首页 > 学术论文知识库 > 真核生物基因表达调控研究论文

真核生物基因表达调控研究论文

发布时间:

真核生物基因表达调控研究论文

一.转录起始的选择在真核生物中同一个基因由于转录起始的不同可以产生不同类型的酶。例如酵母蔗糖酶基因以一种分散的多基因家族存在,有6个基因(Suc1~5,7)位于不同的染色体上。每一个基因都可以转录合成蔗糖酶,但有胞内酶和胞外酶两种不同形式。前者的合成不受葡萄糖存在的影响,但含量低;后者的合成受到葡萄糖的抑制。葡萄糖的存在与否使其活力相差100~1000倍,两种酶的结构相似,胞外酶仅多了信号序列,经切除后胞外酶比胞内酶在N-端仅多了一个Ser经分析发现Suc-2 基因有3个TATA框,但尚不清楚和2种酶的关系,也没有确定是否存在cAMP-CAP位点。小鼠的唾腺、肝脏和胰脏都能合成α-淀粉酶,但在3个组织中α-淀粉酶的浓度不同。小鼠的第3号染色体上有两个连锁的α-淀粉酶基因amy-1和amy-2,amy-1在唾腺和肝中表达,amy-2却在胰脏中表达。在唾腺中产物的浓度是肝中的100掊。这是由于在不同的组织中使用了amy基因 5′端的2个不同启动子。在唾腺中使用的启动子PS较强,转录活性比PL高30多倍,但唾腺细胞中amy的mRNA浓度要比肝脏中的高100倍,表明可能还受到其它调控因素的影响. 二.选择性加工即使是同一个基因,相同的初始mRNA,但由于5′端,内含子及3′末端等选择的不同,使成熟的mRNA也不同,结果编码了功能不同的蛋白。(一)不同5′端的选择前面所举的小鼠淀粉酶的例子实际上也是属于5′端的不同选择。这是由于一个基因具有两个启动子区,每一区都有它自己的组织调控元件,那么两个长度不同的转录本将会产生组织特异性mRNA。例如鸡的肌球蛋白(myosin)轻链基因在心脏和砂囊中转录后产生的成熟mRNA就不同,前者为LC1(light chain),后者为LC3,它们具有相同的3′编码区,但5′编码区都不同,在大鼠中也发现编码的肝球蛋白链的单个基因在不同组织中同样通过不同的转录后加工来调节表达。(二)选择不同的3′端同样的一个基因在不同组织中由于3′端加尾位点的选择不同也可产生不同的mRNA,而形成不同的产物。如大鼠甲状腺中合成的降钙素(calcitonin)和脑下垂体合成的神经肽(neuropeptide),都是由同一个基因编码的,由于3′端加尾位点的选择不同,使其mRNA的3′端的编码区不同,导致最终合成的产物也完全不同。(三)选择不同外显子例如大鼠的肌钙蛋白(torponin T)基因在不同的发育阶段以及不同横纺肌种类中由于不同的选择性剪接内含子,结果产生了不同的肌钙蛋白T

从DNA到蛋白质的过程叫基因表达(geneexpression),对这个过程的调节即为基因表达调控(regulationofgeneexpressionorgenecontrol)。基因调控是现代分子生物学研究的中心课题之一。因为要了解动植物生长发育规律。形态结构特征及生物学功能,就必须搞清楚基因表达调控的时间和空间概念,掌握了基因调控机制,就等于掌握了一把揭示生物学奥秘的钥匙。基因表达调控主要表现在以下几个方面:①转录水平上的调控;②mRNA加工、成熟水平上的调控;③翻译水平上的调控;基因表达调控的指挥系统有很多种,不同生物使用不同的信号来指挥基因调控。原核生物和真核生物之间存在着相当大差异。原核生物中,营养状况、环境因素对基因表达起着十分重要的作用;而真核生物尤其是高等真核生物中,激素水平、发育阶段等是基因表达调控的主要手段,营养和环境因素的影响则为次要因素。

基因表达调控的论文参考文献

DNA甲基化能引起染色质结构、DNA构象、DNA稳定性及DNA与蛋白质相互作用方式的改变,从而控制基因表达。

1、DNA甲基化抑制基因转录的直接机制:某些转录因子的结合位点内含有CpG序列,甲基化以后直接影响了蛋白质因子的结合活性,不能起始基因转录。

2、甲基化抑制转录的间接机制:CpG甲基化,通过改变染色质的构象或者通过与甲基化CpG结合的蛋白因子间接影响转录因子与DNA的结合。

3、DNA甲基化与X染色体失活:失活的染色体上绝大多数基因都处于关闭状态,DNA序列都呈高度甲基化。

扩展资料:

在人类细胞内,大约有1%的DNA碱基受到了甲基化。在成熟体细胞组织中,DNA甲基化一般发生于CpG双核苷酸(CpG dinucleotide)部位;而非CpG甲基化则于胚胎干细胞中较为常见。

植物体内胞嘧啶的甲基化则可分为对称的CpG(或CpNpG),或是不对称的CpNpNp形式(C与G是碱基;p是磷酸根;N指的是任意的核苷酸)。

特定胞嘧碇受甲基化的情形,可利用亚硫酸盐定序(bisulfite sequencing)方式测定。DNA甲基化可能使基因沉默化,进而使其失去功能。此外,也有一些生物体内不存在DNA甲基化作用。

文献综述概念及格式文献综述是对某一方面的专题搜集大量情报资料后经综合分析而写成的一种学术论文, 它是科学文献的一种。格式与写法文献综述的格式与一般研究性论文的格式有所不同。这是因为研究性的论文注重研究的方法和结果,特别是阳性结果,而文献综述要求向读者介绍与主题有关的详细资料、动态、进展、展望以及对以上方面的评述。因此文献综述的格式相对多样,但总的来说,一般都包含以下四部分:即前言、主题、总结和参考文献。撰写文献综述时可按这四部分拟写提纲,在根据提纲进行撰写工。前言部分,主要是说明写作的目的,介绍有关的概念及定义以及综述的范围,扼要说明有关主题的现状或争论焦点,使读者对全文要叙述的问题有一个初步的轮廓。主题部分,是综述的主体,其写法多样,没有固定的格式。可按年代顺序综述,也可按不同的问题进行综述,还可按不同的观点进行比较综述,不管用那一种格式综述,都要将所搜集到的文献资料归纳、整理及分析比较,阐明有关主题的历史背景、现状和发展方向,以及对这些问题的评述,主题部分应特别注意代表性强、具有科学性和创造性的文献引用和评述。总结部分,与研究性论文的小结有些类似,将全文主题进行扼要总结,对所综述的主题有研究的作者,最好能提出自己的见解。 参考文献虽然放在文末,但却是文献综述的重要组成部分。因为它不仅表示对被引用文献作者的尊重及引用文献的依据,而且为读者深入探讨有关问题提供了文献查找线索。因此,应认真对待。参考文献的编排应条目清楚,查找方便,内容准确无误。关于参考文献的使用方法,录著项目及格式与研究论文相同,不再重复。

一般情况下DNA的甲基化能够使基因的活性受到抑制。DNA甲基化用于区分复制过程中的亲链和子链,在转录的时,可以通过DNA甲基化来抑制该DNA的转录。

DNA甲基化发生于DNA的CpG island(CG序列密集区)。发生甲基化后,那段DNA就可以和甲基化DNA结合蛋白相结合。结合后DNA链发生高度的紧密排列,其他转录因子,RNA合成酶都无法再结合了,所以这段DNA的基因就无法得到表达了。

一般研究中所涉及的DNA甲基化主要是指发生在CpG二核苷酸中胞嘧啶上第5位碳原子的甲基化过程,其产物称为5—甲基胞嘧啶(5—mC),是植物、动物等真核生物DNA甲基化的主要形式,也是发现的哺乳动物DNA甲基化的唯一形式。

由于Dnmtl和Dnmt3基因家族没有针对CpG二核苷酸序列的特异性,人们因此提出了DNA甲基化转移酶发现靶位点的机制。首先,甲基化转移酶并不是同等地接近所有染色体区域。

具有染色体重构和DNA螺旋酶活性的蛋白质能调节哺乳动物细胞内DNA甲基化,如SNF2家族2个成员ATRX和Lsh;其次,附件因子(蛋白质、RNA等)能召集DNA甲基化转移酶到特定基因组序列或染色体结构中,如pRB蛋白等能够与Dnmtl作用,在S期晚期将它召集到高度甲基化的异染色质区。

