室内空气质量检测与传感器的应用 [摘要]室内空气品质对人的影响至关重要,利用传感器检测空气质量是当今流行的一种方法,本文介绍了传感器在空气质量检测方面的原理应用,分析了当前气体传感器的优点和不足,以及气体传感器的发展趋势和前景。 [关键词]空气质量 气体传感器 室内环境污染 一、空气对于人的重要性 人们每时每刻都离不开氧,并通过吸入空气而获得氧。一个成年人每天需要吸入空气达6500升以获得足够的氧气,因此,被污染了的空气对人体健康有直接的影响。人的一生中有90%以上时间在室内度过,可见,室内空气品质对人的影响更是至关重要。 二、室内环境污染背景 当今,人类正面临“煤烟污染”、“光化学烟雾污染”之后,又出现了“室内空气污染”为主的第三次环境污染。美国专家检测发现,在室内空气中存在500多种挥发性有机物,其中致癌物质就有 20多种,致病病毒 200多种。危害较大的主要有:氡、甲醛、苯、氨以及酯、三氯乙烯等。大量触目惊心的事实证实,室内空气污染已成为危害人类健康的“隐形杀手”,也成为全世界各国共同关注的问题。据统计,全球近一半的人处于室内空气污染中,室内环境污染已经引起的呼吸道疾病,22%的慢性肺病和15%的气管炎、支气管炎和肺癌。 三、关于开展室内空气质量服务的几点设想 1.着手调查国内家庭和办公室内空气质量的基本情况。 2.了解并着手引进室内空气质量检测设备。 3.进行规模较大的宣传活动,首先应由气象主管部门与环保主管部门联合建立室内空气质量问题的管理机制。 4.对国际环保部门有关室内空气质量的法规、技术标准、室内污染测定方法及对测定仪器等问题进行专门的调查和研究。 四、空气检测仪的强力武器——传感器 检测技术是人们认识和改造世界的一种必不可少的重要技术手段。而传感器是科学实验和工业生产等活动中对信息资源的开发获取、传输与处理的一种重要工具。下面将介绍六种在空气质量检测方面发挥重要作用的传感器。 1.金属氧化物半导体式传感器。金属氧化物半导体式传感器利用被测气体的吸附作用,改变半导体的电导率,通过电流变化的比较,激发报警电路。由于半导体式传感器测量时受环境影响较大,输出线形不稳定。金属氧化物半导体式传感器,因其反应十分灵敏,故目前广泛使用的领域为测量气体的微漏现象。 2.催化燃烧式传感器。催化燃烧式传感器原理是目前最广泛使用的检测可燃气体的原理之一,具有输出信号线形好、指数可靠、价格便宜、无与其他非可燃气体的交叉干扰等特点。催化燃烧式传感器采用惠斯通电桥原理,感应电阻与环境中的可燃气体发生无焰燃烧,是温度使感应电阻的阻值发生变化,打破电桥平衡,使之输出稳定的电流信号,再经过后期电路的放大、稳定和处理最终显示可靠的数值。 3.定电位电解式传感器。定电位电解式传感器是目前测毒类现场最广泛使用的一种技术,在此方面国外技术领先,因此此类传感器大都依赖进口。定电位电解式气体传感器的结构:在一个塑料制成的筒状池体内,安装工作电极、对电极和参比电极,在电极之间充满电解液,由多孔四氟乙烯做成的隔膜,在顶部封装。前置放大器与传感器电极的连接,在电极之间施加了一定的电位,使传感器处于工作状态。气体与的电解质内的工作电极发生氧化或还原反应,在对电极发生还原或氧化反应,电极的平衡电位发生变化,变化值与气体浓度成正比。 4.迦伐尼电池式氧气传感器。迦伐尼电池式氧气传感器的结构:在塑料容器的一面装有对氧气透过性良好的、厚10-30μm的聚四氟乙烯透气膜,在其容器内侧紧粘着贵金属(铂、黄金、银等)阴电极,在容器的另一面内侧或容器的空余部分形成阳极(用铅、镉等离子化倾向大的金属)。用氢氧化钾。氧气在通过电解质时在阴阳极发生氧化还原反应,使阳极金属离子化,释放出电子,电流的大小与氧气的多少成正比,由于整个反应中阳极金属有消耗,所以传感器需要定期更换。目前国内技术已日趋成熟,完全可以国产化此类传感器 5.红外式传感器。红外式传感器利用各种元素对某个特定波长的吸收原理,具有抗中毒性好,反应灵敏,对大多数碳氢化合物都有反应。但结构复杂,成本高。 光离子化气体传感器。PID由紫外灯光源和离子室等主要部分构成,在离子室有正负电极,形成电场,待测气体在紫外灯的照射下,离子化,生成正负离子,在电极间形成电流,经放大输出信号。PID具有灵敏度高,无中毒问题,安全可靠等优点。 五、气体检测仪器仪表产业发展现状深度分析 近年来,随着中国经济的高速发展,仪器仪表产业也得到了快速发展,自2004年产销首次突破千亿元大关,行业发展进入了快车道,2006年行业总产值突破两千亿元;2007年仪器仪表行业总产值达3078亿元,增长率高达;据仪器仪表行业协会统计,08年上半年仪器仪表行业总产值实现 亿元,同比增长,其中分析仪器、环境监测仪器仪表增长率高达32%。 科学技术的进步为气体检测仪器仪表行业的发展提供了条件,市场和政府政策的推动、人们安全意识的提高、相关法规法律的完善是气体检测行业发展的核心动力,这些推动使气体检测仪器仪表行业处于产业高速增长期。 从技术发展的角度看,根据使用传感器原理的不同,常见的气体检测仪器仪表各自有适用气体及应用领域,新技术新产品正在成为未来气体检测仪器仪表的主流。 六、对未来空气质量检测的展望 随着人们生活水平的不断提高和对环保的日益重视,对各种有毒、有害气体的探测,对大气污染、工业废气的监测以及对食品和居住环境质量的检测都对气体传感器提出了更高的要求。纳米、薄膜技术等新材料研制技术的成功应用为气体传感器集成化和智能化提供了很好的前提条件。气体传感器将在充分利用微机械与微电子技术、计算机技术、信号处理技术、传感技术、故障诊断技术、智能技术等多学科综合技术的基础上得到发展。研制能够同时监测多种气体的全自动数字式的智能气体传感器将是该领域的重要研究方向。 参考文献: [1]陈艾.敏感材料与传感器[M].北京:高等教育出版社. [2]高晓蓉.传感器技术[M].成都:西安交通大学出版社. [3]彭军.传感器与检测技术[M].北京:高等教育出版社. [4]王元庆.新型传感器原理及应用[M].北京:机械工业出版社. [5]赵茂泰.智能仪器原理及应用[M].北京:电子工业出版社.
传感器在环境检测中可分为气体传感器和液体传感器,这是我为大家整理的传感器检测技术论文,仅供参考!
试述传感器技术在环境检测中的应用
摘要:传感器在环境检测中可分为气体传感器和液体传感器,其中气体传感器主要检测氮氧化合物和含硫氧化物;液体传感器主要检测重金属离子、多环芳香烃类、农药、生物来源类。本文阐述了传感器技术在环境检测方面的应用。
关键词:气体传感器 液体传感器 环境检测
中图分类号:O659 文献标识码:A 文章编号:
随着人们对环境质量越加重视,在实际的环境检测中,人们通常需要既能方便携带,又可以够实现多种待测物持续动态监测的仪器和分析设备。而新型的传感器技术就能够很好的满足上述需求。
传感器技术主要包括两个部分:能与待测物反应的部分和信号转换器部分。信号转换器的作用是将与待测物反应后的变化通过电学或光学信号表示出来。根据检测方法的不同,我们将传感器分为光学传感器和电化学传感器;根据反应原理的不同,分为免疫传感器、酶生物传感器、化学传感器;根据检测对象不同,分为液体传感器和气体传感器。
1气体传感器
气体传感器可以对室内的空气质量进行检测,尤其是有污染的房屋或楼道;也可以对大气环境中的污染物进行检测,如含硫氧化物、氮氧化合物等,检测过程快速方便地。
以含氮氧化物(NOx)为例。汽车排放的尾气是含氮氧化物的主要来源,但随着时代的发展,国内消费水平的提高,汽车尾气的排放量呈逐年上升趋势。通过金属氧化物半导体对汽车尾气及工厂废气中的含氮氧化物进行直接检测。如Dutta设计的传感器,采用铂为电极,氧化钇和氧化锆为氧离子转换器,安装到气体排放口,可以检测到含量为10-4~10-3的NO。含硫氧化物是造成酸雨的主要物质,也是目前环境检测的重点项目,因为在大气环境中的含量低于10-6,需要更高灵敏度的传感器。如高检测的灵敏度的表面声波设备。
Starke等人采用直径为8~16nm的氧化锡、氧化铟、氧化钨纳米颗粒制作的纳米颗粒传感器,对NO和NO2的检测下限可达到10-8,提高反应的比表面积,增加反应灵敏度,且工作温度比常规的传感器大大降低,减少了能源消耗。
2液体传感器
在实际环境检测中,液体传感器大多应用于水的检测。由于水环境中的污染物种类广泛,因此液体传感器比气体传感器的应用更为广泛和重要。水中的污染物除了少量的天然污染物以外,大部分都是人为倾倒的无机物和有机物。无机物中,重金属离子为重点检测对象;有机污染物包括杀虫剂、激素类代谢物、多环芳香烃类物质等。这些污染物的过度超标,会严重影响到所有生物体的健康和安全。
重金属离子检测
采水体中重金属离子的主要来源包括开矿、冶金、印染等企业排放的废水。这些生产废水往往混合了多种废水,所含的重金属离子种类繁多,常见的有汞、锰、铅、镉、铬等。重金属离子会不断发生形态的改变和在不同相之间进行转移,若处置不当,容易形成二次污染。生物体从环境中摄取到的重金属离子,经过食物链,逐渐在高级生物体内富集,最终导致生物体的中毒。因此如果供人类食用的鱼类金属离子超标,将对人类产生严重的影响,因此对于重金属离子的检测显得尤为重要。
Burge等人发明的传感器,可以利用1,2,2联苯卡巴肼和分光光度计,可以检测地下水中的重金属铬浓度是否超标。
除了通过化学反应检测外,采用特殊的生物物质,也可以方便和灵敏地检测重金属离子。如大肠杆菌体内有一种蛋白质可以结合镍离子,有人在这种蛋白质的镍离子结合位点附近插入荧光基团,当蛋白质结合镍离子后,荧光基团会被淬灭,由于荧光的强度与镍离子浓度成反比,从而实现对镍离子的定量检测,检测范围未10-8~10-2mol/L。日方法也可应用于检测Cu2+、Co2+、Fe2+和Cd2+等几种离子中。他们还结合了微流体技术,该技术只需消耗几十纳升体积的待测液体,就可以对100nmol/L以下浓度的Pb2+进行检测。Matsunaga小组将TPPS固定在多孔硅基质中,当环境中存在Hg2+时,随着Hg2+浓度的变化,TPPS的颜色会从橘黄色逐渐转变成绿色,该传感器的检测限为,通过加入硅铝酸去除干扰离子Ni2+和Zn2+。
利用传感器技术不仅可以准确测定待测物的浓度,而且由于传感器的微型化技术特点,还可以通过传感器的偶联,进行多项指标的检测。Lau等人设计了基于发光二极管原理的传感器,可以同时检测Cd2+和Pb2+,该传感器对Cd2+和Pb2+的检测限分别为10-6和10-8。
农药残留物质的检测
农药是一类特殊的化学品,它在防治农林病虫害的同时,也会对人畜造成严重的危害。中国是农业大国,每年的农药使用量相当庞大,因此有必要对其进行监测。采用钴-苯二甲蓝染料和电流计就能方便地检测三嗪类除草剂,无需脱氧,直接检测的下限为50Lg/L,如果通过预处理进行样品浓缩后,检测限可以达到200ng/L。
采用带有光纤的红外光谱传感器可以进行杀虫剂的快速检测。将光纤内壁涂覆经非极性有机物修饰的气溶胶材料后,能显著改善光纤中水分子对信号的耗散作用,并且能够提取出溶液中的有机磷类杀虫剂进行光谱分析。此类传感器对于有机溶剂,如苯、甲苯、二甲苯的检测限则可达10-8~8*10-8。
多环芳香烃类化合物的检测
多环芳香烃类物质是另外一大类有害的污染物质,这类物质具有致癌性,但在许多工业生产过程中均会使用或产生此类物质。水体中的多环芳香烃类物质含量非常低,一般在10-9范围内,因此需要借助高灵敏度的检测传感器,Schechter小组发明了光纤光学荧光传感器。在直接检测过程中,待测样本中还可能存在一些如泥土这样的干扰物质,会降低检测信号值,如果用聚合物膜先将非极性的PAH富集,然后对膜上的物质进行荧光检测,从而解决信号干扰问题,报道称这种经膜富集后的传感器技术,对pyrene的检测可达到6*10-11,蒽类物质则可达4*10-10。Stanley等人利用石英晶振微天平作为传感器,在芯片表面固定上蒽-碳酸的单分子膜,检测限可达到2*10-9。
基于免疫分析原理,采用分子印迹的方法,在传感器表面印上能够结合不同待测物质的抗体分子,可以实现多种不同物质的检测。近年来发展起来的微接触印刷技术,也可应用到该领域,这样制备得到的传感器体积可以更加微型化。
生物类污染物质
除了以上的无机和有机合成类污染物质,还有生物来源的一些潜在污染分子。如激素类分子及其代谢物的污染常常会引起生物体生长、发育和繁殖的异常。Gauglitz带领的研究小组采用全内反射荧光生物传感器和睾丸激素抗体,对河流中的睾丸激素直接进行了即时检测,其检测限为。该技术无需样品的预处理,对于不同地区的自然界水体均可以进行睾丸激素的现场直接检测,检测范围为9~90ng/L。
另外,致病菌和病毒也是被检测的对象,水体中出现某些特定菌种,可以表明水体受到了某种污染,利用传感器技术非常容易检测到这些生物样本的存在,而且选择性非常高,如可以从烟草叶中快速地发现植物病毒烟草花叶病毒,采用QCM可以直接检测到酵母细胞的数量。
3结论和展望
目前,传感器技术已开始应用于各环境监测机构的应急检测,但是实际应用中有诸多的局限性,比如在对大气中的某些有害物质进行检测时,由于其含量往往低于传感器的最低检测限,因此在实际应用过程中,还需要进行气体的浓缩处理,这样就使传感器不容易实现微型化,或者需要借助更高灵敏度的传感器;同样,在野外水体检测时,常常会出现待测水体含有多种复杂干扰成分的情况,无法与实验室的标准化条件相比;在有些以膜分离分析技术为原理的传感器中,其膜的使用寿命往往较短,而频繁更换新膜的价格较为昂贵,因此仍然无法得到广泛的应用。
尽管如此,随着传感器技术的不断发展和完善,仍然有望应用于将来工厂企业排气、排污的现场直接检测和野外环境的动态无人监测,而且其结果能与实验室常规仪器的检测结果相符,这样将大大加快对环境监测和治理的步伐。
参考文献
[1]NaglS,,2007,132:507-511.
