴,经专业乐师调音后,定下 音,再由一位有多年演奏经验的同学拨奏单音,多位乐感敏锐、受过专业训练的同学一起听辨,配合其他乐器校对各音高。记录及计算数据如下表。表中的k值定义如下:相差一个半音的两个音高对应 相差一个全音的两个音高对应 序号n 音高音名 比下音程差 弦长/mm 总长: 上述k值 第一次 第二次 第三次 平均值 计算值 理论值 误差率1 全音 全音 半音 全音 全音 全音 半音 其中弦长一栏为小提琴 弦(四根弦由粗到细依次叫作 、 、 、 弦,指的是该弦的空弦音)上对应各音高压指与琴码两固定点之间的距离,即参加振动的部分弦长。如上数据显示,平均误差率为,基本符合前文理论分析。五.结论我们总结出对于一把小提琴(邻弦相差五度)的自我调试方法:以一根弦,例如 弦,的空弦音 为标准,按音高关系计算出同一根弦上 所对应的弦的长度。取 音高即与 弦空弦音等高(这是小提琴的制作要求)。依次调整 弦的松紧、长度后,再算出 弦上 的音高,作为 弦的空弦音。……同理进行下去。此种方法适用于各类提琴及吉他等擦、拨弦乐器,但须注意:①对于比空弦音高出许多的音,计算方法误差较大。实验中在一根弦上进行多组数据测量只是为了便于计算、对比,得出结论;实际操作中应对各相邻琴弦依次校对。②大提琴与吉他相邻的弦空弦音相差四度,计算时应注意数据与小提琴不同。希望我们的研究能够对广大演奏弦乐器的音乐爱好者提供帮助。
KK文案 专业 信誉 质量 助你无忧
串联谐振时阻抗最小,电压过大的话电流也过大,能量消耗大,同时也损伤元器件。所以不能过大量限为0~20v
谐振时,理论上是相等的,但由于元件参数并非理想参数,尤其是电感元件有一定的等效电阻,而非理想的纯电感。所以实验时,数据与理论值有一定差距。
UR与输入电压相等\x0dUL与UC大小相等,相位相反\x0d因为电路发生谐振的时候,有ωL=1/ωC\x0d电路中的总阻抗=R+jωL+1/(jωC)=R,相当于只有电阻R存在\x0d因此R上的压降UR就等于输入电压\x0d由于感抗和容抗的大小相等,但相位相反(一个是j,一个是-j),所以UL与UC大小相等,相位相反