参考资料来源:百度百科-DNA甲基化

基因表达的研究进程论文

现代遗传学概论

我zju的孩子伤不起啊···哥···你看到这个题目还high了一下···我以为我的搞定了···

土山约三事:关羽是战败被擒投降,无“土山约三事”。 血廓理智、大度友善的作风。而与诸葛甚至未曾见面,何来嫉妒之说呢?再者,周瑜的大度在三国时期是出了名的。 三气周瑜:周瑜未出征西蜀前已去世。周瑜在伐蜀途中病死于巴丘。并非被诸葛亮的才智气死。 吊周瑜:吊周瑜是庞统,不是诸葛亮。 周瑜与孔明:从赤壁之战结束到周瑜病逝的两年间,诸葛亮正在零陵一带。 马超兴兵:正与史实相反,马超起兵在先,令到马腾遇害。 割须弃袍:战况确实很激烈,但是是马超吃的败仗,而官史并无载割须弃袍。 许褚裸衣战马超:没有记载,马超甚至被许褚瞪得不敢动。 张松献图:应为刘备询问张松蜀中的兵马粮钱等情况,于是张松绘制了地图给刘备。 落凤坡:该为庞统进攻雒城时中箭死去。 马超战张飞:是马超私自写信给刘备请求投降,并无小说中张飞和马超大战两百余回合不分胜负,后被诸葛亮招降一事。 征汉中:征汉中时的总指挥是刘备,法正参谋。 计夺天荡山:纯粹虚构。 五虎大将:刘备并没有封“五虎大将”,五虎将是因为三国志中把关羽、张飞、赵云、马超、黄忠的传记放在同一章。后世称之蜀之五虎。 周仓、胡班:虚构人物,历史上没有记载。胡班可能指蜀将吴班。 关羽单刀会:鲁肃、关羽的一场官式会宴,鲁肃令东吴诸将手持单刀,往赴关羽所设的宴会。 刮骨疗伤:此时华佗于赤壁之战已经死了,是一般的军医操刀。 水淹七军:时值秋天,大雨连绵,汉水暴涨,关羽趁水势挟水军引兵大破名将于禁,擒斩庞德并率军急攻。 关羽麦城拒降:历史上并未记载明确拒降,而《江表传》有关羽以伪降谋突围之机的记戴。 擒关羽:并非潘璋,而是他的部将马忠。 玉泉显圣、追命吕蒙:玉泉显圣改编自唐代玉泉寺建寺故事,且吕蒙是病死。 七十二疑冢:曹操葬在高陵。 关平:关羽长子,不是义子,随羽临军,三国志里只出现两次名字。 关兴:弱冠(近二十岁)就因才高任侍中、中监军,于夷陵之战后数年死去。 张苞:虽称早夭,但有留下子嗣张遵。 夷陵之战:吴军五万,蜀军七万,绝非以少胜多。 潘璋之死:潘璋在夷陵之战中为孙权立了战功,砍杀冯习等人,死于234年 白帝托孤:刘备临终是托孤与诸葛亮和李严二人,但仍有对诸葛亮说:“君才十倍曹丕,必能安国,终定大事。若嗣子可辅,辅之;如其不才,君可自取。”主要情况雷同。 八阵图:八阵图是诸葛亮所作的兵法图阵,所谓八阵是为天覆阵、地载阵、风扬阵、云垂阵、龙飞阵、虎翼阵、鸟翔阵及蛇蟠阵,每个阵形都由三十二队士兵所组成。 晋朝干宝的《晋记》以及北魏郦道元的《水经注》亦有记载。但不是神怪石阵、迷宫。 七擒孟获:《三国志》上没有记载七擒孟获。但《汉晋春秋》及《华阳国志》中有说过“七擒七纵”,但具体过程没有记载,而鄂焕、祝融、孟优、木鹿大王等都是小说所创作。 六出祁山:诸葛亮伐魏五次,而只有第一次和第四次出祁山,且被曹真所阻。 《后出师表》:多认为是后人伪托,并非诸葛亮所作。 司马懿与诸葛亮:诸葛亮头三次北伐时,魏军并非司马懿统领而是曹真。 失街亭:魏军总指挥为张颌,非司马懿。 空城计:街亭战败后,魏军并未对蜀军进行追击。诸葛亮只是曾把西县的民众与粮草迁移而已。且当时魏军主将也非司马懿。《三国志》上并没有空城计的记载,只出现于野史中。 气死曹真:曹真病死于洛阳。 诸葛亮骂死王朗:王朗病死于228年,并未随军出战。 诸葛亮用兵:诸葛亮治军善于用兵,不善奇谋,政绩才是最耀眼的。 火烧上方谷:诸葛亮大破魏军于卤城,司马懿仅以身还保营。《三国志》未提用何种战法大破魏军。陕西乡野传说与演义无大异;上方谷,一说葫芦谷,疑为卤城的浑称 死诸葛吓跑活仲达:确有此事,并非诸葛亮遗计,《汉晋春秋》的记载是:诸葛亮死后,蜀军秘不发丧悄然撤退,司马懿有所发觉,驱军追赶。两军相近时,蜀汉将军姜维和长史杨仪命蜀军反旗鸣鼓做势佯攻,司马懿不敢逼近,只好退兵,蜀军入谷然后发丧。当时在蜀中就传开了“死诸葛走生仲达”的笑话。 魏延反叛,被马岱诛杀:魏延与杨仪不和,相争失败、兵败被杀。 地理大搬家:把太白山移到祁山的旁边,把陈仓移到街亭的南方,甚至把祁山移到褒斜道北面的斜谷旁,或是移到五丈原附近。 开篇词:开篇词为明人杨慎的临江仙,而并非罗贯中所作,是清人毛宗岗父子在三国演义中加上去的[编辑本段]【书中诗篇】 《三国演义》篇首词 作者:杨慎(明)《临江仙》 滚滚长江东逝水,浪花淘尽英雄。 是非成败转头空,青山依旧在,几度夕阳红。 白发渔樵江渚上,惯看秋月春风。 一壶浊酒喜相逢,古今多少事,都付笑谈中。 《三国演义》篇尾诗 高祖提剑入咸阳,炎炎红日升扶桑;光武龙兴成大统,金乌飞上天中央; 哀哉献帝绍海宇,红轮西坠咸池傍!何进无谋中贵乱,凉州董卓居朝堂; 王允定计诛逆党,李傕郭汜兴刀枪;四方盗贼如蚁聚,六合奸雄皆鹰扬; 孙坚孙策起江左,袁绍袁术兴河梁;刘焉父子据巴蜀,刘表军旅屯荆襄; 张燕张鲁霸南郑,马腾韩遂守西凉;陶谦张绣公孙瓒,各逞雄才占一方。 曹操专权居相府,牢笼英俊用文武;威挟天子令诸侯,总领貔貅镇中土。 楼桑玄德本皇孙,义结关张愿扶主;东西奔走恨无家,将寡兵微作羁旅; 南阳三顾情何深,卧龙一见分寰宇;先取荆州后取川,霸业图王在天府; 呜呼三载逝升遐,白帝托孤堪痛楚!孔明六出祁山前,愿以只手将天补; 何期历数到此终,长星半夜落山坞!姜维独凭气力高,九伐中原空劬劳; 钟会邓艾分兵进,汉室江山尽属曹。丕睿芳髦才及奂,司马又将天下交; 受禅台前云雾起,石头城下无波涛;陈留归命与安乐,王侯公爵从根苗。 纷纷世事无穷尽,天数茫茫不可逃。鼎足三分已成梦,后人凭吊空牢骚。[编辑本段]【歇后语录】 歇后语 1刘备的江山----哭出来的 2 刘备摔孩子----收买人心 3 孔明给周瑜看病----对症下药 4 诸葛亮吊孝----装模作样 5 诸葛亮当军师----名副其实 6 刘备借荆州——有借无还 7 诸葛亮征孟获----收收放放 8 曹操下江南----来得凶,败得惨 9 曹操吃鸡肋----食之无肉,弃之可惜 10 曹操遇蒋干----倒了大霉 11 曹操杀华佗----讳疾忌医 12 曹操杀吕伯奢----将错就错 13 张飞卖秤锤----人强货硬 14 张飞扔鸡毛----有劲难使 15 张飞战关公----忘了旧情 16 张飞妈妈姓吴----无事(吴氏)生非(飞) 17 张飞使计谋----粗中有细 18 张飞穿针----大眼瞪小眼 19 关帝庙里挂观音像----名不符实 20关云长卖豆腐----人硬货不硬 21 关云长走麦城----大难临头 22 关帝庙求子----踏错了门 23 关公照镜子----自觉脸红 24 关公喝酒----不怕脸红 25 关公进曹营----单刀直入 26 关羽战李逵----大刀阔斧 27 董卓戏貂蝉----死在花下 28 董卓进京----来者不善 29 貂蝉唱歌----有声有色 30 周瑜打黄盖----一个愿打,一个愿挨 31 草船借箭----坐享其成 32 东吴招亲----弄假成真 33 吃曹操的饭,想刘备的事----人在心不在 34 蒋干盗书----上了大当 35 徐庶进曹营----一言不发 36 关公赴会——单刀直入 37 张飞吃豆芽——小菜一碟 38 曹操战宛城--大败而逃 39 关老爷做木匠——大刀阔斧 40 诸葛亮娶丑妻——为事业着想 41 关云长刮骨下棋----若无其事 42 关公面前耍大刀----自不量力[编辑本段]【三国成语】 三顾茅庐 鞠躬尽瘁 吴下阿蒙 如鱼得水 望梅止渴 乐不思蜀 单骑救主 舌战群儒 过关斩将 火烧连营 七擒七纵 司马昭之心,路人皆知 老生常谈 赤膊上阵 死诸葛能走生仲达[编辑本段]【衍生作品】 自《三国演义》传了出国外,日本人非常喜欢这类题材,改编成漫画或动画不下数十次。如横山光辉的作品“横山光辉三国志”,然而传入日本后《三国演义》普遍被称为《三国志演义》,只是有为数不少日本人习惯略称其为《三国志》,也由于《三国志》(其实是《三国演义》)题材于日本地区颇受欢迎,加上此略称广为流传,也导致有一部分人仍旧以为日本地区所称的《三国志》为正史。市面上也有不少以三国作背景的电脑游戏和电玩游戏,比较著名的有日本光荣公司的“三国志”、真·三国无双 等。中国大陆有《QQ三国》,《热血三国》等,台湾的有《傲世三国》、《幻想三国志》等。[编辑本段]【影视三国】土山约三事:关羽是战败被擒投降,无“土山约三事”。 血衣带诏:绝无此事。马腾是一个带有强盗性质的军阀,攻打李郭不过是私人恩怨。 赤兔马:赤兔马在吕布战败后,不知去向。并没有成为关羽的坐骑。 诛文丑:文丑死于曹军乱军之中。 孙策之死:遭刺客暗算不治,刺客是前吴郡太守许贡的家奴与门客,并非被于吉吓死。 过五关斩六将:虚构剧情,关羽离开曹操后,没有经过五关,而孔秀、孟坦、韩福、卞喜、王植和秦琪都不见史书记载 。 遗计定辽东:虚构剧情,郭嘉暴毙而亡,年三十八,没留下任何计策,此计是曹操自己的计谋。 古城斩蔡阳:刘备所为,地点并非古城。 徐庶之智:徐庶在正史上记载不多。 徐庶进曹营:曹操南征,徐庶跟随刘备南逃,乱军中徐母被俘,徐庶告别刘备进曹营,及后更当上魏国重臣。 火烧博望坡:刘备所为,当时诸葛亮并未出山。 火烧新野:历史上没有记载,为罗贯中杜撰。 长板坡七进七出:应为长坂,赵云只是护送刘备家小撤退,没有七进七出此事。 糜夫人跳井:正史记载,甘夫人和糜夫人在当阳皆安然无恙 。 刘琮遇害:献出荆州后,被曹操任命为青州刺史,封列侯,并未被杀,后曹操为了表彰他的功绩,更迁为谏议大夫。 舌战群儒:只记载诸葛亮面见孙权,东吴主战派、主和派相争日盛。诸葛亮只是节使。 周瑜智算蒋干:实蒋干之前游说周瑜不成。 智激周瑜:周瑜本已想战,况且曹植当时未作《铜雀台赋》,所谓曹操欲占东吴二乔之事乃民间传闻,唐朝诗人杜牧在《赤壁》一诗中写道:“东风不与周郎便,铜雀春深锁二桥(乔)。”虽是千古绝句,但其后半句来源于“揽二乔于东南兮,乐朝夕之与共”一句,事实上《三国志》里全文记载了《铜雀台赋》,却根本没有这两句,纯系后人伪托之作。可见唐朝已有此传。 草船借箭:并无此事,相似事件发生在孙权于濡须坞之战。 苦肉计:确有黄盖诈降,但苦肉计应无。 阚泽:阚泽为东吴重臣,是受孙权尊重的人物,从未参与过军事行动。 庞统献连环计:连环是曹操之决策,庞统未曾参与过赤壁之战。 孔明求东风:纯属虚构,江东冬至时日,多有东南风。 华容道:刘备确实曾发兵追截兵败的曹操,但是去晚了,被曹操跑掉。 赤壁部将马忠。 玉泉显圣、追命吕蒙:玉泉显圣改编自唐代玉泉寺到褒斜道北面的斜谷旁,或是移到五丈原附近。 等,台湾的有《傲世三国》、《幻想三国志》等。[编辑临江仙,而并非罗贯中所作,是清人毛宗岗父子在三国演义中加上去的[编辑本