[2],2005,59:209-217.
[3]HanrahanG,,2004,6:657-664.
[4]HoneychurchKC,,2003,22:456-469.
[5]AmineA,,2006,21:1405-1423
传感器与自动检测技术教学改革探讨
摘要:传感器与自动检测技术是电气信息类专业重要的主干专业课,传统授课方法侧重于理论知识的传授,而忽略了应用层面的培养。针对此问题试图从教学目的、教学内容、教学形式、教学效果等多个方面进行分析,对该课程的教学方案改革进行探讨,提出一套技能与理论知识相结合、行之有效的教学方案。
关键词:传感器与自动检测技术;教学内容;教学模式;工程思维
“传感器与自动检测技术”是电气信息类专业重要的主干专业课,是一门必修课,也是一门涉及电工电子技术、传感器技术、光电检测技术、控制技术、计算机技术、数据处理技术、精密机械设计技术等众多基础理论和技术的综合性技术,现代检测系统通常集光、机、电于一体,软硬件相结合。
“传感器与自动检测技术”课程于20世纪80年代开始在我国普通高校的本科阶段和研究生阶段开设。本课程侧重于传感器与自动检测技术理论的传授,重知识,轻技能;教师之间也缺乏沟通,教学资源不能得到充分利用,教学效果不理想,学生学习兴趣不高。
一、教学过程中发现的问题及改革必要性分析
笔者在独立学院讲授“传感器与自动检测技术”课程已有四年,最开始沿用了研究型大学的教学计划和教学大纲,由于研究型大学是以培养研究型人才为主,而独立学院是以培养应用型人才为主,在人才培养目标上有较大差异,在逐渐深入的过程中发现传统方案不太符合学院培养应用型人才的定位,存在以下几方面的问题。
1.重理论,轻实践
该课程是应用型课程,其中也有大量的理论知识、数学推导,而传统的研究型教学方法普遍都以理论教学为主,在课堂上大篇幅讲解传感器的原理,进行数学公式推导,相比而言传感器的应用通常只是通过一个实例简单介绍,导致最后大多数学生只是粗略地知道该传感器的结构,而不知道如何用,在哪里用。
2.教学模式单一
该课程传统上以讲授的教学方式为主,将现成的结论、公式和定理告诉学生,学生不能主动地思考和探索,过程枯燥乏味,导致学生产生了厌学情绪。同时理论教学与实训、实践教学脱节问题也很严重。
3.教学实验安排不合理
传统的实验课程安排,验证性实验比例高达80%,综合设计性实验极少,缺少实训、实践环节。然而应用型人才的培养应该以实践教学为核心,重点培养学生的工程思维和实践能力、动手能力,以在学生毕业时达到企业对技术水平与能力的要求,使学生毕业后能尽快适应工作岗位。
二、适合独立学院培养应用型人才的教学方案改革
传统的传感器与自动检测技术课程重理论、轻实践,教学模式单一,教学实验以验证性实验为主,这种方案能够培养研究型人才,但却无法培养合格的应用型人才。在教学过程中,笔者潜心研习,并反复实践,总结出以下几个可以改革的方面。
1.优化教学内容,注重工程思维
本课程一个很重要的内容是各种类型传感器的原理,传统的教学要讲清楚其中的来龙去脉,而本人则认为针对应用型人才培养,充分讲授清楚基本概念、基本原理和基本方法即可,涉及大额数学公式可以选择重要的进行讲解,其他则可作为学生的自学内容,让学生课余自学。同时应该重点讲解该传感器的工程应用实例;另一方面要结合最新实际工程讲解。这样才能激发学生的学习兴趣,培养学生应用型工程学习思维。
2.改革教学方法,改变教学模式
传统的教学是“灌输式”的方法,无论学生是否接受,直接把要讲的内容全部讲述给学生,而这也违背了培养学生分析问题和解决问题的能力以及创新能力的出发点和归宿。笔者认为应该应用工程案例教学,实行启发式、讨论式、研究式等与实践相结合的教学方法,发挥学生在教学活动中的主体地位。
3.与工程实际相结合,与其他课程相结合
教学过程中要从不同行业提取典型的工程应用实例,精简以后作为实例进行讲解。在进行教学时,要培养学生的系统观,让学生明白这不是一门独立的课程,而是与自动控制原理、智能控制理论等课程相融合的,以达到融会贯通的学习效果。
4.实验环节改革
实验教学主要是为了提高学生的动手能力、分析问题和解决问题的能力,加深学生对课堂教学中理论、概念的感性认识。以往该课程的实验内容大部分为原理性、验证性的实验,学生容易感到枯燥无味,毫无学习积极性,很少有学生进行独立思考并发现问题,实验效果极不理想。为了改变这种模式化的教育,笔者将实验内容由传统的验证性实验调整为设计开发型实验。在实验教学中根据客观条件在适当减少验证性实验的基础上,增加了开拓性实验项目以及设计综合性实验。
5.改革教学评价方法,提高课堂教学效率
高效的学习成果反馈机制是促进教学相长的必要手段,目前该课程都是通过课程作业进行学习效果反馈,可以采用每一个章节布置一道设计型题目,让学生更加广泛地查阅资料,并在一定知识广度的基础上深入分析题目中用到的内容,进而从更深的层面分析解决问题,以达到深度、广度相结合的效果。
本文针对传感器与自动检测技术传统研究型大学的方案,提出了三个方面的问题,并根据四年的教学积累,在教学内容、教学模式、实验环节、教学评价及反馈等几个方面进行了探讨分析并提出了一套改革的方法和措施。本方案以实际工程应用实例为核心,在教学内容上侧重于传感器应用方面的讲解,以提出问题、分析问题、解决问题为主线调动学生的学习积极性和主动性,培养学生的工程思维和能力,重视实验环节,以设计性、综合性实验代替验证性实验培养学生将抽象的知识具体化、培养学生的实际应用能力、动手能力和创新能力。
参考文献:
[1]吴建平,甘媛.“传感器”课程实验教学研究[J].成都理工大学学报.
[2]曹良玉,赵堂春.传感器技术及其应用.课程改革初探[J].中国现代教育装备.
[3]李玉华,胡雪梅.传感器及应用.课程教学改革的探讨Ⅱ技术与市场.
传感器(英文名称:transducer/sensor)是直接作用于被测量、并能按一定规律将其转化为同种或别种量值输出的器件。这是我为大家整理的传感器技术论文 范文 ,仅供参考!传感器技术论文范文篇一 传感器及其概述 摘 要 传感器(英文名称:transducer/sensor)是直接作用于被测量、并能按一定规律将其转化为同种或别种量值输出的器件。目前,传感器转换后的信号大多是电信号,因而从狭义上讲,传感器是把外界输入的非电信号转换为电信号的装置。 【关键词】传感器 种类 新型 1 前言 传感器是测试系统的一部分,其作用类似于人类的感觉器官,也可以认为是人类感官的延伸。人们借助传感器可以去探测那些人们无法用或不便用感官直接感知的事物,如用热电偶可以测量炽热物体的温度;用超声波换能器可以测海水深度;用红外遥感器可从高空探测地面形貌、河流状态及植被的分布等。因此,可以说传感器是人们认识自然界事物的有力工具,是测量仪器与被测量物体之间的接口。通常情况下,传感器处于测试装置的输入端,是测试系统的第一个环节,其性能直接影响着整个测试系统,对测试精度有很大影响。 2 传感器的分类 按被测物理量的不同,可以分为位移、力、温度、流量传感器等;按工作的基础不同,可以分为机械式传感器、电气式传感器、光学式传感器、流体式传感器等;按信号变换特征可以分为物性型传感器和结构型传感器;根据敏感元件与被测对象直接的能量关系,可以分为能量转换型传感器与能量控制型传感器。 3 常见传感器介绍 电阻应变式传感器 电阻应变式传感器又叫电阻应变计,其敏感元件是电阻应变。应变片是在用苯酚,环氧树脂等绝缘材料浸泡过的玻璃基板上,粘贴直径为左右的金属丝或金属箔制成。敏感元件也叫敏感栅。其具有体积小、动态响应快、测量精度高、使用简单等优点。在航空、机械、建筑等各行业获得了广泛应用。电阻应变片的工作原理是基于金属的应变效应,即金属导体在外力作用下产生机械形变,其电阻值随机械变形的变化而变化。其可以分为:金属电阻应变片和半导体应变片式两类。金属应变片有金属丝式、箔式、薄膜式之分。半导体应变片具有灵敏度高(通常是丝式、箔式的几十倍)、横向效应小等优点。它们的主要区别在于:金属电阻应变片式是利用导体形变引起电阻变化,而半导体应变片式则是利用电阻率变化引起电阻的变化。 电容式传感器 电容式传感器是将被测物理量转换成电容量变化的装置,它实质是一个具有可变参数的电容器。由于电容与极距成反比,与正对面积和介质成正比,因此其可以分为极距变化型、面积变化型和介质变化型三类。极距变化型电容传感器的优点是可进行动态非接触式测量,对被测系统的影响小,灵敏度高,适用于较小位移的测量,但这种传感器有非线性特性,因此使用范围受到一定限制。面积变化型传感器的优点是输出与输入成线性关系,但与极距型传感器相比,灵敏度较低,适用于较大的直线或角位移的测量。介质变化型则多用于测量液体的高度等场合。 电感式传感器 电感式传感器是将被测物理量,如力、位移等,转换为电感量变换的一种装置,其变换是基于电磁感应原理。电感式传感器种类很多,常见的有自感式,互感式和涡流式三种。 电感式传感器具有以下特点:结构简单,传感器无活动电触点,因此工作可靠寿命长。灵敏度和分辨力高,能测出微米的位移变化。传感器的输出信号强,电压灵敏度一般每毫米的位移可达数百毫伏的输出。线性度和重复性都比较好,在一定位移范围(几十微米至数毫米)内,传感器非线性误差可达~。同时,这种传感器能实现信息的远距离传输、记录、显示和控制,它在工业自动控制系统中广泛被采用。但不足的是,它有频率响应较低,不宜快速动态测控等缺点。 磁电式传感器 磁电式传感器是把被测物理量转换为感应电动势的一种传感器,又称电磁感应式或电动力式传感器。其工作原理是一个匝数为N的线圈,当穿过它的磁通量变化时,线圈产生了感应电动势。磁通量的变化可通过多种方式来实现,如磁铁与线圈做切割磁力线运动、磁路的磁阻变化、恒定磁场中线圈面积的变化,因此可制造出不同类型的传感器用于测量速度、扭矩等。 压电式传感器 压电式传感器是一种可逆传感器,是利用某些物质的压电效应进行工作的器件。最简单的压电式传感器是在压电晶片的两个工作面上进行金属蒸镀,形成金属膜,构成两个电极。当晶片受压力时,两个极板上聚集数量相等而极性相反的电荷,形成电场。因此压电传感器可以看成是电荷发生器,又可以看作电容器。 4 新型传感器 生物传感器 生物传感器是用生物活性材料(酶、蛋白质、DNA、抗体、抗原、生物膜等)与物理化学换能器有机结合的一门交叉学科,是发展生物技术必不可少的一种先进的检测 方法 与监控方法,也是物质分子水平的快速、微量分析方法。各种生物传感器有以下共同的结构:包括一种或数种相关生物活性材料(生物膜)及能把生物活性表达的信号转换为电信号的物理或化学换能器(传感器),二者组合在一起,用现代微电子和自动化仪表技术进行生物信号的再加工,构成各种可以使用的生物传感器分析装置、仪器和系统。生物传感器的原理:待测物质经扩散作用进入生物活性材料,经分子识别,发生生物学反应,产生的信息继而被相应的物理或化学换能器转变成可定量和可处理的电信号,再经二次仪表放大并输出,便可知道待测物浓度。 激光传感器 激光传感器:利用激光技术进行测量的传感器。它由激光器、激光检测器和测量电路组成。激光传感器是新型测量仪表,它的优点是能实现无接触远距离测量,速度快,精度高,量程大,抗光、电干扰能力强等。激光传感器原理:激光传感器工作时,先由激光发射二极管对准目标发射激光脉冲。经目标反射后激光向各方向散射。部分散射光返回到传感器接收器,被光学系统接收后成像到雪崩光电二极管上。雪崩光电二极管是一种内部具有放大功能的光学传感器,因此它能检测极其微弱的光信号,并将其转化为相应的电信号。 5 结束语 随着科技的飞速发展,人们不断提高着自身认知世界的能力。传感器在获取自然和生产领域中发挥着巨大上的作用。目前,传感器技术在发展经济、推动社会进步方面起到重要的推动作用。相信未来,传感器技术将会出现一个飞跃。 作者简介 杨天娟(1991-),女,河北省邯郸市人。现为郑州大学本科生,主要研究方向为机械工程及自动化。 作者单位 郑州大学机械工程学院 河南省郑州市 450001 传感器技术论文范文篇二 温度传感器 摘 要:温度传感器是最早开发、也是应用最广泛的一种传感器。据调查,早在1990年,温度传感器的市场份额就大大超出了 其它 传感器。从17世纪初,伽利略发明温度计开始,人们便开始了温度测量。而真正把温度转换成电信号的传感器,是1821年德国物理学家赛贝发明的,也就是我们现在使用的热电偶传感器。随后,铂电阻温度传感器、半导体热电偶温度传感器、PN结温度传感器、集成温度传感器相继而生。也使得温度传感器更加广泛的应用到我们的生产和生活中。本文主要介绍了温度传感器的分类、工作原理及应用。 关键词:温度传感器;温度;摄氏度 中图分类号:TP212 文献标识码:A 文章 编号:1674-7712 (2014) 02-0000-01 温度传感器(temperature transducer),利用物质各种物理性质随温度变化的规律把温度转换为可用输出信号。温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类。现代的温度传感器外形非常得小,这样更加让它广泛应用在生产实践的各个领域中,也为我们的生活提供了无数的便利和功能。 一、温度的相关知识 温度是用来表征物体冷热程度的物理量。温度的高低要用数字来量化,温标就是温度的数值表示方法。常用温标有摄氏温标和热力学温标。 摄氏温标是把标准大气压下,沸水的温度定为100摄氏度,冰水混合物的温度定为0摄氏度,在100摄氏度和0摄氏度之间进行100等份,每一等份为1摄氏度。热力学温标是威廉汤姆提出的,以热力学第二定律为基础,建立温度仅与热量有关而与物质无关的热力学温标。由于是开尔文 总结 出来的,所以又称为开尔文温标。 二、温度传感器的分类 根据测量方式不同,温度传感器分为接触式和非接触式两大类。接触式温度传感器是指传感器直接与被测物体接触,从而进行温度测量。这也是温度测量的基本形式。其中接触式温度传感器又分为热电偶温度传感器、热电阻温度传感器、半导体热敏电阻温度传感器等。 非接触式温度传感器是测量物体热辐射发出的红外线,从而测量物体的温度,可以进行遥测。 三、温度传感器的工作原理 (一)热电偶温度传感器。热电偶温度传感器结构简单,仅由两根不同材料的导体或半导体焊接而成,是应用最广泛的温度传感器。 热电偶温度传感器是根据热电效应原理制成的:把两种不同的金属A、B组成闭合回路,两接点温度分别为t1和t2,则在回路中产生一个电动势。 热电偶也是由两种不同材料的导体或半导体A、B焊接而成,焊接的一端称为工作端或热端。与导线连接的一端称为自由端或冷端,导体A、B称为热电极,总称热电偶。测量时,工作端与被测物相接触,测量仪表为电位差计,用来测出热电偶的热电动势,连接导线为补偿导线及铜导线。 从测量仪表上,我们观测到的便是热电动势,而要想知道物体的温度,还需要查看热电偶的分度表。 为了保证温度测量结果足够精确,在热电极材料的选择方面也有严格的要求:物理、化学稳定性要高;电阻温度系数小;导电率高;热电动势要大;热电动势与温度要有线性或简单的函数关系;复现性好;便于加工等。根据我们常用的热电极材料,热电偶温度传感器可分为标准化热电偶和非标准化热电偶。铂铑-铂热电偶是常用的标准化热电偶,熔点高,可用于测量高温,误差小,但价格昂贵,一般适用于较为精密的温度测量。铁-康铜为常用的非标准化热电偶,测温上限为600摄氏度,易生锈,但温度与热电动势线性关系好,灵敏度高。 (二)电阻式温度传感器。热电偶温度传感器虽然结构简单,测量准确,但仅适用于测量500摄氏度以上的高温。而要测量-200摄氏度到500摄氏度的中低温物体,就要用到电阻式温度传感器。 电阻式温度传感器是利用导体或者半导体的电阻值随温度变化而变化的特性来测量温度的。大多数金属在温度升高1摄氏度时,电阻值要增加到。电阻式温度传感器就是要将温度的变化转化为电阻值的变化,再通过测量电桥转换成电压信号送至显示仪表。 (三)半导体热敏电阻。半导体热敏电阻的特点是灵敏度高,体积小,反应快,它是利用半导体的电阻值随温度显著变化的特性制成的。可分为三种类型:(1)NTC热敏电阻,主要是Mn,Co,Ni,Fe等金属的氧化物烧结而成,具有负温度系数。(2)CTR热敏电阻,用V,Ge,W,P等元素的氧化物在弱还原气氛中形成烧结体,它也是具有负温度系数的。(3)PTC热敏电阻,以钛酸钡掺和稀土元素烧结而成的半导体陶瓷元件,具有正温度系数。也正是因为PTC热敏电阻具有正温度系数,也制作成温度控制开关。 (四)非接触式温度传感器。非接触式温度传感器的测温元件与被测物体互不接触。目前最常用的是辐射热交换原理。这种测温方法的主要特点是:可测量运动状态的小目标及热容量小或变化迅速的对象,也可用来测量温度场的温度分布,但受环境温度影响比较大。 四、温度传感器的应用举例 (一)温度传感器在汽车上的应用。温度传感器的作用是测量发动机的进气,冷却水,燃油等的温度,并把测量结果转换为电信号输送给ECU.对于所有的汽油机电控系统,进气温度和冷却水温度是ECU进行控制所必须的两个温度参数,而其他的温度参数则随电控系统的类型及控制需要而不尽相同。进气温度传感器通常安装在空气流量计或从空气滤清器到节气门体之间的进气道或空气流量计中,水温传感器则布置在发动机冷却水路,汽缸盖或机体上上的适当位置.可以用来测量温度的传感器有绕线电阻式,扩散电阻式,半导体晶体管式,金属芯式,热电偶式和半导体热敏电阻式等多种类型,目前用在进气温度和冷却水温度测量中应用最广泛的是热敏电阻式温度传感器。 (二)利用温度传感器调节卫生间的温度。温度传感器还能调节卫生间内的温度,尤其是在洗澡的时候,能自动调节卫生间内的温度是很有必要的。通过温湿度传感器和气体传感器就能很好的控制卫生间内的环境从而使我们能够拥有一个舒适的生活。现在大部分旅馆和一些公共场所都实现了自动调节,而普通家庭的卫生间都还是人工操作,尚未实现自动调节这主要是一般客户不知道能够利用传感器实现自动化,随着未来人们的进一步了解,普通家庭的卫生间也能实现自动调节。 参考文献: [1]周琦.集成温度传感器的设计[D].西安电子科技大学,2007.
弗吉尼亚光电技术中心的光传感器研究作者:王安波*,Gray R. Pickrell在恶劣环境下通常的测量器件难以使用的工业与军事应用的广泛领域中,需要在比较苛刻环境下使用的光传感器。光纤传感器在测量各种不同的物理参数方面已被证明是有吸引力的,这是由于这种传感器具有如下的优点:1)体积小,2)不受电磁干扰,3)分辨率高,4)无需电流传导,5)能够对各种被测量作出响应,6)避免发生火花,7)能够克服恶劣环境影响,8)可远距离操作,9)可进行多路传输。在过去的20年来,光线传感器在实践中已得到验证,并得到发展。在弗吉尼亚光电技术中心(VTCPT)所进行的光传感器的研究工作,主要集中在开发测量压力、温度、应变、声波、流量、局部放电、表面映射以及三维温度成像技术。大多数上述传感器基于光纤传感器,包括具有各种聚合体和金属镀层的石英玻璃光纤,以及蓝宝石纤维波导。根据被调制的光学参数,这些传感器可粗略分类为干涉测量法型,旋光测量法型,光强型,以及波长编码型器件。本文提出了弗吉尼亚光电技术中心近期开发的上述传感器中的几个例子。(*译者注:辽宁鞍山人,大连理工大学物理系研究生毕业,现在美国)
基金项目:国家杰出青年基金项目(40225006),国家教育部重点项目(010886),南京大学985工程项目。
索文斌王宝军施斌刘杰
(南京大学地球科学系地球环境计算工程研究所,南京,210093)
【摘要】BOTDR是一种新型的分布式光纤传感监测技术,其分布式、高精度、长距离、实时性、远程控制等特点,已逐渐受到工程界的广泛关注。由于监测是分布式的,所以得到的数据与地理位置具有重要的相关性。结合工程实践中遇到的具体问题,研发了一套基于GIS的大型工程分布式光纤传感监测系统。本文重点论述系统的设计要求,包括设计目标、技术框架和特色功能。结合某隧道 BOTDR监测工程开发的一套相应的监测数据管理系统,实现了工程监测数据的采集与管理、监测结果的可视化、监测信息的对比查询等功能,是一套集智能化分析与决策化管理为一体的多功能管理系统。
【关键词】BOTDRGIS分布式光纤传感器监测系统
1引言
光纤传感技术以其良好的耐久性、抗腐蚀、抗电磁干扰,适合于在恶劣环境中长期工作等优点受到越来越多的工程建设者和科研人员的重视[~3]。BOTDR(Brillouin Optic Time-Domain Reflectometer)布理渊光时域反射计,作为新型的分布式传感技术,逐渐得到工程界的认可。日本、加拿大、瑞士等国已成功地将该技术应用到水坝、桩基、边坡、堤岸等工程的监测中[~3]。我国自2001年由南京大学地球环境计算工程研究所率先从日本引进该技术以来,开展了大量的室内外实验研究,并成功地完成了多个工程项目,取得了一系列重要的研究成果[4-7]。
在具体应用中,BOTDR所提供的监测结果存在诸如直观表现差、数据配准和空间定位困难、综合管理功能弱等方面的缺陷,未经过系统培训的工程技术人员,很难读懂 BOTDR的监测结果,后期成果处理也非常繁琐。本文针对大型工程分布式光纤传感监测领域存在的数据分析与管理中存在的不足,提出了一套比较切合工程实际的解决方案,并结合具体工程实例设计和开发了一套应用系统。实践表明,该系统可以很好地实现对监测数据的采集与管理、监测结果的可视化显示以及监测信息的对比查询等功能。
2问题的提出
BOTDR的监测原理[1]
激光在光纤中传播时,光波与光声子相互作用即会产生布理渊散射光。当环境温度的变化量不大(T≤5°)时,布理渊光频率漂移量(vB)与光纤所受的应变量(ε)成正比,其关系式如下式所示:式中:υB(ε)表示光纤受到ε应变时的布理渊频率漂移量;υB(0)表示光纤不受应变时的布理渊频率漂移量; 为比例系数,约为;ε为光纤的实际应变量。
地质灾害调查与监测技术方法论文集
为了得到沿光纤分布的应变信息,只需测量沿光纤分布的布理渊频率漂移量的变化情况,沿光纤距离光源为Z长度的点可由下式求得:
地质灾害调查与监测技术方法论文集
式中:c为光速,n为光纤折射率,T为自激光发射与接收到布理渊散射光所经历的时间。
监测原理如图1所示。
图1BOTDR的应变监测原理图
BOTDR在结果表现上存在的问题
在实际工程应用中,根据工程实际情况的不同,可按照不同的黏着方式将传感光纤粘贴在所需监测结构(或材料)的表面,从而获得被粘贴结构(或材料的)沿光纤的径向应变分布信息。但 BOTDR所提供的监测结果存在以下几个方面的缺陷:
(1)海量数据的综合管理缺陷。BOTDR提供的监测数据是沿光纤径向的每一点的应变信息(点之间的间距和仪器的距离分解度相关),而这些点的应变信息是以数据点的形式给出的,造成原始数据繁多复杂。
(2)实际里程与监测结果的数据配准问题。分布式光纤传感器在实际铺设过程中,出于定位需要,经常预留一些冗余光纤,为了将所测得的应变量和实际的光纤里程对应起来,必须获得发生应变部位距离光纤光源的实际里程,而 BOTRD提供的监测里程是光纤的实际长度(包括冗余部分),并不是工程实际里程,也就是说监测结果与实际里程之间存在数据配准问题。
(3)监测结果的直观表现不佳。BOTDR原始监测系统并不提供阈值设定功能,即对于特定的工程而言,我们必须人为地设定阈值寻找应变异常信息。
(4)实测数据影响因子多。BDTOR监测结果是在诸如温度影响在内的多种因子的影响下测得的数据,未经处理的实测数据可信度差。
(5)缺乏面向最终用户的监测数据。BOTDR监测结果是未经配准和处理的纯文本文件,这些数据并不是面向最终用户,而是面向具有 BOTDR操作经验的科研人士,也就是说未经专业培训的工程技术人员很难读懂 BOTDR的原始成果。
3基于GIS的大型工程分布式光纤传感监测系统设计
系统设计目标
针对上述所存在的问题,基于GIS的大型工程分布式光纤传感监测系统应该遵循以下的总体设计目标:
(1)完成对所监测工程的日常健康诊断,分析工程安全性。以应变分析为核心,建立工程安全评价体系,完成对影响规划、管理、决策及科学研究的数据进行储存更新、查询检索、智能评价、统计分析、类比判别和制图制表等任务,提高工程管理质量和效率。
(2)利用BOTDR提供的数据,经系统处理后再配合工程实地调查数据,完成以工程质量为目标的各项监测工作。应用横向纵向两方面类比模式监测工程安全性,即利用不同光纤反馈回来的数据,以及同一根光纤不同时间测试的数据进行类比分析,得出工程可信的结果。
系统技术框架
结合目前GIS的发展趋势,并考虑工程实际的可操作性,系统应用ESRI公司提供的MapOb-jects组件,在Visual Basic 环境下开发了以组件式GIS为核心的管理系统,系统的技术框架如图2所示:
图2系统技术框架图
从图2的技术框架图中可以直观地看出,系统设计以各种不同用户的需求作为指导,并在开发中通过信息反馈不断更新和完善系统功能及工作模式。系统以基础地理及属性数据库为基础利用GIS的开发实现空间数据的提取,结合光纤监测数据库实现监测数据的配准以及可视化表示,以不断更新和完善的管理与决策数据库实现科学决策,构建集基础功能、智能分析、决策管理于一体的多功能系统。
系统的功能与特色
基于GIS的大型工程分布式光纤传感监测系统基本实现了如图3所示功能。
从图3可以看出,该系统基本上可以解决工程监测数据的采集与管理、监测结果的可视化显示、监测结果的智能化分析,是一个以工程应用为目标,以监测结果为核心的多功能管理与智能化分析系统。
(1)图层控制:系统加载多个图层(ESRI的Shape文件、AutoCAD的DXF文件或图像文件JPG、BMP、GIF、TIF等)。在使用中用户可以通过图层控制图层是否可见、图元颜色、可视化范围、图层顺序等,以便于对特定图层进行浏览。
图3系统的功能与特色
(2)视图控制:系统提供图像的放大、缩小,全局显示、局部显示,漫游等基本功能。
(3)动态标注:系统实现了空间任意位置的动态跟踪标注。用户点击鼠标后可随时获得鼠标所在位置的属性信息。
(4)数据维护:用户可以选择两种不同方式查询、检索、更改数据,提供完善的从图到属性和从属性到图的数据查询、检索、更改方式。
(5)绘图功能:系统提供自助的绘图方式,用户可按照自己的想法和要求新建图层或者在原图上自行绘制图形,并根据程序提供的属性表为数据添加属性。
(6)元素选取:系统能够识别图中选取的元素,通过线、矩形、区域、多边形、圆来拾取物体,并显示拾取元素的属性数据。当选中特定位置的光纤时,光纤以闪烁3次来回应用户选中的光纤。
除上述功能之外,鉴于分布式光纤监测的工程特点,本系统还具备以下几个特色功能:
(1)数据分析:系统以绘制专题应变曲线图的方式提供数据分析功能。通过 BOTDR实测数据,绘制光纤应变曲线专题图,根据不同的阈值设置不同颜色的应变曲线图。
(2)数据配准:在实测数据与工程实际里程之间,根据实际工程光纤铺设的特征数据信息(光纤定位信息),系统提供一个精确的配准模块,误差小,应用性强。
(3)图例显示:系统提供独特的图例,便于工程管理。如,实际工程若铺设5根光纤,并且光纤铺设在不同墙面,采取二维示意图显示,可以绘制不同的图例显示,用以区别不同墙面铺设的不同光纤。
(4)对比查询:系统提供了由系统操作主界面至应变曲线绘制界面的对比查询方式,用户可选则从图到曲线或从曲线到图的两种方式进行结果查询,这样,工程监测的质量和效率就大大提高了。