基因支持着生命的基本构造和性能。下面是我为大家精心推荐的关于基因的生物科技论文 范文 ,希望能够对您有所帮助。

基因研究

引起人们大惊小怪的,就是让父母能够有意识选择孩子遗传特性的技术。在可预见的未来,除了用基因方式医治少数遗传疾病,如囊肿性纤维化外,改变基因的成人还不可能出现。改变成人的基因还不是人们敢于轻易尝试的技术,要恢复或加强成人的功能,还有许多更简单、更安全、也更有效的 方法 。

胚胎选择技术是指父母在怀孕时影响孩子基因组合的一系列技术的总称。最简单的干预方法就是修改基因。这不是一种大刀阔斧的变更,因为它要获得的效果就像筛选各种胚胎、选择具有所需基因的胚胎的效果一样。事实上,这种胚胎筛选程序已经在胚胎植入前的基因诊断中 应用了。这种技术已经用了十几年,但还在试验,在未来5到10年将臻于成熟。随着这些技术的成熟,可供父母选择的方案会大大增多。

再进一步将出现对生殖系统的干预――即选择卵子、精子、或更可能的是选择胚胎的第一细胞。这些程序已经在动物身上应用,不过使用的方式对于人类还缺乏安全性和可靠性。

对人类比较可靠的一种方法也许是使用人造染色体。这项技术听起来像是不可置信的科幻电影,但已经用在动物身上了。人造染色体植入老鼠身上,连续几代被传了下去。人造染色体也用在人体细胞培养中,在数百次细胞分裂中都能保持稳定。因此,它们可以充当插入基因模块的稳定“平台”。这些被插入的基因模块包括在适当时候让基因兴奋或休息的必要控制机制,就像在我们46个染色体中的正常基因的激活或休息,取决于它们所处的生理 组织类型,或取决于它们遇到的 环境状况一样。

当然,为安全起见,需要早期介入才能使焦点集中。你不能去修改一个在胎儿发育过程中生理组织不断变化时被激活的基因,因为我们对这一过程所知甚少,有可能发生不想要的或灾难性的副作用。所以,在人体内使用人造染色体的首次尝试,多半要让被植入的基因处在“休息”状态,到成人阶段才在适当的生理组织中被“激活”。

执行这种控制的机制已经用在动物实验中,实验的目的是观察特定基因在发育成熟的有机体中的作用。当然,在体内存在着始终控制基因的机制。不同类的基因在不同的生理组织内的不同地点和时间被激活或休息,这对未来的基因工程师来说是幸运的,因为与我们现有的基因相 联系的已证实的调节结构可以复制下来,用以执行对植入基因的控制。胚胎选择的目标

预防疾病可能是胚胎选择的最初目标。这类可能性也许不久就会远远超出纠正异常基因的范围。例如,最近的研究显示,患有唐氏综合症的孩子,癌症的发病率降低了近90%。很可能是三体性21(即染色体21的第三个复制品,具有增强基因表达水平的作用,导致智力迟钝和其他唐氏综合症的症状)对癌症有预防作用。假如我们能鉴别出染色体上的哪些基因对癌症有预防作用,会怎么样呢?基因学家也许会把这类基因放在人造染色体上,然后植入胚胎,使癌症发病率降低到唐氏综合症患者的水平,又可以避免复制染色体21上其他基因所引起的所有问题。许多其他类似的可能性无疑都会出现,有些可能性几乎肯定是有好处的。

人造染色体的使用可能会进行得很顺利,尤其因为染色体本身在用于人体前可在实验室环境中进行试验。它们可以在动物身上试验,成功后在基本相同的条件下用于人体。如今,每一种基因疗法都是重新开始的,所以不可能获得绝对的可靠性。

如果有明确的基因修改案例显示这样做是有意义的,似乎是安全的,不可能更简便更安全了,那么人们就会对它们表示欢迎。尽管如此,目前还没有足够的证据说明值得这样做。未来基因治疗专家会产生各种各样的想法,他们会进行试验,观察这种疗法是否可行。如果可行的话,我们就不应该拒绝。例如,降低癌症和心脏病的发病率,延缓衰老,是每个人都非常需要的增进健康的手段。

用基因延长寿命

防止衰老是个非常有意义的科研领域,因为这件事似乎很有可能做到,而且是绝大多数人所强烈需要的。如果能通过揭开衰老过程的基本程序,发现某种手段能使我们开发药物或其他对成人有效的干预手段,那么人人都会需要。

胚胎工程可能比对成人的基因疗法更简单,更有成效。因为胚胎中的基因会被复制进身体的每一个细胞,能获得具体组织的控制机制。所以很可能对胚胎的干预 措施 对成人是行不通的。这样一来,父母很可能把怀孕看作赋予孩子健康条件的机会――一次不可错失的机会。

如对衰老生物学的研究投入资金,会极大地加速“衰老治疗”。如今,这个领域资金非常缺乏。许多资金都用于研究治疗老年病的方法上,没有用来搞清楚衰老的基本过程,而许多老年性疾病(如癌症、心脏病、早老性痴呆症、关节炎和糖尿病)都是由这一过程引起的。能加速衰老防止研究进程的另一件事,就是提高这个领域的形象。这个 工作已经开始了,但非常缓慢。吸引年轻的科研人员和严肃的科学家进入这个领域是至关重要的。抗衰老(即延长孩子的寿命)可能将是生殖干预的重要目标,但不是唯一的目标。为孩子谋最大福利是人类的天职。事实上,全球民意测验已经显示,在被测的每一个

国家都有可观的人数对增强孩子的身体和脑力健康感兴趣。他们考虑的不是如何避免某些疾病,而是用干预手段改善孩子的容貌、智力、力量、助人为乐精神和其他品质的状况。一旦技术达到可靠程度,许多人都需要这类干预手段。甚至那些没有这方面压力的人也会这么做,目的是不让孩子处于劣势。当然,人们会很小心,因为他们并不想伤害孩子。总之,如果干预手段失败,他们就得忍受其结果,承受犯罪的感觉。是一个不受欢迎的选择吗?

社会也许并不欢迎某些父母的选择。在美国性别选择是合法的,但在英国和其他许多国家就是非法的。不少人认为,尽管西方国家并没有出现严重的性别失衡,很难说父母的选择伤害了谁,但这个程序在美国也应该是非法的。另一个即将来临的决定是父母是否因为大量基因疾病而进行筛选。父母们不久就能够选择孩子的身高和智商,或选择性情气质的其他特点――容易患病的机制也许不久就会在基因解读中表现得清清楚楚。

胚胎选择技术的第一批希望所在是基因测试和筛选,即选择某种胚胎而不是另一种。一开始,让许多人接受这个技术是困难的,但要控制它几乎是不可能的,因为这种胚胎本来就可能是完全自然形成的。这样选择也许是令人苦恼的,但不会发生危险,我猜想它们给我们带来的好处比问题多。有些人担心这样一来会失去多样性,但我认为更大的问题在于父母所选择的胚胎可能会产生一个有严重健康问题的婴儿。那么是否应该允许父母做这样的选择呢?例如,失聪群体掀起了一个极力反对耳蜗移植的运动,因为耳蜗移植伤害了聋哑 文化 ,把聋哑视作残疾。大多数非聋哑人正是这样看待他们的。有的聋哑父母表示,他们要使用胚胎选择技术来确保他们的孩子继续聋哑。这并不是说他们拿出一个胚胎来毁坏它,而是选择一个能造成一个聋哑婴儿的胚胎。

这造成了真正的社会问题,因为社会必须承担这类健康问题所需的医疗费用。如果认为父母的确有权作这样的选择,我们根本没有理由去重视健康儿的出生而轻视有严重疾患的婴儿,那么我们将无法控制这类选择。但如果我们认为存在问题,并极力想与之进行斗争的话,我们会发现这种斗争是很有前途的。

放开手脚,取消禁令

关于由人体克隆产生的第一例怀孕事件见报后不久,美国总统乔治?W?布什就表示支持参议院的一份提案,该提案宣布所有形式的人体克隆皆为非法,包括旨在创造移植时不会被排斥的胚胎干细胞,即治疗性克隆。我认为这种禁令下得为时过早,也不会有效果,而且会产生严重的误导。就是说,这个禁令无疑是错误的。它根本无法实质性推延再生性克隆的问世,我认为这种类型的克隆将在10年内出现。这个禁令把 政治、宗教和 哲学因素注入了基础研究,这将是个危险的案例。这个禁令的立法理念把更多的关注赋予了微乎其微的小小细胞,而对那些身患疾病、惨遭折磨的人却视而不顾。这个禁令用严厉的刑事惩罚(10年监禁)来威胁胚胎科研人员,这在一个妇女在妊娠头三个月不管什么理由都有权堕胎的国家里,简直是不可思议的。

美国对胚胎研究的限制,已经对旨在创建再生 医学的生物技术的 发展产生了影响。这些限制延缓了美国在这个领域的前进步伐,而美国在生物医学的科研力量是全球首屈一指的。如今这类科研已转移到英国和其他国家去了,例如新加坡,正在为一项研究胚胎干细胞的庞大 计划提供资金。这种延误之所以非常不幸,是因为本应发生的好事如今却没有发生。对多数人来说,10年或20年的延误不是个大问题,但对于演员迈克尔?J?福克斯(Michael )以及其他帕金森氏病和早老性痴呆症患者来说,却是生与死的问题。

对各种再生可能性的无知,往往会引起人们的恐惧。但这种无知却不能成为公众政策的基础,因为公众的态度会迅速改变。25年前,体外受精着实让人们猛吃一惊,体外受精的孩子被称作试管婴儿。现在我们看到这些孩子与他小孩没什么区别,这个方法也已成为许多没有孩子的父母的明确选择。

不管是出于意识形态还是宗教原因,把新技术加以神秘化,把它当作某种象征来加以反对,都不会有效推迟即使是最有争议的 应用。这种反对态度只会扼杀本可以转化为人人支持的生物医学新成果的主流科研。

人类克隆会在某个国家实现:很可能是以暧昧隐秘的方式实现,而且甚至在确认安全之前就实现。抗议和禁止也许会稍稍推迟第一个克隆人的诞生,但这是否值得花费严肃的人类立法成本呢?