4工程应用实例
工程概况
某隧道工程是一湖底隧道,全长约,其中湖底隧道长约,为双向六车道,三箱室结构形式,其中左右两个箱式为车行道,中间箱室为净宽3m的管廊与检修通道。隧道设计宽约32m,净空高度,设计车速为60km/h。
2002年7月,隧道项目指挥部经反复调研和论证后,决定采用BOTDR技术进行隧道整体变形监测。2002年11月~12月,项目组完成了传感光纤铺设,铺设情况如图4所示,并分阶段对隧道变形进行监测。2003年1月~4月,为施工监测阶段,2003年5月通车后至9月为常规监测阶段。施工监测阶段主要进行由于后期施工对隧道变形的影响以及隧道箱体接缝变形监测,监测频率为2天/次。常规监测阶段主要进行通车条件下隧道稳定性监测,监测频率3~5次/周。
图4某隧道光纤总体平面布置图
隧道工程监测数据管理的系统实现
数据准备
系统的基本数据包括施工区域图、隧道信息、光纤铺设信息、光纤监测数据等四大类。这四类数据既包含了空间信息数据又包含了属性数据,是构成系统数据结构的基础,又是系统数据分析和管理的前提。
(1)施工区域图。主要提供隧道基本信息与周边环境状况,用以确定施工地理信息、施工线路等,为绘制隧道二维示意图提供标准。
(2)隧道信息。主要提供隧道纵剖面、横剖面信息。横剖面信息用于了解光纤铺设里程和方位,纵剖面信息主要用于掌握具体施工操作面,为准确绘制隧道二维示意图做数据基础。
(3)光纤铺设信息。主要提供传感光纤铺设信息。拟铺设的5条传感光纤处在隧道南洞、北洞不同的墙面上,每条光纤的实际铺设长度与工程里程必有误差,通过在铺设过程中了解光纤定位信息,为数据配准模块提供数据基础。
(4)光纤监测数据。主要指 BOTDR实测应变数据,这些实测数据通过数据配准、阈值设定等系统转换处理后,将得到精确的隧道不同位置的应变信息。
系统工作流程
数据管理与分析是该系统的核心组成部分,是得到精确工程监测信息的重要组成部分。数据管理与分析主要靠以下流程来实现:
步骤一:数据准备
将BOTDR实测数据以*.txt文件存放到指定位置,以备数据处理调用。
步骤二:选择光纤
在5根铺设的光纤中,在主操作界面中点击所需监测光纤,即完成所需光纤的选择,点击所选光纤时,与之相对应的系列在后台被调入。
步骤三:选择系列
所谓系列,就是不同时间监测的不同光纤的应变信息和数据配准信息。选择系列操作包括调入监测数据,选择数据配准,设置隧道变形阈值等。
步骤四:应变分析
进行系列选择之后,选择绘制曲线,系统即在新窗口绘制出经数据配准的隧道整体应变分析图。
除上述主要数据管理与分析功能之外,系统还设置了分段管理与分析的功能,即通过对所需监测段进行设置起点、设置终点操作,进行局部数据的管理与分析。另外,系统还提供了由图到曲线(或曲线到图)的对比查询方式,选择图到曲线(或曲线到图)的菜单项之后,图和曲线完美地对应起来,并提供了阈值设定功能,做到自动预警,避免人为干扰。图5至图7显示了系统数据与管理功能的操作界面,其中,图5为数据分析界面,图6为选择系列界面,图7为隧道应变分析曲线界面。
图5数据分析界面图
图6选择系列界面
图7隧道应变分析曲线界面
5结语
综上所述,应用GIS管理分布式光纤监测工程可实现海量数据的高效管理。GIS以其独特的数据管理、查询、检索、分析模式成为工程管理的首选。它的海量数据分层管理、数据结果的可视化表现、实现双向查询、面向最终用户的特点更显示其理想的工程管理能力。具体的说,系统具有以下优点:
(1)系统改善了BOTDR原系统中海量数据的综合管理模式,结果显示更加清晰直观。
(2)系统设置了数据配准、阈值管理等模块,监测结果可直接应用,避免了人为判别的误差,提高了工作效率。
(3)系统采用可视化显示,面向最终用户,无须对具体工程监测人员进行系统培训。
(4)系统实现了工程监测数据的采集与管理、监测结果的可视化显示、监测信息的对比查询等功能,是一个集智能化分析与决策化管理为一体的多功能管理系统。
本系统以具体工程为实例,具有更加科学、高效、直观、方便等优点,并减少了BOTDR监测结果的后期人为干扰,使得测试结果更加客观、准确,有利于科学管理和提高效率。
参考文献
[1]Hiroshige Ohno,Hiroshi Naruse,et Applications of the BOTDR Optical Fiber Strain sensor[J].Optical Fiber Technology 7,2001:45~64
[2]Inaudi D, Casanova monitoring with long-gage interferometric Sensors[A].Proceedings Of The Society Of Photo-Optical Instrumentation Engineers(SPIE),3995[C].Bellingham,WA:Spie-Int Society Optical Engineering,2000:164~174
[3]Ohno H, Naruse H,Kurashima T,et of Brillouin Scattering-Based Distributed Optical Fiber Strain Sensor to Actual Concrete Piles[J].IEICE (4):945~951
[4]Shi B,Xu H Z,Zhang D,et study on BOTDR application in monitoring deformation of a tunnel[A].Proc 1 st inter conf of structuraI health monitoring and intelligent infrastructure[C].Netherlands:~1030
[5]Ding Y,Shi B,Cui H L,et stability of optic fiber as strain sensor under invariable stress[A].Proc 1 st inter conf of structural health monitoring and intelligent infrastructure[C].Netherlands:~270
[6]Zhang D,Shi B,Xu H Z,et of BOTDR into structural bending monitoring[A].Proc 1 st inter conf of structural health monitoring and intelligent infrastructure[C].Netherlands:~276
[7]Xu H Z,Shi B,Zhang D,et processing in the distributed strain measurement of BOTDR based on wavelet analysis[A].Proc 1 st inter conf of structural health monitoring and intelligent infrastructure[C].Netherlands:~276
[8]Building Applicatins with MapObjects[M] System Research,Institute,
物联网是通过信息传感设备,按照约定的协议,把任何物品与互联网连接起来,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。下面我给大家带来2021好写的物联网专业论文题目写作参考,希望能帮助到大家!
物联网论文题目
1、 基于嵌入式PC和物联网的无人驾驶 拖拉机 研究
2、 太阳能农机发动机监测系统设计—基于智慧农业物联网信息采集
3、 基于物联网的农业生产监控系统设计
4、 基于农业物联网的智能温室系统架构与实现
5、 基于物联网的水田无线监控系统设计
6、 基于物联网植物工厂监控系统的设计
7、 基于物联网的精准农业玉米长势监测分析系统研究
8、 基于物联网的葡萄园信息获取与智能灌溉系统设计
9、 基于物联网技术的智慧长输管道
10、 矿山物联网云计算与平台技术
11、 基于物联网的智能衣柜系统
12、 基于MQTT的物联网系统文件传输 方法 的实现
13、 基于物联网技术的能源互联网数据支撑平台
14、 农业物联网技术研究进展与发展趋势分析
15、 高校智慧教室物联网系统设计与实现
16、 运营商窄带物联网部署实现探讨
17、 基于物联网思维的商业银行管理重构的战略思想
18、 面向矿山安全物联网的光纤传感器
19、 基于物联网的水质监测系统的设计与实现
20、 工业物联网环境下隐式人机交互消息传播方法
21、 基于物联网技术的智慧农业监控系统设计
22、 疫苗冷链物流风险管理中物联网技术的应用
23、 基于物联网远程血压监测结合APP管理对高血压患者的影响
24、 公安物联网技术在社会治安防控中的应用
25、 物联网中增强安全的RFID认证协议
26、 农业物联网技术供需双方决策行为分析——演化博弈模型及其仿真
27、 物联网环境下数据转发模型研究
28、 基于云计算的物联网数据网关的建设研究
29、 基于Citespace的技术机会发现研究——以物联网技术发展为例
30、 利用物联网技术探索智慧物流新未来——访神州数码集团智能互联本部物联网事业部总经理闫军
31、 物联网虚拟仿真实验教学中心平台建设
32、 物联网智能家居的远程视频监控系统设计
33、 是德科技中标福州物联网开放实验室窄带物联网低功耗测试系统以及射频一致性测试系统
34、 基于物联网的智慧家庭健康医疗系统
35、 农业物联网技术研究进展与发展趋势分析
36、 新工科背景下物联网专业学生创新实践能力培养
37、 新工科语境下物联网专业课程设置研究
38、 铁塔公司基于LoRa物联网的共享单车方案研究
39、 面向大数据的突发事件物联网情报采集
40、 区块链技术增强物联网安全应用前景分析
41、 物联网工程专业实验室建设方案研究
42、 大数据时代基于物联网和云计算的地震信息化研究
43、 矿山物联网 网络技术 发展趋势与关键技术
44、 基于物联网与GPRS技术对武汉市内涝监测预警系统的优化设计
45、 基于物联网的医院病房智能监护系统设计与实现
46、 基于电力物联网边缘计算实现脱网应急通信的方法
47、 物联网商业方法的专利保护探析
48、 物联网分享还是人工智能垄断:马克思主义视野中的数字资本主义
49、 基于MQTT协议的物联网电梯监控系统设计
50、 基于时间自动机的物联网网关安全系统的建模及验证
物联网 毕业 论文题目参考
1、基于物联网的火电机组远程诊断服务实践
2、语义物联网中一种多领域信息互操作方法
3、矿山物联网服务承载平台与矿山购买服务
4、物联网环境下的锰矿开采过程监测软件设计
5、基于物联网的馆藏系统实现
6、地方转型本科高校物联网专业人才培养方案研究
7、基于物联网的智能家居环境监控系统的设计与分析
8、智能建筑中物联网技术的应用剖析
9、关于物联网关键技术及应用的探讨
10、蓝牙传输发现服务助力实现协作型物联网
11、无线传感器网络与物联网的应用研究
12、物联网系统集成实训室建设的探索与实践
13、高校物联网实验中心规划方案
14、面向异构物联网的轻量级网络构建层设计
15、探索物联网环境下企业组织架构的转变
16、物联网技术下校园智能安防系统的设计
17、物联网在农业中的应用及前景展望
18、战略新兴物联网专业校企合作模式研究
19、物联网/传感网时代下新型图书管理模式探析
20、物联网信息感知与交互技术
21、探讨农业物联网技术的创新运用方式
22、基于物联网技术的远程智能灌溉系统的设计与实现
23、农业物联网技术创新及应用策略探讨
24、基于物联网的园区停车管理系统的设计与实现
25、基于物联网技术的“蔬菜”溯源体系探索
26、基于物联网技术的气象灾害监测预警体系研究
27、物联网接入技术研究与系统设计
28、基于物联网技术的数据中心整体运维解决方案研究
29、基于工作导向的中职物联网课程实践教学分析
30、面向服务的物联网软件体系结构设计与模型检测
31、面向物联网的无线传感器网络探讨
32、物联网环境下多智能体决策信息支持技术研究
33、物联网和融合环境区域食品安全云服务框架
34、高职《物联网技术概论》教学思考与实践
35、基于物联网的远程视频监控系统设计
36、物联网分布式数据库系统优化研究
37、物联网隐私安全保护研究
38、璧山环保监管物联网系统试点应用研究
39、智能家居无线物联网系统设计
40、物联网温室智能管理平台的研究
好写的物联网论文题目
1、物联网的结构体系与发展
2、对于我国物联网应用与发展的思考
3、物联网环境下UC安全的组证明RFID协议
4、农业物联网研究与应用现状及发展对策研究
5、物联网时代的智慧型物品探析
6、基于Zigbee/GPRS物联网网关系统的设计与实现
7、物联网概述第3篇:物联网、物联网系统与物联网事件
8、物联网技术在食品及农产品中应用的研究进展
9、物联网——后IP时代国家创新发展的重大战略机遇
10、物联网体系结构研究
11、构建基于云计算的物联网运营平台
12、基于物联网的煤矿综合自动化系统设计
13、我国物联网产业未来发展路径探析
14、基于物联网的干旱区智能化微灌系统
15、物联网大趋势
16、物联网网关技术与应用
17、基于SIM900A的物联网短信报警系统
18、物联网概述第1篇:什么是物联网?
19、物联网技术安全问题探析
20、基于RFID电子标签的物联网物流管理系统
二、物联网毕业论文题目推荐:
1、基于RFID和EPC物联网的水产品供应链可追溯平台开发
2、物联网与感知矿山专题讲座之一——物联网基本概念及典型应用
3、我国物联网产业发展现状与产业链分析
4、面向智能电网的物联网技术及其应用
5、从云计算到海计算:论物联网的体系结构
6、物联网 商业模式 探讨
7、物联网:影响图书馆的第四代技术
8、从嵌入式系统视角看物联网
9、试论物联网及其在我国的科学发展
10、物联网架构和智能信息处理理论与关键技术
11、基于物联网技术的智能家居系统
12、物联网在电力系统的应用展望
13、基于物联网的九寨沟智慧景区管理
14、基于物联网Android平台的水产养殖远程监控系统
15、基于物联网Android平台的水产养殖远程监控系统
16、基于物联网的智能图书馆设计与实现
17、物联网资源寻址关键技术研究
18、基于物联网的自动入库管理系统及其应用研究
19、互联网与物联网
20、"物联网"推动RFID技术和通信网络的发展
物联网专业论文题目写作参考相关 文章 :
★ 优秀论文题目大全2021
★ 电子类专业毕业论文题目及选题
★ 大学生论文题目参考2021
★ 2021通信学专业论文题目与选题
★ 通信专业毕业论文题目与选题
★ 大学生论文题目大全2021
★ 2021电子商务毕业论文题目
★ 2021环境工程专业论文题目
★ 建筑工程方向毕业论文题目与选题
★ mba各方向的论文题目与选题推荐
浅谈传感器的现状以及发展趋势2007-1-25 16:39:00 转:中国工控展览网 供稿1 微型化(Micro)为了能够与信息时代信息量激增、要求捕获和处理信息的能力日益增强的技术发展趋势保持一致,对于传感器性能指标(包括精确性、可靠性、灵敏性等)的要求越来越严格;与此同时,传感器系统的操作友好性亦被提上了议事日程,因此还要求传感器必须配有标准的输出模式;而传统的大体积弱功能传感器往往很难满足上述要求,所以它们已逐步被各种不同类型的高性能微型传感器所取代;后者主要由硅材料构成,具有体积小、重量轻、反应快、灵敏度高以及成本低等优点。 由计算机辅助设计(CAD)技术和微机电系统(MEMS)技术引发的传感器微型化目前,几乎所有的传感器都在由传统的结构化生产设计向基于计算机辅助设计(CAD)的模拟式工程化设计转变,从而使设计者们能够在较短的时间内设计出低成本、高性能的新型系统,这种设计手段的巨大转变在很大程度上推动着传感器系统以更快的速度向着能够满足科技发展需求的微型化的方向发展。对于微机电系统(MEMS)的研究工作始于20世纪60年代,其研究范畴涉及材料科学、机械控制、加工与封装工艺、电子技术以及传感器和执行器等多种学科,是一个极具前景的新兴研究领域。MEMS的核心技术是研究微电子与微机械加工与封装技术的巧妙结合,期望能够由此而制造出体积小巧但功能强大的新型系统。经过几十年的发展,尤其最近十多年的研究与发展,MEMS技术已经显示出了巨大的生命力,此项技术的有效采用将信息系统的微型化、智能化、多功能化和可靠性水平提高到了一个新的高度。在当前技术水平下,微切削加工技术已经可以生产出来具有不同层次的3D微型结构,从而可以生产出体积非常微小的微型传感器敏感元件,象毒气传感器、离子传感器、光电探测器这样的以硅为主要构成材料的传感/探测器都装有极好的敏感元件[1],[2]。目前,这一类元器件已作为微型传感器的主要敏感元件被广泛应用于不同的研究领域中。 微型传感器应用现状就当前技术发展现状来看,微型传感器已经对大量不同应用领域,如航空、远距离探测、医疗及工业自动化等领域的信号探测系统产生了深远影响;目前开发并进入实用阶段的微型传感器已可以用来测量各种物理量、化学量和生物量,如位移、速度/加速度、压力、应力、应变、声、光、电、磁、热、PH值、离子浓度及生物分子浓度等2 智能化(Smart)智能化传感器(Smart Sensor)是20世纪80年代末出现的另外一种涉及多种学科的新型传感器系统。此类传感器系统一经问世即刻受到科研界的普遍重视,尤其在探测器应用领域,如分布式实时探测、网络探测和多信号探测方面一直颇受欢迎,产生的影响较大。 智能化传感器的特点智能化传感器是指那些装有微处理器的,不但能够执行信息处理和信息存储,而且还能够进行逻辑思考和结论判断的传感器系统。这一类传感器就相当于是微型机与传感器的综合体一样,其主要组成部分包括主传感器、辅助传感器及微型机的硬件设备。如智能化压力传感器,主传感器为压力传感器,用来探测压力参数,辅助传感器通常为温度传感器和环境压力传感器。采用这种技术时可以方便地调节和校正由于温度的变化而导致的测量误差,而环境压力传感器测量工作环境的压力变化并对测定结果进行校正;而硬件系统除了能够对传感器的弱输出信号进行放大、处理和存储外,还执行与计算机之间的通信联络。通常情况下,一个通用的检测仪器只能用来探测一种物理量,其信号调节是由那些与主探测部件相连接着的模拟电路来完成的;但智能化传感器却能够实现所有的功能,而且其精度更高、价格更便宜、处理质量也更好。与传统的传感器相比,智能化传感器具有以下优点:1.智能化传感器不但能够对信息进行处理、分析和调节,能够对所测的数值及其误差进行补偿,而且还能够进行逻辑思考和结论判断,能够借助于一览表对非线性信号进行线性化处理,借助于软件滤波器滤波数字信号。此外,还能够利用软件实现非线性补偿或其它更复杂的环境补偿,以改进测量精度。2.智能化传感器具有自诊断和自校准功能,可以用来检测工作环境。当工作环境临近其极限条件时,它将发出告警信号,并根据其分析器的输入信号给出相关的诊断信息。当智能化传感器由于某些内部故障而不能正常工作时,它能够借助其内部检测链路找出异常现象或出了故障的部件。3.智能化传感器能够完成多传感器多参数混合测量,从而进一步拓宽了其探测与应用领域,而微处理器的介入使得智能化传感器能够更加方便地对多种信号进行实时处理。此外,其灵活的配置功能既能够使相同类型的传感器实现最佳的工作性能,也能够使它们适合于各不相同的工作环境。4.智能化传感器既能够很方便地实时处理所探测到的大量数据,也可以根据需要将它们存储起来。存储大量信息的目的主要是以备事后查询,这一类信息包括设备的历史信息以及有关探测分析结果的索引等;5.智能化传感器备有一个数字式通信接口,通过此接口可以直接与其所属计算机进行通信联络和交换信息。此外,智能化传感器的信息管理程序也非常简单方便,譬如,可以对探测系统进行远距离控制或者在锁定方式下工作,也可以将所测的数据发送给远程用户等。 智能化传感器的发展与应用现状目前,智能化传感器技术正处于蓬勃发展时期,具有代表意义的典型产品是美国霍尼韦尔公司的ST-3000系列智能变送器和德国斯特曼公司的二维加速度传感器,以及另外一些含有微处理器(MCU)的单片集成压力传感器、具有多维检测能力的智能传感器和固体图像传感器(SSIS)等。与此同时,基于模糊理论的新型智能传感器和神经网络技术在智能化传感器系统的研究和发展中的重要作用也日益受到了相关研究人员的极大重视。指出的一点是:目前的智能化传感器系统本身尽管全都是数字式的,但其通信协议却仍需借助于4~20 mA的标准模拟信号来实现。一些国际性标准化研究机构目前正在积极研究推出相关的通用现场总线数字信号传输标准;不过,在眼下过渡阶段仍大多采用远距离总线寻址传感器(HART)协议,即Highway Addressable Remote Transducer。这是一种适用于智能化传感器的通信协议,与目前使用4~20mA模拟信号的系统完全兼容,模拟信号和数字信号可以同时进行通信,从而使不同生产厂家的产品具有通用性。能化传感器多用于压力、力、振动冲击加速度、流量、温湿度的测量,如美国霍尼韦尔公司的ST3000系列全智能变送器和德国斯特曼公司的二维加速度传感器就属于这一类传感器。另外,智能化传感器在空间技术研究领域亦有比较成功的应用实例[6]。发展中,智能化传感器无疑将会进一步扩展到化学、电磁、光学和核物理等研究领域。可以预见,新兴的智能化传感器将会在关系到全人类国民生的各个领域发挥越来越大作用。3 多功能传感器(Multifunction)如前所述,通常情况下一个传感器只能用来探测一种物理量,但在许多应用领域中,为了能够完美而准确地反映客观事物和环境,往往需要同时测量大量的物理量。由若干种敏感元件组成的多功能传感器则是一种体积小巧而多种功能兼备的新一代探测系统,它可以借助于敏感元件中不同的物理结构或化学物质及其各不相同的表征方式,用单独一个传感器系统来同时实现多种传感器的功能。随着传感器技术和微机技术的飞速发展,目前已经可以生产出来将若干种敏感元件综装在同一种材料或单独一块芯片上的一体化多功能传感器。 多功能传感器的执行规则和结构模式概括来讲,多功能传感器系统主要的执行规则和结构模式包括:(1) 多功能传感器系统由若干种各不相同的敏感元件组成,可以用来同时测量多种参数。譬如,可以将一个温度探测器和一个湿度探测器配置在一起(即将热敏元件和湿敏元件分别配置在同一个传感器承载体上)制造成一种新的传感器,这样,这种新的传感器就能够同时测量温度和湿度。(2) 将若干种不同的敏感元件精巧地制作在单独的一块硅片中,从而构成一种高度综合化和小型化的多功能传感器。由于这些敏感元件是被综装在同一块硅片中的,它们无论何时都工作在同一种条件下,所以很容易对系统误差进行补偿和校正。(3)借助于同一个传感器的不同效应可以获得不同的信息。以线圈为例,它所表现出来的电容和电感是各不相同的。(4)在不同的激励条件下,同一个敏感元件将表现出来不同的特征。而在电压、电流或温度等激励条件均不相同的情况下,由若干种敏感元件组成的一个多功能传感器的特征可想而知将会是多么的千差万别!有时候简直就相当于是若干个不同的传感器一样,其多功能特征可谓名副其实。 多功能传感器的研制与应用现状多功能传感器无疑是当前传感器技术发展中一个全新的研究方向,日前有许多学者正在积极从事于该领域的研究工作。如将某些类型的传感器进行适当组合而使之成为新的传感器,如用来测量流体压力和互异压力的组合传感器。又如,为了能够以较高的灵敏度和较小的粒度同时探测多种信号,微型数字式三端口传感器可以同时采用热敏元件、光敏元件和磁敏元件;这种组配方式的传感器不但能够输出模拟信号,而且还能够输出频率信号和数字信号.从目前的发展现状来看,最热门的研究领域也许是各种类型的仿生传感器了,而且在感触、刺激以及视听辨别等方面已有最新研究成果问世。从实用的角度考虑,多功能传感器中应用较多的是各种类型的多功能触觉传感器,譬如人造皮肤触觉传感器就是其中之一,这种传感器系统由PVDF材料、无触点皮肤敏感系统以及具有压力敏感传导功能的橡胶触觉传感器等组成。据悉,美国MERRITT公司研制开发的无触点皮肤敏感系统获得了较大的成功,其无触点超声波传感器、红外辐射引导传感器、薄膜式电容传感器、以及温度、气体传感器等在美国本土应用甚广。与其它方面的研究成果相比,目前在人工嗅觉方面的研究还似乎远远不尽人意。由于嗅觉元件接收到的判别信号是非常复杂的,其中总是混合着成千上万种化学物质,这就使得嗅觉系统处理起这些信号来异常错综复杂。人工嗅觉传感系统的典型产品是功能各异的Electronic nose(电子鼻),近10多年来,该技术的发展很快,目前已有数种商品化的产品在国际市场流通,美、法、德、英等国家均有比较先进的电子鼻产品问世。“电子鼻”系统通常由一个交叉选择式气体传感器阵列和相关的数据处理技术组成,并配以恰当的模式识别系统,具有识别简单和复杂气味的能力,主要用来解决一般情况下的气味探测问题。根据应用对象的不同,“电子鼻”系统传感器阵列中传感器的构成材料及配置数量亦有所不同,其中,构成材料包括金属氧化物半导体、导电聚合物、石英晶振等,配置数量则从几个到数十个不等。总之,“电子鼻”系统是气体传感器技术和信息处理技术进行有效结合的高科技产物,其气体传感器的体积很小,功耗也很低,能够方便地捕获并处理气味信号。气流经过气体传感器阵列进入到“电子鼻”系统的信号预处理元件中,最后由阵列响应模式来确定其所测气体的特征。阵列响应模式采用关联法、最小二乘法、群集法以及主要元素分析法等方法对所测气体进行定性和定量鉴别。美国Cyranosciences公司生产的Cyranose 320电子鼻是目前技术较为先进、适用范围也比较广的嗅觉传感系统之一,该系统主要由传感器阵列和数据分析算法两部分组成,其基本技术是将若干个独特的薄膜式碳-黑聚合物复合材料化学电阻器配置成一个传感器阵列,然后采用标准的数据分析技术,通过分析由此传感器阵列所收集到的输出值的办法来识别未知分析物。据称,Cyranose 320电子鼻的适用范围包括食品与饮料的生产与保鲜、环境保护、化学品分析与鉴定、疾病诊断与医药分析以及工业生产过程控制与消费品的监控与管理等。4 无线网络化(wireless networked)无线网络对我们来说并不陌生,比如手机,无线上网,电视机。传感器对我们来说也不陌生,比如温度传感器、压力传感器,还有比较新颖的气味传感器。但是,把二者结合在起来,提出无线传感器网络(Wireless Sensor Networks)这个概念,却是近几年才发生的事情。这个网络的主要组成部分就是一个个可爱的传感器节点。说它们可爱,是因为它们的体积都非常小巧。这些节点可以感受温度的高低、湿度的变化、压力的增减、噪声的升降。更让人感兴趣的是,每一个节点都是一个可以进行快速运算的微型计算机,它们将传感器收集到的信息转化成为数字信号,进行编码,然后通过节点与节点之间自行建立的无线网络发送给具有更大处理能力的服务器 传感器网络传感器网络是当前国际上备受关注的、由多学科高度交叉的新兴前沿研究热点领域。