不管我们多么为之担心,人类胚胎选择是无法避免的。胚胎选择已经存在,克隆也正在进行,甚至直接的人类生殖工程也将出现。这样的技术是阻挡不了的,因为许多人认为它能造福于人类,因为它将在全球数以千计的实验室里切实进行,最重要的是,因为它只是解除生物学的主流生物医学科研的一个副产品。

对于迅速发展的技术,我们要做的重要的事,不是预先为它设立条条框框。务必要牢记,同原子武器相比,这样的技术是没有危险性的。在原子武器中,稍有不慎,众多的无辜旁观者即刻就会灰心烟灭。这些技术仅对那些决定挺身而出使用

他们的人才具有危险性。如果我们把关于这些技术的现在的希望和恐惧带进将来,并以此为基础进行预先控制,从而扼杀它们的潜力的话,我们就只能制定出非常拙劣的法律。今天,我们并没有足够的知识来预测这些技术未来会出现什么问题。

比较明智的方法是让这项技术进入早期 应用,并从中学些东西。性别选择就是现实世界的 经验 能告诉我们一些事情的极好例子。许多人想要控制性别选择,但与不发达国家不同,在发达国家,自由选择性别并没有导致性别的巨大不平衡。在美国,父母的选择基本上男女平衡的,女孩占微弱优势。以前有人认为,如果给了父母这种选择权,会出现严重问题,因为男孩会过剩。但事实并非如此。这种危险是我们想象出来的。有些人认为,父母不应该对孩子拥有这种权力,但他们究竟担心什么,往往非常模糊。在我看来,如果父母由于某种原因的的确确需要一个女孩或男孩,让他们了却心愿怎么会伤害孩子呢?相反的情况倒的确值得担心的:如果父母极想要一个男孩,结果却生了个女孩,这个“性别错误”的孩子可能就不会过上好日子。我相信,让父母拥有这种选择权,只有好处没有坏处。

我们还可以想象出有关性别选择的各种麻烦事件,编出一系列可能发生的危险 故事 。但如果将来事情发生了变化,性别不平衡现象真的出现了,我们再制定政策处理这类特殊问题也不迟。这要比现在就对模糊的恐惧感和认为是在戏弄上帝的思想观念作出反应,无疑要明智得多。这是民主化的技术吗?

阻止再生技术的行为使这些技术造成 社会的极端分裂,因为阻止行为仅仅使这些技术为那些富裕的人所用,他们可以非常容易地绕过种种限制,或者到国外去,或者花大钱寻求黑市服务。

其核心是胚胎选择技术,如果处理恰当,它可以成为非常民主化的技术,因为早期采取的各项治疗措施可以面向各种残缺者。把智商在70到100(群体平均数值)的人向上提高,要比把智商从150(群体百分比最高值)提高到160容易得多。要让本已才智卓绝的人再上一层楼,那非常困难,因为这必须改善无数微小因素的复杂的混合配备状况,正是这些因素合在一起,才能创造出一个超人来。而改善退化的功能则要容易得多。我们并无超人的案例,但我们却有无数普通人为佐证,他们可以充当范例,引导我们如何去修改一个系统,使之至少达到正常的功能。

我觉得,人们以为我们是平等的创造物,在法律面前人人平等,于是就认为我们大家都是一样的。其实不然。基因抽奖可能是非常非常残酷的。你去问问行动迟钝的人,或问问有这样那样基因疾病的人,他们是不会相信什么基因抽奖是多么美妙公平这种抽象言论的。他们就希望自己能更健康些,或者获得某些方面的能力。这些技术的广泛应用,就在许多方面创造了一个平等的竞技场,因为那些本来由于基因原因处于劣势的人也有了竞争的机会。

另一个问题是,这些技术就像其他技术一样, 发展很快。在同代人之间,富人和穷人的应用差距不会很大,而在两代人之间的应用差距却会很大。如今,甚至比尔?盖茨也无法为他的孩子获得某种在25年后中产阶级也认为是很原始的基因增强技术。

所谓明智的一个重要因素,就是要懂得什么我们有权控制,什么无权控制。我们务必不要自欺欺人,以为我们有权对是否让这些技术进入我们的生活进行选择。它肯定会进入我们的生活。形势的发展必然要求我们去使用这些技术。

但在我们如何应用它们、它们会如何分裂我们的社会,以及它们对我们的价值观会产生什么影响等问题上,我们的确有某种选择余地。这些问题我们应该讨论。我本人对这些技术是满怀希望的。它们可能产生的好处会大大超过可能出现的问题,我想,未来的人类在回顾这些技术时,会觉得奇怪:我们在这么原始的时代是如何生活的,我们只活到75就死了,这么年轻,而且死得这么痛苦难过。

政府和决策者不应该对这些研究领域横加阻挠,因为由于误用或意外所造成的伤害,并不是仅有的风险。能够挽救许多人的技术因为延误而使他们继续遭受痛苦,也是一种风险。

当务之急是倾全力获得足够的安全性,防止意外的发生,而要做到这点,协调者看来要牺牲许多间受影响的人的安全。疫苗的例子就是这样。疫苗有许多年没有进展,因为引起诉讼的可能性很大。如果那个孩子受了伤害,会产生巨大的后果。然而很明显,对接受疫苗接种的全体人而言,是非常安全的。

我认为人们对于克隆也是同样的问题。它在近期可能会影响最多一小部份人。在我看来,拒绝会改变数以百万患者命运的非常有可能的 医学进步,振振有词地宣称这是对人类生命的尊重,这是一种奇怪的逻辑。

失去人性还是控制人性?

另一种祁人之忧,认为任意篡改生物机制有可能使我们失去人性。但是,“人性”究竟是与某些非常狭隘的生物结构有关,还是与我们接触世界的整个过程、与我们之间的相互作用有关呢?例如,假如我们的寿命增加一倍,会不会使我们在某种意义上“失去人性”呢?寿命延长必然会改变我们的生活轨迹,改变我们的互动方式,改变我们的 组织制度、家庭观和对 教育 的态度。但我们还是人类,我敢断言我们会迅速适应这些变化,并会对以往没有这些变化的生活觉得不解。

如果原始的狩猎者想象自己生活在纽约城,他们会说在那样的地方他们可能不再是人了,他们认为那不是人的生活方式。可是今天我们大多数人不仅把纽约的生活看作是人的生活,而且是大大优于狩猎生活。我想,我们改变生物机制所发生的变化也是如此。

目前人类还处在进化的早期阶段,至多是青少年期。几千年后,未来的人类来看我们这个时代,会认为是原始的、艰难的同时充满希望的时代。他们也会把我们这个时代看作是人类发展的特殊的光荣的时刻,因为我们为他们的生活打下了基础。我们很难想象即使一千年后的生活会是什么样子,但我猜想我们现在的生物重组会大大影响未来的人类。

点击下页还有更多>>>关于基因的生物科技论文范文

心脏衰老的基因调控机制研究论文

北京大学生化与分子生物学系童坦君、张宗玉教授领导的课题组,在人类细胞衰老的主导基因P16作用机理及其调控研究方面取得重大突破,初步阐明P16基因是细胞衰老遗传控制程序中的重要环节,可影响细胞寿命与端粒(人类细胞的生物钟)长度。有关研究的论文于2001年12月在美国《生物化学杂志》上连续发表,受到国际医学界的关注。 虽然端粒酶可以合成端粒,但他们证明P16基因并没有影响端粒酶,而是影响了一种称为Rb的蛋白质分子而起作用的。P16基因在衰老细胞中功能十分亢进,科学上称为过度表达。它在衰老细胞中的表达比年轻细胞高10~20倍,这种现象是怎样造成的并不清楚。他们证明: P16基因的遏制机制随着细胞衰老越来越弱,是出现上述现象的一个重要原因。 研究人员发现P16基因存在一个他们命名为"ITSE"的负调控元件(不让P16基因转录的元件),相当于P16基因的刹车装置,掌管这一刹车装置的是分子量约为万道尔顿的蛋白质分子,年轻细胞的此蛋白质分子可与"ITSE"结合,使P16基因低表达,而衰老的细胞缺乏此因子,所以P16基因高表达。 据专家介绍,P16基因(细胞周期蛋白激酶抑制物基因)是一种抑癌基因,近年发现它也是人类细胞衰老的主导基因。但它的作用机理及调控尚不清楚。研究人员构建了可以抑制P16表达和增强P16表达的基因重组体,分别导入人类成纤维细胞,观察其可传代数以及衰老进程。实验表明:抑制P16基因表达,不仅细胞衰老速度减慢,寿命延长,而且端粒长度缩短也减慢;反之,增加P16基因表达,不仅细胞衰老速度加快,寿命缩短,而且端粒长度缩短也加快。因此,专家认为,人类某些细胞的寿命是可以用基因重组技术来进行调节的。

人类细胞衰老之谜初揭人类细胞衰老之谜初揭大众网-生活日报 2002-01-31 07:51:20 shrb20020131 新华社北京1月30日电 (记者 李京华) 北京大学医学部教授童坦君、张宗玉领导的研究组经过多年研究,目前已初步阐明人类细胞衰老的主导基因P16是人类细胞衰老遗传控制程序中的主要环节,揭示了P16基因在衰老过程中高表达的原因,从而初步揭开了人类细胞衰老之谜。 这一衰老分子生物学研究室负责人童坦君和张宗玉在接受记者采访时说:“此研究项目采用国际公认的人类细胞衰老模型,通过对人类细胞衰老的主导基因P16作用机理及其调控的研究,初步阐明了P16基因不仅是细胞衰老遗传控制程序中的主要环节,还可影响细胞寿命与端粒(细胞的生物钟)长度,它通过调节Rb蛋白的活性,而非激活端粒酶起作用。同时发现负调控机制减弱是细胞复制性衰老时P16基因高表达的重要原因。” 童坦君表示,细胞衰老是生物衰老的基本单位,也是人类老年病发病的共同基础。“一切生物学关键问题必须在细胞中寻找”已是当前生物学家的共识。通过“衰老细胞与分子机理研究”的课题研究,我们至少可以说,人类某些细胞的寿命,是可以利用基因重组技术来进行调节的。 编辑圈点 “生老病死”是人类社会的自然规律。不过,“生”多久,并没有一个定数,人的生命或许可以通过某种科学的手段进行适当的调节。科学家已经找到了控制人类细胞衰老的P16,不过,从单纯的科学研究到实际应用还有一段漫长的路要走,至于何时能利用到现实生活中,让我们耐心地等待 2002-01-31 07:51:20 shrb20020131 新华社北京1月30日电 (记者 李京华) 北京大学医学部教授童坦君、张宗玉领导的研究组经过多年研究,目前已初步阐明人类细胞衰老的主导基因P16是人类细胞衰老遗传控制程序中的主要环节,揭示了P16基因在衰老过程中高表达的原因,从而初步揭开了人类细胞衰老之谜。 这一衰老分子生物学研究室负责人童坦君和张宗玉在接受记者采访时说:“此研究项目采用国际公认的人类细胞衰老模型,通过对人类细胞衰老的主导基因P16作用机理及其调控的研究,初步阐明了P16基因不仅是细胞衰老遗传控制程序中的主要环节,还可影响细胞寿命与端粒(细胞的生物钟)长度,它通过调节Rb蛋白的活性,而非激活端粒酶起作用。同时发现负调控机制减弱是细胞复制性衰老时P16基因高表达的重要原因。” 童坦君表示,细胞衰老是生物衰老的基本单位,也是人类老年病发病的共同基础。“一切生物学关键问题必须在细胞中寻找”已是当前生物学家的共识。通过“衰老细胞与分子机理研究”的课题研究,我们至少可以说,人类某些细胞的寿命,是可以利用基因重组技术来进行调节的。 编辑圈点 “生老病死”是人类社会的自然规律。不过,“生”多久,并没有一个定数,人的生命或许可以通过某种科学的手段进行适当的调节。科学家已经找到了控制人类细胞衰老的P16,不过,从单纯的科学研究到实际应用还有一段漫长的路要走,至于何时能利用到现实生活中,让我们耐心地等待