传感器网络综合了传感器技术、嵌入式计算技术、现代网络及无线通信技术、分布式信息处理技术等,能够通过各类集成化的微型传感器协作地实时监测、感知和采集各种环境或监测对象的信息,通过嵌入式系统对信息进行处理,并通过随机自组织无线通信网络以多跳中继方式将所感知信息传送到用户终端。从而真正实现“无处不在的计算”理念。传感器网络的研究采用系统发展模式,因而必须将现代的先进微电子技术、微细加工技术、系统SOC(system-on-chip)芯片设计技术、纳米材料与技术、现代信息通讯技术、计算机网络技术等融合,以实现其微型化、集成化、多功能化及系统化、网络化,特别是实现传感器网络特有的超低功耗系统设计。传感器网络具有十分广阔的应用前景,在军事国防、工农业、城市管理、生物医疗、环境监测、抢险救灾、防恐反恐、危险区域远程控制等许多领域都有重要的科研价值和巨大实用价值,已经引起了世界许多国家军界、学术界和工业界的高度重视,并成为进入2000 年以来公认的新兴前沿热点研究领域,被认为是将对二十一世纪产生巨大影响力的技术之一。 传感器网络研究热点问题和关键技术传感器网络以应用为目标,其构建是一个庞大的系统工程,涉及到的研究工作和需要解决的问题在每一个层面上都很多。对无线传感器网络系统结构及界面接口技术的研究意义重大。如果我们把传感器网络按其功能抽象成五个层次的话,将会包括基础层(传感器集合)、网络层(通信网络)、中间件层、数据处理和管理层以及应用开发层。其中,基础层以研究新型传感器和传感系统为核心,包括应用新的传感原理、使用新的材料以及采用新的结构设计等,以降低能耗、提高敏感性、选择性、响应速度、动态范围、准确度、稳定性以及在恶劣环境条件下工作的能力。 传感器网络的应用研究传感器网络有着巨大的应用前景,被认为是将对21 世纪产生巨大影响力的技术之一。已有和潜在的传感器应用领域包括:军事侦察、环境监测、医疗、建筑物监测等等。随着传感器技术、无线通信技术、计算技术的不断发展和完善,各种传感器网络将遍布我们生活环境,从而真正实现“无处不在的计算”。以下简要介绍传感器网络的一些应用。(1)军事应用传感器网络研究最早起源于军事领域,实验系统有海洋声纳监测的大规模传感器网络,也有监测地面物体的小型传感器网络。现代传感器网络应用中,通过飞机撒播、特种炮弹发射等手段,可以将大量便宜的传感器密集地撒布于人员不便于到达的观察区域如敌方阵地内,收集到有用的微观数据;在一部分传感器因为遭破坏等原因失效时,传感器网络作为整传感器网络体仍能完成观察任务。传感器网络的上述特点使得它具有重大军事价值,可以应用于如下一些场景中:▉监测人员、装备等情况以及单兵系统:通过在人员、装备上附带各种传感器,可以让各级指挥员比较准确、及时地掌握己方的保存状态。通过在敌方阵地部署各种传感器,可以了解敌方武器部署情况,为己方确定进攻目标和进攻路线提供依据。▉监测敌军进攻:在敌军驻地和可能的进攻路线上部署大量传感器,从而及时发现敌军的进攻行动、争取宝贵的应对时间。并可根据战况快速调整和部署新的传感器网络。▉评估战果:在进攻前后,在攻击目标附近部署传感器网络,从而收集目标被破坏程度的数据。▉核能、生物、化学攻击的侦察:借助于传感器网络可以及早发现己方阵地上的生、化污染,提供快速反应时间从而减少损失。不派人员就可以获取一些核、生、化爆炸现场的详细数据。(2)环境应用应用于环境监测的传感器网络,一般具有部署简单、便宜、长期不需更换电池、无需派人现场维护的优点。通过密集的节点布置,可以观察到微观的环境因素,为环境研究和环境监测提供了崭新的途径传感器网络研究在环境监测领域已经有很多的实例。这些应用实例包括:对海岛鸟类生活规律的观测;气象现象的观测和天气预报;森林火警;生物群落的微观观测等▉洪灾的预警:通过在水坝、山区中关键地点合理地布置一些水压、土壤湿度等传感器,可以在洪灾到来之前发布预警信息,从而及时排除险情或者减少损失。▉农田管理:通过在农田部署一定密度的空气温度、土壤湿度、土壤肥料含量、光照强度、风速等传感器,可以更好地对农田管理微观调控,促进农作物生长。(3)家庭应用建筑及城市管理各种无线传感器可以灵活方便地布置于建筑物内,获取室内环境参数,从而为居室环境控制和危险报警提供依据。▉ 智能家居:通过布置于房间内的温度、湿度、光照、空气成分等无线传感器,感知居室不同部分的微观状况,从而对空调、门窗以及其他家电进行自动控制,提供给人们智能、舒适的居住环境[16]。▉建筑安全:通过布置于建筑物内的图像、声音、气体检测、温度、压力、辐射等传感器,发现异常事件及时报警,自动启动应急措施。▉智能交通:通过布置于道路上的速度、识别传感器,监测交通流量等信息,为出行者提供信息服务,发现违章能及时报警和记录[17]。反恐和公共安全通过特殊用途的传感器,特别是生物化学传感器监测有害物、危险物的信息,最大限度地减少其对人民群众生命安全造成的伤害。(4)结论无线传感器网络有着十分广泛的应用前景,它不仅在工业、农业、军事、环境、医疗等传统领域有具有巨大的运用价值,在未来还将在许多新兴领域体现其优越性,如家用、保健、交通等领域。我们可以大胆的预见,将来无线传感器网络将无处不在,将完全融入我们的生活。比如微型传感器网最终可能将家用电器、个人电脑和其他日常用品同互联网相连,实现远距离跟踪,家庭采用无线传感器网络负责安全调控、节电等。无线传感器网络将是未来的一个无孔不入的十分庞大的网络,其应用可以涉及到人类日常生活和社会生产活动的所有领域。但是,我们还应该清楚的认识到,无线传感器网络才刚刚开始发展,它的技术、应用都还还远谈不上成熟,国内企业应该抓住商机,加大投入力度,推动整个行业的发展。无线传感器网络是新兴的通信应用网络,其应用可以涉及到人类生活和社会活动的所有领域。因此,无线传感器网络将是未来的一个无孔不入的十分庞大的网络,需要各种技术支撑。目前,成熟的通信技术都可能经过适当的改进和进一步发展,应用到无线传感器网络中,形成新的市场增长点,创造无线通信的新天地。5 结语当前技术水平下的传感器系统正向着微小型化、智能化、多功能化和网络化的方向发展。今后,随着CAD技术、MEMS技术、信息理论及数据分析算法的继续向前发展,未来的传感器系统必将变得更加微型化、综合化、多功能化、智能化和系统化。在各种新兴科学技术呈辐射状广泛渗透的当今社会,作为现代科学“耳目”的传感器系统,作为人们快速获取、分析和利用有效信息的基础,必将进一步得到社会各界的普遍关注。微波传感器依靠微波的很多优点,将广泛地用于微波通讯、卫星发送等无线通讯,和雷达、导弹诱导、遥感、射电望远镜中。并且在一些非接触式的监测和控制中也有很好的应用。
Pressure sensor is the most commonly used industrial practice of a sensor, widely used in a variety of CNC in the field and pressure sensors is in the automotive, weather forecasting, climate analysis, environmental testing, aerospace, and played an increasingly important effect. Especially in recent years has become a hot topic of climate change, frequent natural disasters, weather and people more concerned about climate change. Compared with the resistive pressure sensors, capacitive pressure sensors due to its relatively high sensitivity, low power, low noise, large dynamic range, high stability and low drift characteristics, which is becoming a hot spot. However, due to the complexity of the design and interface circuit matching requirements, capacitive pressure sensors occupy only a small part of the pressure sensor market share. Miniaturization has been the development of a sensor the direction of interest. Output capacitor is usually in a few pF, even as small as . So capacitance detection circuit is particularly important, especially in the small capacitor, there is no interface circuits can not be used. The issue of task structure for the capacitive pressure sensor circuit design of the interface to the sensor capacitance detection, self-designed in this laboratory for the design of the capacitive pressure sensor capacitance detection circuit and tested.
参考下: 进入21世纪后,特别在我国加入WTO后,国内产品面临巨大挑战。各行业特别是传统产业都急切需要应用电子技术、自动控制技术进行改造和提升。例如纺织行业,温湿度是影响纺织品质量的重要因素,但纺织企业对温湿度的测控手段仍很粗糙,十分落后,绝大多数仍在使用干湿球湿度计,采用人工观测,人工调节阀门、风机的方法,其控制效果可想而知。制药行业里也基本如此。而在食品行业里,则基本上凭经验,很少有人使用湿度传感器。值得一提的是,随着农业向产业化发展,许多农民意识到必需摆脱落后的传统耕作、养殖方式,采用现代科学技术来应付进口农产品的挑战,并打进国外市场。各地建立了越来越多的新型温室大棚,种植反季节蔬菜,花卉;养殖业对环境的测控也日感迫切;调温冷库的大量兴建都给温湿度测控技术提供了广阔的市场。我国已引进荷兰、以色列等国家较先进的大型温室四十多座,自动化程度较高,成本也高。国内正在逐步消化吸收有关技术,一般先搞调温、调光照,控通风;第二步搞温湿度自动控制及CO2测控。此外,国家粮食储备工程的大量兴建,对温湿度测控技术提也提出了要求。 但目前,在湿度测试领域大部分湿敏元件性能还只能使用在通常温度环境下。在需要特殊环境下测湿的应用场合大部分国内包括许多国外湿度传感器都会“皱起眉头”!例如在上面提到纺织印染行业,食品行业,耐高温材料行业等,都需要在高温情况下测量湿度。一般情况下,印染行业在纱锭烘干中,温度能达到120摄氏度或更高温度;在食品行业中,食物的烘烤温度能达到80-200摄氏度左右;耐高温材料,如陶瓷过滤器的烘干等能达到200摄氏度以上。在这些情况下,普通的湿度传感器是很难测量的。 高分子电容式湿度传感器通常都是在绝缘的基片诸如玻璃、陶瓷、硅等材料上,用丝网漏印或真空镀膜工艺做出电极,再用浸渍或其它办法将感湿胶涂覆在电极上做成电容元件。湿敏元件在不同相对湿度的大气环境中,因感湿膜吸附水分子而使电容值呈现规律性变化,此即为湿度传感器的基本机理。影响高分子电容型元件的温度特性,除作为介质的高分子聚合物的介质常数ε及所吸附水分子的介电常数ε受温度影响产生变化外,还有元件的几何尺寸受热膨胀系数影响而产生变化等因素。根据德拜理论的观点,液体的介电常数ε是一个与温度和频率有关的无量纲常数。水分子的ε在T=5℃时为,在T=20℃时为。有机物ε与温度的关系因材料而异,且不完全遵从正比关系。在某些温区ε随T呈上升趋势,某些温区ε随T增加而下降。多数文献在对高分子湿敏电容元件感湿机理的分析中认为:高分子聚合物具有较小的介电常数,如聚酰亚胺在低湿时介电常数为一。而水分子介电常数是高分子ε的几十倍。因此高分子介质在吸湿后,由于水分子偶极距的存在,大大提高了吸水异质层的介电常数,这是多相介质的复合介电常数具有加和性决定的。由于ε的变 化,使湿敏电容元件的电容量C与相对湿度成正比。在设计和制作工艺中很难组到感湿特性全湿程线性。作为电容器,高分子介质膜的厚度d和平板电容的效面积S也和温度有关。温度变化所引起的介质几何尺寸的变化将影响C值。高分子聚合物的平均热线胀系数可达到 的量级。例如硝酸纤维素的平均热线胀系数为108x10-5/℃。随着温度上升,介质膜厚d增加,对C呈负贡献值;但感湿膜的膨胀又使介质对水的吸附量增加,即对C呈正值贡献。可见湿敏电容的温度特性受多种因素支配,在不同的湿度范围温漂不同;在不同的温区呈不同的温度系数;不同的感湿材料温度特性不同。总之,高分子湿度传感器的温度系数并非常数,而是个变量。所以通常传感器生产厂家能在-10-60摄氏度范围内是传感器线性化减小温度对湿敏元件的影响。 国外厂家比较优质的产品主要使用聚酰胺树脂,产品结构概要为在硼硅玻璃或蓝宝石衬底上真空蒸发制作金电极,再喷镀感湿介质材料(如前所述)形式平整的感湿膜,再在薄膜上蒸发上金电极.湿敏元件的电容值与相对湿度成正比关系,线性度约±2%。虽然,测湿性能还算可以但其耐温性、耐腐蚀性都不太理想,在工业领域使用,寿命、耐温性和稳定性、抗腐蚀能力都有待于进一步提高。 陶瓷湿敏传感器是近年来大力发展的一种新型传感器。优点在于能耐高温,湿度滞后,响应速度快,体积小,便于批量生产,但由于多孔型材质,对尘埃影响很大,日常维护频繁,时常需要电加热加以清洗易影响产品质量,易受湿度影响,在低湿高温环境下线性度差,特别是使用寿命短,长期可靠性差,是此类湿敏传感器迫切解决的问题。 当前在湿敏元件的开发和研究中,电阻式湿度传感器应当最适用于湿度控制领域,其代表产品氯化锂湿度传感器具有稳定性、耐温性和使用寿命长多项重要的优点,氯化锂湿敏传感器已有了五十年以上的生产和研究的历史,有着多种多样的产品型式和制作方法,都应用了氯化锂感湿液具备的各种优点尤其是稳定性最强。 氯化锂湿敏器件属于电解质感湿性材料,在众多的感湿材料之中,首先被人们所注意并应用于制造湿敏器件,氯化锂电解质感湿液依据当量电导随着溶液浓度的增加而下降。电解质溶解于水中降低水面上的水蒸气压的原理而实现感湿。 氯化锂湿敏器件的衬底结构分柱状和梳妆,以氯化锂聚乙烯醇涂覆为主要成份的感湿液和制作金质电极是氯化锂湿敏器件的三个组成部分。多年来产品制作不断改进提高,产品性能不断得到改善,氯化锂感湿传感器其特有的长期稳定性是其它感湿材料不可替代的,也是湿度传感器最重要的性能。在产品制作过程中,经过感湿混合液的配制和工艺上的严格控制是保持和发挥这一特性的关键。 在国内九纯健科技依托于国家计量科学研究院、中科院自动化研究所、化工研究院等大型科研单位从事温湿度传感器产品的研制、生产。选用氯化锂感湿材料作为主攻方向,生产氯化锂湿敏传感器及相关变送器,自动化仪表等产品,在吸取了国内外此项技术的成功经验的同时,努力克服传统产品存在的各项弱点,取得实质性进展。产品选用了Al2O3及SiO2陶瓷基片为衬底,基片面积大大缩小,采用特殊的工艺处理,耐湿性和粘覆性均大大提高。使用烧结工艺,在衬底集片上烧结5个9的工业纯金制成的梳妆电极,氯化锂感湿混合液使用新产品添加剂和固有成份混合经过特殊的老化和涂覆工艺后,湿敏基片的使用寿命和长期稳定性大大提高,特别是耐温性达到了-40℃-120℃,以多片湿敏元件组合的独特工艺,是传感器感湿范围为1%RH-98%RH,具备了15%RH范围以下的测量性能,漂移曲线和感湿曲线均实现了较好的线性化水平,使湿度补偿得以方便实施并较容易地保证了宽温区的测湿精度。采用循环降温装置封闭系统,先对对被测气体采样,然后降温检测并确保绝对湿度的恒定,使探头耐温范围提高到600℃左右,大大增强了高温下测湿的功能。成功解决了“高温湿度测量”这一湿度测量领域难题。现在,不采用任何装置直接测量150度以内环境中的湿度的分体式高温型温湿度传感器JCJ200W已成功应用在木材烘干,高低温试验箱等系统中。同时,JCJ200Y产品能耐温高达600度,也已成功应用在印染行业纱锭自动烘干系统、食品自动烘烤系统、特殊陶瓷材料的自动烘干系统、出口大型烘干机械等方面,并表现出良好的效果,为国内自动化控制域填补了高温湿度测量的空白,为我国工业化进程奠定了一定基础。传感器论文: 低温下压阻式压力传感器性能的实验研究 Experimental Study On Performance Of Pressure Transducer At Low Temperature .... 灌区水位测量记录设备及安装技术 摘要:水位测量施测简单直观,易于为广大用水户所接受而且便于自动观测,因而在灌区水量计量乃至在整个灌区信息化建设中都占有十分重要的地位。目前我国灌区中水位监测采用的传感器依据输出量的不同主要分为模拟传感.... 主成分分析在空调系统传感器故障检测与诊断中的应用研究 摘要 本文阐述了用主成分分析法进行系统测量数据建模和传感器故障检测、故障诊断、故障重构及确定最优主成分数的原理。用主成分分析法对空调监测系统中的四类传感器故障进行检测方法。结果表明:主成.... 透光脉动传感器的影响因素研究 摘要:通过试验研究和总结生产应用经验,对透光脉动传感器的影响因素进行了分析,并提出了其最优工作参数。光源宜选择波长为860nm的激光二极管;传感器的管径根据使用目的确定,试验研究一般选用1~3mm,生.... 生物传感器的研究现状及应用 摘要:简述了生物传感器尤其是微生物传感器近年来在发酵工业及环境监测领域中的研究与应用,对其发展前景及市场化作了预测及展望。生物电极是以固定化生物体组成作为分子识别元件的敏感材料,与氧电极、膜电极和燃料.... 方向盘转角传感器接口 汽车环境对电子产品而言是非常苛刻的:任何连接到12V电源上的电路都必须工作在9V至16V的标称电压范围内,其它需要迫切应对的问题包括负载突降、冷车发动、电池反向、双电池助推、尖峰信号、噪声和极宽的温度.... 用于电容传感器接口的模拟前端元件 因为采用了传统机械开关,用户使用电容传感器接口的方式直接与各种工作条件下(可靠性)接触传感器的响应度(员敏度)梧关。本文将介绍一些通用电容传感器模拟前端测量方法 灵敏度 电容传感器的灵敏度是由其物理结.... 智能传感器与现代汽车电子 现代汽车电子从所应用的电子元器件到车内电子系统的架构均已进入了一个有本质性提高的新阶段。其中最有代表性的核心器件之一就是智能传感器。 一、汽车电子操控和安全系统谈起 近几年来我国汽车工业增长迅速,发展.... 霍尔元件是一种基于霍尔效应的磁传感器,已发展成一个品种多样的磁传感器产品族,并已得到广泛的应用。本文简要介绍其工作原理, 产品特性及其典型应用。 霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。 霍尔线性器件的精度高、线性度好;霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高(可达μm级)。取用了各种补偿和保护措施的霍尔器件的工作温度范围宽,可达-55℃~150℃。 按照霍尔器件的功能可将它们分为: 霍尔线性器件 和 霍尔开关器件 。前者输出模拟量,后者输出数字量。 按被检测的对象的性质可将它们的应用分为:直接应用和间接应用。前者是直接检测出受检测对象本身的磁场或磁特性,后者是检测受检对象上人为设置的磁场,用这个磁场来作被检测的信息的载体,通过它,将许多非电、非磁的物理量例如力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电量来进行检测和控制。 一 霍尔器件的工作原理 在磁场作用下,通有电流的金属片上产生一横向电位差如图1所示: 这个电压和磁场及控制电流成正比: VH=K╳|H╳IC| 式中VH为霍尔电压,H为磁场,IC为控制电流,K为霍尔系数。 在半导体中霍尔效应比金属中显著,故一般霍尔器件是采用半导体材料制作的。 用霍尔器件,可以进行非接触式电流测量,众所周知,当电流通过一根长的直导线时,在导线周围产生磁场,磁场的大小与流过导线的电流成正比,这一磁场可以通过软磁材料来聚集,然后用霍尔器件进行检测,由于磁场与霍尔器件的输出有良好的线性关系,因此可利用霍尔器件测得的讯号大小,直接反应出电流的大小,即: I∞B∞VH 其中I为通过导线的电流,B为导线通电流后产生的磁场,VH为霍尔器件在磁场B中产生的霍尔电压、当选用适当比例系数时,可以表示为等式。霍尔传感器就是根据这种工作原理制成的。 二 霍尔传感器的应用 1 霍尔接近传感器和接近开关 在霍尔器件背后偏置一块永久磁体,并将它们和相应的处理电路装在一个壳体内,做成一个探头,将霍尔器件的输入引线和处理电路的输出引线用电缆连接起来,构成如图1所示的接近传感器。它们的功能框见图19。(a)为霍尔线性接近传感器,(b)为霍尔接近开关。 图1 霍尔接近传感器的外形图 a)霍尔线性接近传感器 (b)霍尔接近开关 图2 霍尔接近传感器的功能框图 霍尔线性接近传感器主要用于黑色金属的自控计数,黑色金属的厚度检测、距离检测、齿轮数齿、转速检测、测速调速、缺口传感、张力检测、棉条均匀检测、电磁量检测、角度检测等。 霍尔接近开关主要用于各种自动控制装置,完成所需的位置控制,加工尺寸控制、自动计数、各种计数、各种流程的自动衔接、液位控制、转速检测等等。霍尔翼片开关 霍尔翼片开关就是利用遮断工作方式的一种产品,它的外形如图20所示,其内部结构及工作原理示于图21。 图3 霍尔翼片开关的外形图 2 霍尔齿轮传感器 如图4所示,新一代的霍尔齿轮转速传感器,广泛用于新一代的汽车智能发动机,作为点火定时用的速度传感器,用于ABS(汽车防抱死制动系统)作为车速传感器等。 在ABS中,速度传感器是十分重要的部件。ABS的工作原理示意图如图23所示。图中,1是车速齿轮传感器;2是压力调节器;3是控制器。在制动过程中,控制器3不断接收来自车速齿轮传感器1和车轮转速相对应的脉冲信号并进行处理,得到车辆的滑移率和减速信号,按其控制逻辑及时准确地向制动压力调节器2发出指令,调节器及时准确地作出响应,使制动气室执行充气、保持或放气指令,调节制动器的制动压力,以防止车轮抱死,达到抗侧滑、甩尾,提高制动安全及制动过程中的可驾驭性。在这个系统中,霍尔传感器作为车轮转速传感器,是制动过程中的实时速度采集器,是ABS中的关键部件之一。 在汽车的新一代智能发动机中,用霍尔齿轮传感器来检测曲轴位置和活塞在汽缸中的运动速度,以提供更准确的点火时间,其作用是别的速度传感器难以代替的,它具有如下许多新的优点。 (1)相位精度高,可满足°曲轴角的要求,不需采用相位补偿。 (2)可满足度曲轴角的熄火检测要求。 (3)输出为矩形波,幅度与车辆转速无关。在电子控制单元中作进一步的传感器信号调整时,会降低成本。 用齿轮传感器,除可检测转速外,还可测出角度、角速度、流量、流速、旋转方向等等。 图4 霍尔速度传感器的内部结构 1. 车轮速度传感器2.压力调节器3.电子控制器 2. 图4 ABS气制动系统的工作原理示意图 3 旋转传感器 按图5所示的各种方法设置磁体,将它们和霍尔开关电路组合起来可以构成各种旋转传感器。霍尔电路通电后,磁体每经过霍尔电路一次,便输出一个电压脉冲。 (a)径向磁极(b)轴向磁极(c)遮断式 图5 旋转传感器磁体设置 由此,可对转动物体实施转数、转速、角度、角速度等物理量的检测。在转轴上固定一个叶轮和磁体,用流体(气体、液体)去推动叶轮转动,便可构成流速、流量传感器。在车轮转轴上装上磁体,在靠近磁体的位置上装上霍尔开关电路,可制成车速表,里程表等等,这些应用的实例如图25所示。 图6的壳体内装有一个带磁体的叶轮,磁体旁装有霍尔开关电路,被测流体从管道一端通入,推动叶轮带动与之相连的磁体转动,经过霍尔器件时,电路输出脉冲电压,由脉冲的数目,可以得到流体的流速。若知管道的内径,可由流速和管径求得流量。霍尔电路由电缆35来供电和输出。 图6 霍尔流量计 由图7可见,经过简单的信号转换,便可得到数字显示的车速。 利用锁定型霍尔电路,不仅可检测转速,还可辨别旋转方向,如图27所示。 曲线1对应结构图(a),曲线2对应结构图(b),曲线3对应结构图(c)。 图7 霍尔车速表的框图 图8 利用霍尔开关锁定器进行方向和转速测定 4 在大电流检测中的应用 在冶金、化工、超导体的应用以及高能物理(例如可控核聚变)试验装置中都有许多超大型电流用电设备。用多霍尔探头制成的电流传感器来进行大电流的测量和控制,既可满足测量准确的要求,又不引入插入损耗,还免除了像使用罗果勘斯基线圈法中需用的昂贵的测试装置。图9示出一种用于DⅢ-D托卡马克中的霍尔电流传感器装置。采用这种霍尔电流传感器,可检测高达到300kA的电流。 图9(a)为G-10安装结构,中心为电流汇流排,(b)为电缆型多霍尔探头,(c)为霍尔电压放大电路。 (a)G�10安装结构(b)电缆型多霍尔探头(c)霍尔电压放大电路 图9 多霍尔探头大电流传感器 图10霍尔钳形数字电流表线路示意图 图11霍尔功率计原理图 (a)霍尔控制电路 (b)霍尔磁场电路 图12霍尔三相功率变送器中的霍尔乘法器 图13霍尔电度表功能框图 图14霍尔隔离放大器的功能框图 5 霍尔位移传感器 若令霍尔元件的工作电流保持不变,而使其在一个均匀梯度磁场中移动,它输出的霍尔电压VH值只由它在该磁场中的位移量Z来决定。图15示出3种产生梯度磁场的磁系统及其与霍尔器件组成的位移传感器的输出特性曲线,将它们固定在被测系统上,可构成霍尔微位移传感器。从曲线可见,结构(b)在Z<2mm时,VH与Z有良好的线性关系,且分辨力可达1μm,结构(C)的灵敏度高,但工作距离较小。 图15 几种产生梯度磁场的磁系统和几种霍尔位移传感器的静态特性 用霍尔元件测量位移的优点很多:惯性小、频响快、工作可靠、寿命长。 以微位移检测为基础,可以构成压力、应力、应变、机械振动、加速度、重量、称重等霍尔传感器。 6 霍尔压力传感器 霍尔压力传感器由弹性元件,磁系统和霍尔元件等部分组成,如图16所示。在图16中,(a)的弹性元件为膜盒,(b)为弹簧片,(c)为波纹管。磁系统最好用能构成均匀梯度磁场的复合系统,如图29中的(a)、(b),也可采用单一磁体,如(c)。加上压力后,使磁系统和霍尔元件间产生相对位移,改变作用到霍尔元件上的磁场,从而改变它的输出电压VH。由事先校准的p~f(VH)曲线即可得到被测压力p的值。 图16 几种霍尔压力传感器的构成原理 7 霍尔加速度传感器 图17示出霍尔加速度传感器的结构原理和静态特性曲线。在盒体的O点上固定均质弹簧片S,片S的中部U处装一惯性块M,片S的末端b处固定测量位移的霍尔元件H,H的上下方装上一对永磁体,它们同极性相对安装。盒体固定在被测对象上,当它们与被测对象一起作垂直向上的加速运动时,惯性块在惯性力的作用下使霍尔元件H产生一个相对盒体的位移,产生霍尔电压VH的变化。可从VH与加速度的关系曲线上求得加速度。 图17 霍尔加速度传感器的结构及其静态特性 三 小结 目前霍尔传感器已从分立元件发展到了集成电路的阶段,正越来越受到人们的重视,应用日益广泛。