衰老与多种生理过程的衰退有关,同时伴随着老年人罹患癌症、心血管疾病、老年痴呆症和II型糖尿病等严重疾病的风险增加。过去多年的研究表明,表观遗传机制(独立于DNA序列调控基因表达的所有机制)如DNA甲基化,与多种衰老相关疾病的基因表达失调有关,并受到生理和病理刺激、饮食、压力、体力活动、工作习惯等因素影响。

全球高发疾病——心血管疾病的主要危险因素就是年龄,包括动脉粥样氧化、中风、心肌梗塞。与所有衰老病理生理学一样,老年人群中心血管疾病与炎症、氧化应激、活性氧的产生、细胞凋亡有关。由于氧化应激和活性氧的增加,导致钙信号受损,影响肌肉收缩,使老年人心脏功能深受其害,同时,脂质氧化也加速了动脉粥样硬化的发展。

表观遗传失调是心血管疾病和心血管衰老不可忽视的致病因素。 DNA甲基化在心脏稳态所需基因的遗传调控中起着关键作用,调节正常心脏功能所需的各种细胞过程,但DNA甲基化已被证明会在衰老过程中发生变化,并导致多种心血管疾病发生。动脉粥样硬化进展的一个重要机制是平滑肌细胞增殖与迁移,而这种失调与甲基化异常有关。

总之,许多研究已揭示了调节心脏稳态的表观遗传机制。随着年龄的增长,DNA甲基化会发生与环境相关的改变。值得庆幸的是,表观遗传变化是可逆的,如今已有许多药物可靶向表观遗传酶,从而逆转作为衰老标志的表观遗传畸变。

【参考文献】

1. Pagiatakis C, Musolino E, Gornati R, et al. Epigenetics of aging and disease: a brief overview. Aging Clin Exp Res. 2021;33(4):737-745.

2. Papait R, Cattaneo P, Kunderfranco P, et al. Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy. Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20164-9.

3. Carew TE. Role of biologically modified low-density lipoprotein in atherosclerosis. Am J Cardiol. 1989 Oct 3;64(13):18G-22G.

4. Curtis AB, Karki R, Hattoum A, et al. Arrhythmias in Patients 80 Years of Age: Pathophysiology, Management, and Outcomes. J Am Coll Cardiol. 2018 May 8;71(18):2041-2057.

5. Altucci L, Rots MG. Epigenetic drugs: from chemistry via biology to medicine and back. Clin Epigenetics. 2016 May 23;8:56.

解开人类衰老之谜 2004-7-24 9:58:00 来源:中国福利网 点击:23 【字体:大 中 小】 【打印本稿】 【读后感言】 【进入论坛】 【推荐 】 【关闭】 人类为什么会衰老?我国医学专家童坦君、张宗玉两位教授经过10多年的研究,破解了人类衰老之谜,得出人类衰老细胞基因调控能力减退与特异转录因子相关的结论。 据童坦君介绍,人类衰老的机理极其复杂,其学说不下几十种,如免疫学说、神经内分泌学说、自由基因学说、蛋白质合成差错累积学说等。近年,从分子与基因水平上提出的基因调控学说、DNA损伤修复学说、线粒体损伤学说以及端区假说已成为国际研究热点,这也是他们在人类衰老机理方面的研究方向。童坦君首先介绍了一个专业名词——端粒(又称端区),它是细胞染色体末端的一种用显微镜可以见到的呈条状的物质。端粒有长短,随年龄增加而越来越短,端粒的消失,会使染色体发生畸变,从而使人类细胞丧失复制能力,最终导致细胞衰老。器官“衰老”有序可循 北京大学衰老研究中心主任童坦君说,衰老是一切生物个体伴随着时间的推移所发生的必然过程,它表现为各组织器官的衰老及其功能的减退,人体器官衰老是有一定程序的。他介绍了人体几个主要器官的衰老变化。 心脏与血管:心脏潜力在成年时最强,之后每过1年减少1个百分点,70岁时为40岁时的50%;老人的血管因弹力纤维逐渐收缩、断裂、消失而导致弹力减退,血管内膜出现动脉粥样硬化斑块,血管变硬,冠状动脉因粥样硬化而口径变小。 呼吸系统:老年人鼻黏膜及咽腔淋巴组织亦趋向萎缩;肺组织萎缩,肺泡变大,弹性减退,胸廓前后径扩大,形成老年性肺气肿。25岁青年每分钟可向组织输氧4升,而70岁老人只能输氧2升,肺功能明显减退。 消化系统:老年人牙周组织发生退行性变,出现牙周炎。75岁老人与儿童比较,味觉感受器丧失80%,因而食不甘味。老人各种消化腺萎缩,胃酸分泌减少,唾液淀粉酶、胃蛋白酶等分泌下降,故消化功能减退;老人的胆囊及胆管变厚,胆汁变浓,并含大量胆固醇,故易于发生胆石症。泌尿生殖系统:老年人肾小球滤过率下降,肾血流量减少,葡萄糖再吸收能力下降。更年期之后,女性卵巢萎缩并硬化,雌激素分泌骤减,同时乳房萎缩,外生殖器变小,宫颈萎缩。男性睾丸也渐趋萎缩并纤维化,阳痿率慢慢增加。 运动系统:人进入中年后,由于久坐不动,每过10年,肌肉会递减5—10个百分点;75岁时的握力只相当于35岁时的75%,肌腱韧带萎缩并变僵硬,故老人腿脚不便,行动迟缓。骨骼大量脱钙,皮质变薄,髓质网眼扩大,形成骨质疏松症、骨质变脆,容易发生骨折;关节软骨发生退行性变,出现纤维化、骨化,形成骨赘,造成骨质增生,70岁老人的骨质增生发生率几乎达百分之百。 神经系统:老年人大脑细胞逐渐减少,老人神经传导速度减慢,一般从40岁时开始,到80岁时减慢15—30个百分点,神经反应时间延长,动作远不如年轻人敏捷;老人体温调节较差,手足发凉,冬季易发生老年性低体温症。 童坦君说,上述各种变化是逐步进行的,随着年龄增长愈来愈明显,且有很大的个体差异。早衰者,虽然只有50多岁,可是组织器官的衰老已达70岁的水平;而老当益壮者,虽然年届70,衰老的程度也不过相当于50岁。由此可见,衰老的进程虽不可抗拒,但我们可以延缓它的进程,减慢各组织器官的老化速度。人体衰老进程受内外环境影响 北京大学衰老研究中心常务副主任张宗玉说,人体衰老进程除遗传因素的影响外,还受包括体液、激素、免疫体系共同形成的内环境以及人类生存的外部环境的影响。她用通俗的语言详细介绍了内环境因素影响人体衰老进程的情形。她说,人们一日三餐中的糖、脂类与蛋白质,在细胞线粒体内经生物氧化产生能量(ATP)供机体一切生理与生化活动的能量需要。糖、脂类、蛋白质代谢物在细胞内被氧化的过程中不断消耗从空气中吸收的氧,进入细胞内的氧90%在线粒体中用于生物氧化,但仍有1%到4%的氧同时被转化为氧自身基,这种东西最易损伤线粒体DNA,从而产生线粒体DNA片段的缺失,影响线粒体的功能,无法对人体供应能量。DNA损伤是影响衰老进程的重要因素。像老年糖尿病、老年痴呆症、帕金森氏病、心脑血管病等,都是因为线粒体DNA均有不同程度片段缺失所致。 张宗玉介绍说,相当一部分人都知道适度节食可以延长寿命,但道理何在,很少有人知道。她说,人吃得多,线粒体负荷就多,氧自由基就会大量产生,对线粒体功能影响就大。氧自由基也会攻击细胞核,使之损伤,攻击蛋白质,使之变性,攻击脂肪,使之氧化,影响细胞功能,加速细胞衰老。如果限食,人体的氧负荷降低,可减少氧自由基的产生,使氧损伤减轻,就可延缓衰老进程,延长寿命。

微生物学与基因学研究论文

微生物微生物(microorganism简称microbe)是包括细菌、病毒、真菌以及一些小型的原生动物等在内的一大类生物群体,它个体微小,却与人类生活密切相关。微生物在自然界中可谓“无处不在,无处不有”,涵盖了有益有害的众多种类,广泛涉及健康、医药、工农业、环保等诸多领域。原核:细菌、放线菌、螺旋体、支原体、立克次氏体、衣原体。真核:真菌、藻类、原生动物。非细胞类:病毒和亚病毒。微生物一般地,在中国大陆地区的教科书中,均将微生物划分为以下8大类:细菌、病毒、真菌、放线菌、立克次体、支原体、衣原体、螺旋体。微生物的定义一切肉眼看不见的或看不清的微小生物的总称1 特点: 个体微小,一般<。构造简单,有单细胞的,简单多细胞的,非细胞的进化地位低。2 分类 原核类: 三菌,三体 。真核类: 真菌,原生动物,显微藻类。非细胞类: 病毒,亚病毒 ( 类病毒,拟病毒,朊病毒)3 五大共性: 体积小,面积大吸收多,转化快生长旺,繁殖快适应强,易变异分布广,种类多二、微生物的类群1 细菌:(1)定义:一类细胞细短,结构简单,胞壁坚韧,多以二分裂方式繁殖和水生性强的原核生物(2)分布:温暖,潮湿和富含有机质的地方(3)结构:主要是单细胞的原核生物,有球形,杆形,螺旋形细胞壁基本结构 细胞膜细胞质结构 拟核鞭毛特殊结构 荚膜芽孢(4)繁殖: 主要以二分裂方式进行繁殖的(5)菌落: 单个细菌用肉眼是看不见的,当单个或少数细菌在固体培养基啊行大量繁殖时,便会形成一个肉眼可见的,具有一定形态结构的子细胞群落.菌落是菌种鉴定的重要依据.不同种类的细菌菌落的大小,形状光泽度颜色硬度透明毒都不同.2 放线菌(1)定义:一类主要成菌丝状生长和以孢子繁殖的陆生性较强的原核生物(2)分布:含水量较低,有机物较丰富的,呈微碱性的土壤中(3)形态构造:主要由菌丝组成,包括基内菌丝和气生菌丝(部分气生菌丝可以成熟分化为孢子丝,产生孢子)(4)繁殖:通过形成无性孢子的形式进行无性繁殖无性繁殖 有性繁殖(5)菌落:在固体培养基上:干燥,不透明,表面呈致密的丝绒状,彩色干粉3 病毒(1) 定义:一类由核酸和蛋白质等少数几种成分组成的”非细胞生物”,但是它的生存必须依赖于活细胞.(2)结构:(3)大小:一般直径在100nm左右最大的病毒直径为200nm的牛痘病毒最小的病毒直径为28nm的脊髓灰质炎病毒(4)增殖:以 噬菌体为例:吸附 侵入 增殖 装配 释放第二节微生物的营养一、微生物的化学组成C,H,O,N,P,S以及其他元素二、微生物的营养物质1 水和无机盐2 碳源:凡能为微生物提供生长繁殖所需碳元素的营养物质来源作用3氮源:凡能为微生物提供所必需氮元素的营养物质来源作用:主要用于合成蛋白质,核酸以及含氮的代谢产物4 能源:能为微生物生命活动提供最初能源来源的营养物质或辐射能根据碳源和能源分类:5生长因子:微生物生长不可缺少的微量有机物能引起人和动物致病的微生物叫病源微生物有八大类:1.真菌:引起皮肤病。深部组织上感染。2放线菌:皮肤,伤口感染。3螺旋体:皮肤病,血液感染 如梅毒,钩端螺旋体病。4细菌:皮肤病化脓,上呼吸道感染 ,泌尿道感染,食物中毒,败血压症,急性传染病等。5立克次氏体:斑疹伤寒等。6衣原体:沙眼,泌尿生殖道感染。7病毒:肝炎,乙型脑炎,麻疹,艾滋病等。8支原体:肺炎,尿路感染。生物界的微生物达几万种,大多数对人类有益,只有一少部份能致病。有些微生物通常不致病,在特定环境下能引起感染称条件致病菌。 能引起食品变质,腐败,正因为它们分解自然界的物体,才能完成大自然的物质循环。有些人误将真菌当作细菌,是一种比较普遍的误解。尤其以80年代以前未受过系统生物学教育者。微生物对人类最重要的影响之一是导致传染病的流行。在人类疾病中有50%是由病毒引起。世界卫生组织公布资料显示:传染病的发病率和病死率在所有疾病中占据第一位。微生物导致人类疾病的历史,也就是人类与之不断斗争的历史。在疾病的预防和治疗方面,人类取得了长足的进展,但是新现和再现的微生物感染还是不断发生,像大量的病毒性疾病一直缺乏有效的治疗药物。一些疾病的致病机制并不清楚。大量的广谱抗生素的滥用造成了强大的选择压力,使许多菌株发生变异,导致耐药性的产生,人类健康受到新的威胁。一些分节段的病毒之间可以通过重组或重配发生变异,最典型的例子就是流行性感冒病毒。每次流感大流行流感病毒都与前次导致感染的株型发生了变异,这种快速的变异给疫苗的设计和治疗造成了很大的障碍。而耐药性结核杆菌的出现使原本已近控制住的结核感染又在世界范围内猖獗起来。微生物千姿百态,有些是腐败性的,即引起食品气味和组织结构发生不良变化。当然有些微生物是有益的,它们可用来生产如奶酪,面包,泡菜,啤酒和葡萄酒。微生物非常小,必须通过显微镜放大约1000 倍才能看到。比如中等大小的细菌,1000个叠加在一起只有句号那么大。想像一下一滴牛奶,每毫升腐败的牛奶中约有5千万个细菌,或者讲每夸脱牛奶中细菌总数约为50亿。也就是一滴牛奶中可有含有50 亿个细菌。微生物能够致病,能够造成食品、布匹、皮革等发霉腐烂,但微生物也有有益的一面。最早是弗莱明从青霉菌抑制其它细菌的生长中发现了青霉素,这对医药界来讲是一个划时代的发现。后来大量的抗生素从放线菌等的代谢产物中筛选出来。抗生素的使用在第二次世界大战中挽救了无数人的生命。一些微生物被广泛应用于工业发酵,生产乙醇、食品及各种酶制剂等;一部分微生物能够降解塑料、处理废水废气等等,并且可再生资源的潜力极大,称为环保微生物;还有一些能在极端环境中生存的微生物,例如:高温、低温、高盐、高碱以及高辐射等普通生命体不能生存的环境,依然存在着一部分微生物等等。看上去,我们发现的微生物已经很多,但实际上由于培养方式等技术手段的限制,人类现今发现的微生物还只占自然界中存在的微生物的很少一部分。微生物间的相互作用机制也相当奥秘。例如健康人肠道中即有大量细菌存在,称正常菌群,其中包含的细菌种类高达上百种。在肠道环境中这些细菌相互依存,互惠共生。食物、有毒物质甚至药物的分解与吸收,菌群在这些过程中发挥的作用,以及细菌之间的相互作用机制还不明了。一旦菌群失调,就会引起腹泻。随着医学研究进入分子水平,人们对基因、遗传物质等专业术语也日渐熟悉。人们认识到,是遗传信息决定了生物体具有的生命特征,包括外部形态以及从事的生命活动等等,而生物体的基因组正是这些遗传信息的携带者。因此阐明生物体基因组携带的遗传信息,将大大有助于揭示生命的起源和奥秘。在分子水平上研究微生物病原体的变异规律、毒力和致病性,对于传统微生物学来说是一场革命。以人类基因组计划为代表的生物体基因组研究成为整个生命科学研究的前沿,而微生物基因组研究又是其中的重要分支。世界权威性杂志《科学》曾将微生物基因组研究评为世界重大科学进展之一。通过基因组研究揭示微生物的遗传机制,发现重要的功能基因并在此基础上发展疫苗,开发新型抗病毒、抗细菌、真菌药物,将对有效地控制新老传染病的流行,促进医疗健康事业的迅速发展和壮大!从分子水平上对微生物进行基因组研究为探索微生物个体以及群体间作用的奥秘提供了新的线索和思路。为了充分开发微生物(特别是细菌)资源,1994年美国发起了微生物基因组研究计划(MGP)。通过研究完整的基因组信息开发和利用微生物重要的功能基因,不仅能够加深对微生物的致病机制、重要代谢和调控机制的认识,更能在此基础上发展一系列与我们的生活密切相关的基因工程产品,包括:接种用的疫苗、治疗用的新药、诊断试剂和应用于工农业生产的各种酶制剂等等。通过基因工程方法的改造,促进新型菌株的构建和传统菌株的改造,全面促进微生物工业时代的来临。工业微生物涉及食品、制药、冶金、采矿、石油、皮革、轻化工等多种行业。通过微生物发酵途径生产抗生素、丁醇、维生素C以及一些风味食品的制备等;某些特殊微生物酶参与皮革脱毛、冶金、采油采矿等生产过程,甚至直接作为洗衣粉等的添加剂;另外还有一些微生物的代谢产物可以作为天然的微生物杀虫剂广泛应用于农业生产。通过对枯草芽孢杆菌的基因组研究,发现了一系列与抗生素及重要工业用酶的产生相关的基因。乳酸杆菌作为一种重要的微生态调节剂参与食品发酵过程,对其进行的基因组学研究将有利于找到关键的功能基因,然后对菌株加以改造,使其更适于工业化的生产过程。国内维生素C两步发酵法生产过程中的关键菌株氧化葡萄糖酸杆菌的基因组研究,将在基因组测序完成的前提下找到与维生素C生产相关的重要代谢功能基因,经基因工程改造,实现新的工程菌株的构建,简化生产步骤,降低生产成本,继而实现经济效益的大幅度提升。对工业微生物开展的基因组研究,不断发现新的特殊酶基因及重要代谢过程和代谢产物生成相关的功能基因,并将其应用于生产以及传统工业、工艺的改造,同时推动现代生物技术的迅速发展。农业微生物基因组研究认清致病机制发展控制病害的新对策据资料统计,全球每年因病害导致的农作物减产可高达20%,其中植物的细菌性病害最为严重。除了培植在遗传上对病害有抗性的品种以及加强园艺管理外,似乎没有更好的病害防治策略。因此积极开展某些植物致病微生物的基因组研究,认清其致病机制并由此发展控制病害的新对策显得十分紧迫。经济作物柑橘的致病菌是国际上第一个发表了全序列的植物致病微生物。还有一些在分类学、生理学和经济价值上非常重要的农业微生物,例如:胡萝卜欧文氏菌、植物致病性假单胞菌以及我国正在开展的黄单胞菌的研究等正在进行之中。日前植物固氮根瘤菌的全序列也刚刚测定完成。借鉴已经较为成熟的从人类病原微生物的基因组学信息筛选治疗性药物的方案,可以尝试性地应用到植物病原体上。特别像柑橘的致病菌这种需要昆虫媒介才能完成生活周期的种类,除了杀虫剂能阻断其生活周期以外,只能通过遗传学研究找到毒力相关因子,寻找抗性靶位以发展更有效的控制对策。固氮菌全部遗传信息的解析对于开发利用其固氮关键基因提高农作物的产量和质量也具有重要的意义。环境保护微生物基因组研究找到关键基因降解不同污染物在全面推进经济发展的同时,滥用资源、破坏环境的现象也日益严重。面对全球环境的一再恶化,提倡环保成为全世界人民的共同呼声。而生物除污在环境污染治理中潜力巨大,微生物参与治理则是生物除污的主流。微生物可降解塑料、甲苯等有机物;还能处理工业废水中的磷酸盐、含硫废气以及土壤的改良等。微生物能够分解纤维素等物质,并促进资源的再生利用。对这些微生物开展的基因组研究,在深入了解特殊代谢过程的遗传背景的前提下,有选择性的加以利用,例如找到不同污染物降解的关键基因,将其在某一菌株中组合,构建高效能的基因工程菌株,一菌多用,可同时降解不同的环境污染物质,极大发挥其改善环境、排除污染的潜力。美国基因组研究所结合生物芯片方法对微生物进行了特殊条件下的表达谱的研究,以期找到其降解有机物的关键基因,为开发及利用确定目标。极端环境微生物基因组研究深入认识生命本质应用潜力极大在极端环境下能够生长的微生物称为极端微生物,又称嗜极菌。嗜极菌对极端环境具有很强的适应性,极端微生物基因组的研究有助于从分子水平研究极限条件下微生物的适应性,加深对生命本质的认识。有一种嗜极菌,它能够暴露于数千倍强度的辐射下仍能存活,而人类一个剂量强度就会死亡。该细菌的染色体在接受几百万拉德a射线后粉碎为数百个片段,但能在一天内将其恢复。研究其DNA修复机制对于发展在辐射污染区进行环境的生物治理非常有意义。开发利用嗜极菌的极限特性可以突破当前生物技术领域中的一些局限,建立新的技术手段,使环境、能源、农业、健康、轻化工等领域的生物技术能力发生革命。来自极端微生物的极端酶,可在极端环境下行使功能,将极大地拓展酶的应用空间,是建立高效率、低成本生物技术加工过程的基础,例如PCR技术中的TagDNA聚合酶、洗涤剂中的碱性酶等都具有代表意义。极端微生物的研究与应用将是取得现代生物技术优势的重要途径,其在新酶、新药开发及环境整治方面应用潜力极大。微生物在整个生命世界中的地位!当人类在发现和研究微生物之前,把一切生物分成截然不同的两大界-动物界和植物界。随着人们对微生物认识的逐步深化,从两界系统经历过三界系统、四界系统、五界系统甚至六界系统,直到70年代后期,美国人Woese等发现了地球上的第三生命形式-古菌,才导致了生命三域学说的诞生。该学说认为生命是由古菌域(Archaea)、细菌域(Bacteria)和真核生物域(Eucarya)所构成。在图示“生物的系统进化树”中,左侧的黄色分枝是细菌域;中间的褐色和紫色分枝是古菌域;右侧的绿色分枝是真核生物域。古菌域包括嗜泉古菌界(Crenarchaeota)、广域古菌界(Euryarchaeota)和初生古菌界(Korarchaeota);细菌域包括细菌、放线菌、蓝细菌和各种除古菌以外的其它原核生物;真核生物域包括真菌、原生生物、动物和植物。除动物和植物以外,其它绝大多数生物都属微生物范畴。由此可见,微生物在生物界级分类中占有特殊重要的地位。生命进化一直是人们关注的热点。Brown等依据平行同源基因构建的“Cenancestor”生命进化树,认为生命的共同祖先Cenancestor是一个原生物。原生物在进化过程中产生两个分支,一个是原核生物(细菌和古菌),一个是原真核生物,在之后的进化过程中细菌和古菌首先向不同的方向进化,然后原真核生物经吞食一个古菌,并由古菌的DNA取代寄主的RNA基因组而产生真核生物。从进化的角度,微生物是一切生物的老前辈。如果把地球的年龄比喻为一年的话,则微生物约在3月20日诞生,而人类约在12月31日下午7时许出现在地球上。对我有帮助

基因工程genetic engineering 基因工程又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础, 以分子生物学和微生物学的现代方法为手段, 将不同来源的基因(DNA分子),按预先设计的蓝图, 在体外构建杂种DNA分子, 然后导入活细胞, 以改变生物原有的遗传特性、获得新品种、 生产新产品。基因工程技术为基因的结构和功能的研究提供了有力的手段。什么是基因工程?【简介】 基因工程是生物工程的一个重要分支,它和细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。 所谓基因工程(genetic engineering)是在分子水平上对基因进行操作的复杂技术,是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。基因工程是在分子生物学和分子遗传学综合发展基础上于本世纪70年代诞生的一门崭新的生物技术科学。一般来说,基因工程是指在基因水平上的遗传工程,它是用人为方法将所需要的某一供体生物的遗传物质--DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源遗传物质在其中"安家落户",进行正常复制和表达,从而获得新物种的一种崭新的育种技术。 这个定义表明,基因工程具有以下几个重要特征:首先,外源核酸分子在不同的寄主生物中进行繁殖,能够跨越天然物种屏障,把来自任何一种生物的基因放置到新的生物中,而这种生物可以与原来生物毫无亲缘关系,这种能力是基因工程的第一个重要特征。第二个特征是,一种确定的DNA小片段在新的寄主细胞中进行扩增,这样实现很少量DNA样品"拷贝"出大量的DNA,而且是大量没有污染任何其它DNA序列的、绝对纯净的DNA分子群体。科学家将改变人类生殖细胞DNA的技术称为“基因系治疗”(germlinetherapy),通常所说的“基因工程”则是针对改变动植物生殖细胞的。无论称谓如何,改变个体生殖细胞的DNA都将可能使其后代发生同样的改变。迄今为止,基因工程还没有用于人体,但已在从细菌到家畜的几乎所有非人生命物体上做了实验,并取得了成功。事实上,所有用于治疗糖尿病的胰岛素都来自一种细菌,其DNA中被插入人类可产生胰岛素的基因,细菌便可自行复制胰岛素。基因工程技术使得许多植物具有了抗病虫害和抗除草剂的能力;在美国,大约有一半的大豆和四分之一的玉米都是转基因的。目前,是否该在农业中采用转基因动植物已成为人们争论的焦点:支持者认为,转基因的农产品更容易生长,也含有更多的营养(甚至药物),有助于减缓世界范围内的饥荒和疾病;而反对者则认为,在农产品中引入新的基因会产生副作用,尤其是会破坏环境。诚然,仍有许多基因的功能及其协同工作的方式不为人类所知,但想到利用基因工程可使番茄具有抗癌作用、使鲑鱼长得比自然界中的大几倍、使宠物不再会引起过敏,许多人便希望也可以对人类基因做类似的修改。毕竟,胚胎遗传病筛查、基因修复和基因工程等技术不仅可用于治疗疾病,也为改变诸如眼睛的颜色、智力等其他人类特性提供了可能。目前我们还远不能设计定做我们的后代,但已有借助胚胎遗传病筛查技术培育人们需求的身体特性的例子。比如,运用此技术,可使患儿的父母生一个和患儿骨髓匹配的孩子,然后再通过骨髓移植来治愈患儿。随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,特别是当人们了解到遗传密码是由 RNA转录表达的以后,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。 如果将一种生物的 DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型,这与过去培育生物繁殖后代的传统做法完全不同。 这种做法就像技术科学的工程设计,按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就称为“基因工程”,或者说是“遗传工程”。 【基因工程的基本操作步骤】 基因工程步骤1.获取目的基因是实施基因工程的第一步。2.基因表达载体的构建是实施基因工程的第二步,也是基因工程的核心。3.将目的基因导入受体细胞是实施基因工程的第三步。4.目的基因导入受体细胞后,是否可以稳定维持和表达其遗传特性,只有通过检测与鉴定才能知道。这是基因工程的第四步工作。基因工程的前景科学界预言,21世纪是一个基因工程世纪。基因工程是在分子水平对生物遗传作人为干预,要认识它,我们先从生物工程谈起:生物工程又称生物技术,是一门应用现代生命科学原理和信息及化工等技术,利用活细胞或其产生的酶来对廉价原材料进行不同程度的加工,提供大量有用产品的综合性工程技术。 生物工程的基础是现代生命科学、技术科学和信息科学。生物工程的主要产品是为社会提供大量优质发酵产品,例如生化药物、化工原料、能源、生物防治剂以及食品和饮料,还可以为人类提供治理环境、提取金属、临床诊断、基因治疗和改良农作物品种等社会服务。生物工程主要有基因工程、细胞工程、酶工程、蛋白质工程和微生物工程等5个部分。其中基因工程就是人们对生物基因进行改造,利用生物生产人们想要的特殊产品。随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。美国的吉尔伯特是碱基排列分析法的创始人,他率先支持人类基因组工程 如果将一种生物的DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA重新组织一下,不就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型吗?这与过去培育生物繁殖后代的传统做法完全不同,它很像技术科学的工程设计,即按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就被称为“基因工程”,或者称之为“遗传工程”。人类基因工程走过的主要历程怎样呢?1866年,奥地利遗传学家孟德尔神父发现生物的遗传基因规律;1868年,瑞士生物学家弗里德里希发现细胞核内存有酸性和蛋白质两个部分。酸性部分就是后来的所谓的DNA;1882年,德国胚胎学家瓦尔特弗莱明在研究蝾螈细胞时发现细胞核内的包含有大量的分裂的线状物体,也就是后来的染色体;1944年,美国科研人员证明DNA是大多数有机体的遗传原料,而不是蛋白质;1953年,美国生化学家华森和英国物理学家克里克宣布他们发现了DNA的双螺旋结果,奠下了基因工程的基础;1980年,第一只经过基因改造的老鼠诞生;1996年,第一只克隆羊诞生;1999年,美国科学家破解了人类第 22组基因排序列图;未来的计划是可以根据基因图有针对性地对有关病症下药。人类基因组研究是一项生命科学的基础性研究。有科学家把基因组图谱看成是指路图,或化学中的元素周期表;也有科学家把基因组图谱比作字典,但不论是从哪个角度去阐释,破解人类自身基因密码,以促进人类健康、预防疾病、延长寿命,其应用前景都是极其美好的。人类10万个基因的信息以及相应的染色体位置被破译后,破译人类和动植物的基因密码,为攻克疾病和提高农作物产量开拓了广阔的前景。将成为医学和生物制药产业知识和技术创新的源泉。美国的贝克维兹正在观察器皿中的菌落,他曾对人类基因组工程提出警告。科学研究证明,一些困扰人类健康的主要疾病,例如心脑血管疾病、糖尿病、肝病、癌症等都与基因有关。依据已经破译的基因序列和功能,找出这些基因并针对相应的病变区位进行药物筛选,甚至基于已有的基因知识来设计新药,就能“有的放矢”地修补或替换这些病变的基因,从而根治顽症。基因药物将成为21世纪医药中的耀眼明星。基因研究不仅能够为筛选和研制新药提供基础数据,也为利用基因进行检测、预防和治疗疾病提供了可能。比如,有同样生活习惯和生活环境的人,由于具有不同基因序列,对同一种病的易感性就大不一样。明显的例子有,同为吸烟人群,有人就易患肺癌,有人则不然。医生会根据各人不同的基因序列给予因人而异的指导,使其养成科学合理的生活习惯,最大可能地预防疾病。 人类基因工程的开展使破译人类全部DNA指日可待。 基因工程将破译DNA信息技术的发展改变了人类的生活方式,而基因工程的突破将帮助人类延年益寿。目前,一些国家人口的平均寿命已突破80岁,中国也突破了70岁。有科学家预言,随着癌症、心脑血管疾病等顽症的有效攻克,在2020至2030年间,可能出现人口平均寿命突破100岁的国家。到2050年,人类的平均寿命将达到90至95岁。人类将挑战生命科学的极限。1953年2月的一天,英国科学家弗朗西斯·克里克宣布:我们已经发现了生命的秘密。他发现DNA是一种存在于细胞核中的双螺旋分子,决定了生物的遗传。有趣的是,这位科学家是在剑桥的一家酒吧宣布了这一重大科学发现的。破译人类和动植物的基因密码,为攻克疾病和提高农作物产量开拓了广阔的前景。1987年,美国科学家提出了“人类基因组计划”,目标是确定人类的全部遗传信息,确定人的基因在23对染色体上的具体位置,查清每个基因核苷酸的顺序,建立人类基因库。1999年,人的第22对染色体的基因密码被破译,“人类基因组计划”迈出了成功的一步。可以预见,在今后的四分之一世纪里,科学家们就可能揭示人类大约5000种基因遗传病的致病基因,从而为癌症、糖尿病、心脏病、血友病等致命疾病找到基因疗法。继2000年6月26日科学家公布人类基因组"工作框架图"之后,中、美、日、德、法、英等6国科学家和美国塞莱拉公司2001年2月12日联合公布人类基因组图谱及初步分析结果。这次公布的人类基因组图谱是在原"工作框架图"的基础上,经过整理、分类和排列后得到的,它更加准确、清晰、完整。人类基因组蕴涵有人类生、老、病、死的绝大多数遗传信息,破译它将为疾病的诊断、新药物的研制和新疗法的探索带来一场革命。人类基因组图谱及初步分析结果的公布将对生命科学和生物技术的发展起到重要的推动作用。随着人类基因组研究工作的进一步深入,生命科学和生物技术将随着新的世纪进入新的纪元。 克隆羊多利 基因工程在20世纪取得了很大的进展,这至少有两个有力的证明。一是转基因动植物,一是克隆技术。转基因动植物由于植入了新的基因,使得动植物具有了原先没有的全新的性状,这引起了一场农业革命。如今,转基因技术已经开始广泛应用,如抗虫西红柿、生长迅速的鲫鱼等。1997年世界十大科技突破之首是克隆羊的诞生。这只叫“多利”母绵羊是第一只通过无性繁殖产生的哺乳动物,它完全秉承了给予它细胞核的那只母羊的遗传基因。“克隆”一时间成为人们注目的焦点。尽管有着伦理和社会方面的忧虑,但生物技术的巨大进步使人类对未来的想象有了更广阔的空间。基因工程大事记1860至1870年 奥地利学者孟德尔根据豌豆杂交实验提出遗传因子概念,并总结出孟德尔遗传定律。1909年 丹麦植物学家和遗传学家约翰逊首次提出“基因”这一名词,用以表达孟德尔的遗传因子概念。1944年 3位美国科学家分离出细菌的DNA(脱氧核糖核酸),并发现DNA是携带生命遗传物质的分子。1953年 美国人沃森和英国人克里克通过实验提出了DNA分子的双螺旋模型。1969年 科学家成功分离出第一个基因。1980年 科学家首次培育出世界第一个转基因动物转基因小鼠。1983年 科学家首次培育出世界第一个转基因植物转基因烟草。1988年 发明了PCR技术。1990年10月 被誉为生命科学“阿波罗登月计划”的国际人类基因组计划启动。1998年 一批科学家在美国罗克威尔组建塞莱拉遗传公司,与国际人类基因组计划展开竞争。 1998年12月 一种小线虫完整基因组序列的测定工作宣告完成,这是科学家第一次绘出多细胞动物的基因组图谱。1999年9月 中国获准加入人类基因组计划,负责测定人类基因组全部序列的1%。中国是继美、英、日、德、法之后第6个国际人类基因组计划参与国,也是参与这一计划的惟一发展中国家。1999年12月1日 国际人类基因组计划联合研究小组宣布,完整破译出人体第22对染色体的遗传密码,这是人类首次成功地完成人体染色体完整基因序列的测定。2000年4月6日 美国塞莱拉公司宣布破译出一名实验者的完整遗传密码,但遭到不少科学家的质疑。 2000年4月底 中国科学家按照国际人类基因组计划的部署,完成了1%人类基因组的工作框架图。2000年5月8日 德、日等国科学家宣布,已基本完成了人体第21对染色体的测序工作。2000年6月26日 科学家公布人类基因组工作草图,标志着人类在解读自身“生命之书”的路上迈出了重要一步。2000年12月14日 美英等国科学家宣布绘出拟南芥基因组的完整图谱,这是人类首次全部破译出一种植物的基因序列。2001年2月12日 中、美、日、德、法、英6国科学家和美国塞莱拉公司联合公布人类基因组图谱及初步分析结果。科学家首次公布人类基因组草图“基因信息”。

American Journal of Preventive Medicine《美国预防医学杂志》美国ISSN:0749-3797,1984年创刊,全年8期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子。刊载预防医学基础和应用研究论文。涉及的学科包括流行病学、遗传学、营养学、毒理学和社会科学;应用的领域包括卫生管理、传染病防治、职业医学、环境卫生、航空航天医学、老年病、母婴保健、计划生育等。Annales de Génétique《遗传学纪事》法国ISSN:0003-3995,1958年创刊,全年4期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子。法国遗传学会的会刊。刊载遗传学研究论文、技术札记、文摘和消息。Biochimie《生物化学》法国ISSN:0300-9084,1914年创刊,全年12期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子。刊载有关酶学、遗传学、免疫学、微生物学和高分子结构等方面的研究论文及评论。Biomolecular Engineering《生物分子工程》荷兰ISSN:1389-0344,1983年创刊,全年6期,Elsevier Science出版社,SCI、EI收录期刊,SCI 2005年影响因子,2005年EI收录30篇。研究分子生物学、细胞生物学、免疫学、生物化学和遗传学中使用的新技术、材料及器械。刊载研究论文和综论。Cancer Genetics and Cytogenetics《癌遗传学与细胞遗传学》美国ISSN:0165-4608, 1979年创刊,全年16期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子。刊载癌细胞与分子的基础研究论文。反映癌遗传学和细胞遗传学领域的最新研究进展。Current Opinion in Genetics & Development《遗传学与发育新见》英国ISSN: 0959-437X, 1991年创刊,全年6期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子。著名遗传学权威专业性学术期刊,SCI收录期刊最高影响因子100种之一,刊载分子遗传学、疾病遗传学、遗传组织与变异、细胞繁殖、发育模式与机理等方面的研究进展评论。附近期有关学科主要论文索引。Developmental Biology《发育生物学》美国ISSN:0012-1606,1959年创刊,全年24期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子。著名生物学权威专业性学术期刊,从分子、细胞和遗传的水平上研究动植物发育、变异、生长、再生和组织修复的机能。发表论文。European Journal of Medical Genetics《欧洲医学遗传学》ISSN: 1769-7212,2005年创刊,Elsevier Science出版社,主要刊载关于给类人研究和医学遗传学以及基因实验模型方面的论文。European Journal of Pharmacology: Molecular Pharmacology《欧洲药理学杂志:分子药理浙江工业大学图书馆信息咨询部编 Elsevier Science 出版社期刊投稿指南 60学分册》荷兰ISSN:0922-4106,1989年创刊,全年12期,Elsevier Science出版社,刊载分子水平的药理学、药效学、神经系统药理学等方面的研究论文和简报,内容涉及分子神经传递,信号转导机理,蛋白质受体的遗传反应等。Human Immunology《人类免疫学》美国ISSN:0198-8859,1980年创刊,全年12期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子。刊载人类免疫系统和其他脊椎动物模拟系统的研究论文。侧重于组织适应性和免疫遗传学的研究。Infection, Genetics and Evolution《传染、遗传和进化》荷兰ISSN:1567-1348,2001年创刊,全年4期,Elsevier Science出版社。主要刊载遗传学领域,包括疾病等的传染、遗传、进化等方面的论文。Journal of Molecular Biology《分子生物学杂志》英国ISSN:0022-2836,1959年创刊,全年50期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子。刊载原始论文,论述分子生物学的各个方面,涉及基因结构、复制及解译机理、蛋白质、核酸等大分子的结构和性质、细胞和发育生物学、分子遗传学等。Molecular Genetics and Metabolism《分子遗传学与新陈代谢》美国ISSN:1096-7192,1976年创刊,全年12期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子。1998年前刊名为Biochemical and Molecular Medicine,从生物化学和分子生物学角度对人体正常代谢和代谢病进行研究。发表原始论文、短评和简讯。Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis《突变研究-突变原理与分子结构》荷兰ISSN:1388-2112,1964年创刊,Elsevier Science出版社。主要刊载关于包括遗传变异基因的作用,并体现突变,可变化合物的代谢方式到以不同的身份和修复受损DNA的细胞复制等方面的论文。Mutation Research/Genetic Toxicology《突变研究—遗传毒理学》ISSN: 0165-1218,Elsevier Science出版社,主要刊载化学物质的遗传毒性测试,以及对人类群体的遗传毒性效应、发育、进化的监督,监控等方面方面的文章。Mutation Research/Genetic Toxicology《突变研究—遗传毒理学》ISSN: 0165-1218,Elsevier Science出版社,主要刊载化学物质的遗传毒性测试,以及对人类群体的遗传毒性效应、发育、进化的监督,监控等方面方面的文章。Mutation Research/Reviews in Mutation Research《突变研究-突变研究评论》荷兰ISSN:1383-5742,1964年创刊,全年6期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子。主要刊载突变和疾病的关系,涵盖人类基因组研究进展(包括演变和功能基因突变检测技术)与临床应用遗传学、基因治疗、环境健康风险评估,遗传毒理学和环境突变(包括遗传因素调节活性剂环境)等方面的论文。Trends in Genetics《遗传学趋势》英国ISSN:0168-9525,1985年创刊,全年12期,Elsevier Science出版社,SCI收录期刊,SCI 2005年影响因子。权威专业性学术期刊,SCI收录期刊最高影响因子100种之一,刊载分子遗传学、变异、发育方面的评论、札记和书评,涉及临床遗传学、遗传学与社会、应用技术与人口遗传学等问题。

  • 索引序列
  • 真核生物基因表达调控研究论文
  • 基因表达调控的论文参考文献
  • 基因表达的研究进程论文
  • 心脏衰老的基因调控机制研究论文
  • 微生物学与基因学研究论文
  • 返回顶部