传感器(英文名称:transducer/sensor)是直接作用于被测量、并能按一定规律将其转化为同种或别种量值输出的器件。这是我为大家整理的传感器技术论文 范文 ,仅供参考!传感器技术论文范文篇一 传感器及其概述 摘 要 传感器(英文名称:transducer/sensor)是直接作用于被测量、并能按一定规律将其转化为同种或别种量值输出的器件。目前,传感器转换后的信号大多是电信号,因而从狭义上讲,传感器是把外界输入的非电信号转换为电信号的装置。 【关键词】传感器 种类 新型 1 前言 传感器是测试系统的一部分,其作用类似于人类的感觉器官,也可以认为是人类感官的延伸。人们借助传感器可以去探测那些人们无法用或不便用感官直接感知的事物,如用热电偶可以测量炽热物体的温度;用超声波换能器可以测海水深度;用红外遥感器可从高空探测地面形貌、河流状态及植被的分布等。因此,可以说传感器是人们认识自然界事物的有力工具,是测量仪器与被测量物体之间的接口。通常情况下,传感器处于测试装置的输入端,是测试系统的第一个环节,其性能直接影响着整个测试系统,对测试精度有很大影响。 2 传感器的分类 按被测物理量的不同,可以分为位移、力、温度、流量传感器等;按工作的基础不同,可以分为机械式传感器、电气式传感器、光学式传感器、流体式传感器等;按信号变换特征可以分为物性型传感器和结构型传感器;根据敏感元件与被测对象直接的能量关系,可以分为能量转换型传感器与能量控制型传感器。 3 常见传感器介绍 电阻应变式传感器 电阻应变式传感器又叫电阻应变计,其敏感元件是电阻应变。应变片是在用苯酚,环氧树脂等绝缘材料浸泡过的玻璃基板上,粘贴直径为左右的金属丝或金属箔制成。敏感元件也叫敏感栅。其具有体积小、动态响应快、测量精度高、使用简单等优点。在航空、机械、建筑等各行业获得了广泛应用。电阻应变片的工作原理是基于金属的应变效应,即金属导体在外力作用下产生机械形变,其电阻值随机械变形的变化而变化。其可以分为:金属电阻应变片和半导体应变片式两类。金属应变片有金属丝式、箔式、薄膜式之分。半导体应变片具有灵敏度高(通常是丝式、箔式的几十倍)、横向效应小等优点。它们的主要区别在于:金属电阻应变片式是利用导体形变引起电阻变化,而半导体应变片式则是利用电阻率变化引起电阻的变化。 电容式传感器 电容式传感器是将被测物理量转换成电容量变化的装置,它实质是一个具有可变参数的电容器。由于电容与极距成反比,与正对面积和介质成正比,因此其可以分为极距变化型、面积变化型和介质变化型三类。极距变化型电容传感器的优点是可进行动态非接触式测量,对被测系统的影响小,灵敏度高,适用于较小位移的测量,但这种传感器有非线性特性,因此使用范围受到一定限制。面积变化型传感器的优点是输出与输入成线性关系,但与极距型传感器相比,灵敏度较低,适用于较大的直线或角位移的测量。介质变化型则多用于测量液体的高度等场合。 电感式传感器 电感式传感器是将被测物理量,如力、位移等,转换为电感量变换的一种装置,其变换是基于电磁感应原理。电感式传感器种类很多,常见的有自感式,互感式和涡流式三种。 电感式传感器具有以下特点:结构简单,传感器无活动电触点,因此工作可靠寿命长。灵敏度和分辨力高,能测出微米的位移变化。传感器的输出信号强,电压灵敏度一般每毫米的位移可达数百毫伏的输出。线性度和重复性都比较好,在一定位移范围(几十微米至数毫米)内,传感器非线性误差可达~。同时,这种传感器能实现信息的远距离传输、记录、显示和控制,它在工业自动控制系统中广泛被采用。但不足的是,它有频率响应较低,不宜快速动态测控等缺点。 磁电式传感器 磁电式传感器是把被测物理量转换为感应电动势的一种传感器,又称电磁感应式或电动力式传感器。其工作原理是一个匝数为N的线圈,当穿过它的磁通量变化时,线圈产生了感应电动势。磁通量的变化可通过多种方式来实现,如磁铁与线圈做切割磁力线运动、磁路的磁阻变化、恒定磁场中线圈面积的变化,因此可制造出不同类型的传感器用于测量速度、扭矩等。 压电式传感器 压电式传感器是一种可逆传感器,是利用某些物质的压电效应进行工作的器件。最简单的压电式传感器是在压电晶片的两个工作面上进行金属蒸镀,形成金属膜,构成两个电极。当晶片受压力时,两个极板上聚集数量相等而极性相反的电荷,形成电场。因此压电传感器可以看成是电荷发生器,又可以看作电容器。 4 新型传感器 生物传感器 生物传感器是用生物活性材料(酶、蛋白质、DNA、抗体、抗原、生物膜等)与物理化学换能器有机结合的一门交叉学科,是发展生物技术必不可少的一种先进的检测 方法 与监控方法,也是物质分子水平的快速、微量分析方法。各种生物传感器有以下共同的结构:包括一种或数种相关生物活性材料(生物膜)及能把生物活性表达的信号转换为电信号的物理或化学换能器(传感器),二者组合在一起,用现代微电子和自动化仪表技术进行生物信号的再加工,构成各种可以使用的生物传感器分析装置、仪器和系统。生物传感器的原理:待测物质经扩散作用进入生物活性材料,经分子识别,发生生物学反应,产生的信息继而被相应的物理或化学换能器转变成可定量和可处理的电信号,再经二次仪表放大并输出,便可知道待测物浓度。 激光传感器 激光传感器:利用激光技术进行测量的传感器。它由激光器、激光检测器和测量电路组成。激光传感器是新型测量仪表,它的优点是能实现无接触远距离测量,速度快,精度高,量程大,抗光、电干扰能力强等。激光传感器原理:激光传感器工作时,先由激光发射二极管对准目标发射激光脉冲。经目标反射后激光向各方向散射。部分散射光返回到传感器接收器,被光学系统接收后成像到雪崩光电二极管上。雪崩光电二极管是一种内部具有放大功能的光学传感器,因此它能检测极其微弱的光信号,并将其转化为相应的电信号。 5 结束语 随着科技的飞速发展,人们不断提高着自身认知世界的能力。传感器在获取自然和生产领域中发挥着巨大上的作用。目前,传感器技术在发展经济、推动社会进步方面起到重要的推动作用。相信未来,传感器技术将会出现一个飞跃。 作者简介 杨天娟(1991-),女,河北省邯郸市人。现为郑州大学本科生,主要研究方向为机械工程及自动化。 作者单位 郑州大学机械工程学院 河南省郑州市 450001 传感器技术论文范文篇二 温度传感器 摘 要:温度传感器是最早开发、也是应用最广泛的一种传感器。据调查,早在1990年,温度传感器的市场份额就大大超出了 其它 传感器。从17世纪初,伽利略发明温度计开始,人们便开始了温度测量。而真正把温度转换成电信号的传感器,是1821年德国物理学家赛贝发明的,也就是我们现在使用的热电偶传感器。随后,铂电阻温度传感器、半导体热电偶温度传感器、PN结温度传感器、集成温度传感器相继而生。也使得温度传感器更加广泛的应用到我们的生产和生活中。本文主要介绍了温度传感器的分类、工作原理及应用。 关键词:温度传感器;温度;摄氏度 中图分类号:TP212 文献标识码:A 文章 编号:1674-7712 (2014) 02-0000-01 温度传感器(temperature transducer),利用物质各种物理性质随温度变化的规律把温度转换为可用输出信号。温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类。现代的温度传感器外形非常得小,这样更加让它广泛应用在生产实践的各个领域中,也为我们的生活提供了无数的便利和功能。 一、温度的相关知识 温度是用来表征物体冷热程度的物理量。温度的高低要用数字来量化,温标就是温度的数值表示方法。常用温标有摄氏温标和热力学温标。 摄氏温标是把标准大气压下,沸水的温度定为100摄氏度,冰水混合物的温度定为0摄氏度,在100摄氏度和0摄氏度之间进行100等份,每一等份为1摄氏度。热力学温标是威廉汤姆提出的,以热力学第二定律为基础,建立温度仅与热量有关而与物质无关的热力学温标。由于是开尔文 总结 出来的,所以又称为开尔文温标。 二、温度传感器的分类 根据测量方式不同,温度传感器分为接触式和非接触式两大类。接触式温度传感器是指传感器直接与被测物体接触,从而进行温度测量。这也是温度测量的基本形式。其中接触式温度传感器又分为热电偶温度传感器、热电阻温度传感器、半导体热敏电阻温度传感器等。 非接触式温度传感器是测量物体热辐射发出的红外线,从而测量物体的温度,可以进行遥测。 三、温度传感器的工作原理 (一)热电偶温度传感器。热电偶温度传感器结构简单,仅由两根不同材料的导体或半导体焊接而成,是应用最广泛的温度传感器。 热电偶温度传感器是根据热电效应原理制成的:把两种不同的金属A、B组成闭合回路,两接点温度分别为t1和t2,则在回路中产生一个电动势。 热电偶也是由两种不同材料的导体或半导体A、B焊接而成,焊接的一端称为工作端或热端。与导线连接的一端称为自由端或冷端,导体A、B称为热电极,总称热电偶。测量时,工作端与被测物相接触,测量仪表为电位差计,用来测出热电偶的热电动势,连接导线为补偿导线及铜导线。 从测量仪表上,我们观测到的便是热电动势,而要想知道物体的温度,还需要查看热电偶的分度表。 为了保证温度测量结果足够精确,在热电极材料的选择方面也有严格的要求:物理、化学稳定性要高;电阻温度系数小;导电率高;热电动势要大;热电动势与温度要有线性或简单的函数关系;复现性好;便于加工等。根据我们常用的热电极材料,热电偶温度传感器可分为标准化热电偶和非标准化热电偶。铂铑-铂热电偶是常用的标准化热电偶,熔点高,可用于测量高温,误差小,但价格昂贵,一般适用于较为精密的温度测量。铁-康铜为常用的非标准化热电偶,测温上限为600摄氏度,易生锈,但温度与热电动势线性关系好,灵敏度高。 (二)电阻式温度传感器。热电偶温度传感器虽然结构简单,测量准确,但仅适用于测量500摄氏度以上的高温。而要测量-200摄氏度到500摄氏度的中低温物体,就要用到电阻式温度传感器。 电阻式温度传感器是利用导体或者半导体的电阻值随温度变化而变化的特性来测量温度的。大多数金属在温度升高1摄氏度时,电阻值要增加到。电阻式温度传感器就是要将温度的变化转化为电阻值的变化,再通过测量电桥转换成电压信号送至显示仪表。 (三)半导体热敏电阻。半导体热敏电阻的特点是灵敏度高,体积小,反应快,它是利用半导体的电阻值随温度显著变化的特性制成的。可分为三种类型:(1)NTC热敏电阻,主要是Mn,Co,Ni,Fe等金属的氧化物烧结而成,具有负温度系数。(2)CTR热敏电阻,用V,Ge,W,P等元素的氧化物在弱还原气氛中形成烧结体,它也是具有负温度系数的。(3)PTC热敏电阻,以钛酸钡掺和稀土元素烧结而成的半导体陶瓷元件,具有正温度系数。也正是因为PTC热敏电阻具有正温度系数,也制作成温度控制开关。 (四)非接触式温度传感器。非接触式温度传感器的测温元件与被测物体互不接触。目前最常用的是辐射热交换原理。这种测温方法的主要特点是:可测量运动状态的小目标及热容量小或变化迅速的对象,也可用来测量温度场的温度分布,但受环境温度影响比较大。 四、温度传感器的应用举例 (一)温度传感器在汽车上的应用。温度传感器的作用是测量发动机的进气,冷却水,燃油等的温度,并把测量结果转换为电信号输送给ECU.对于所有的汽油机电控系统,进气温度和冷却水温度是ECU进行控制所必须的两个温度参数,而其他的温度参数则随电控系统的类型及控制需要而不尽相同。进气温度传感器通常安装在空气流量计或从空气滤清器到节气门体之间的进气道或空气流量计中,水温传感器则布置在发动机冷却水路,汽缸盖或机体上上的适当位置.可以用来测量温度的传感器有绕线电阻式,扩散电阻式,半导体晶体管式,金属芯式,热电偶式和半导体热敏电阻式等多种类型,目前用在进气温度和冷却水温度测量中应用最广泛的是热敏电阻式温度传感器。 (二)利用温度传感器调节卫生间的温度。温度传感器还能调节卫生间内的温度,尤其是在洗澡的时候,能自动调节卫生间内的温度是很有必要的。通过温湿度传感器和气体传感器就能很好的控制卫生间内的环境从而使我们能够拥有一个舒适的生活。现在大部分旅馆和一些公共场所都实现了自动调节,而普通家庭的卫生间都还是人工操作,尚未实现自动调节这主要是一般客户不知道能够利用传感器实现自动化,随着未来人们的进一步了解,普通家庭的卫生间也能实现自动调节。 参考文献: [1]周琦.集成温度传感器的设计[D].西安电子科技大学,2007.
传感器与检测技术属于自动化专业、电气工程及其自动化专业及过程装备与控制专业的技术基础课程,对学生综合运用所专业学知识有着关键的作用,这是我为大家整理的传感器与检测技术论文,仅供参考!传感器与检测技术论文篇一 传感器与检测技术课程教学探索 摘 要:传感器与检测技术属于自动化专业、电气工程及其自动化专业及过程装备与控制专业的技术基础课程,对学生综合运用所专业学知识有着关键的作用,文中针对课程的特点及现存的问题,对该课程的教学内容调整与 教学 方法 改进进行了有益的探讨,以期获得更好的教学质量与效果。 关键词:传感器与检测技术;教学改革;教学方法 中图分类号:G71 文献标识码:A 文章 编号:1009-0118(2012)05-0132-02 传感器与检测技术是自动化专业、电气工程及其自动化专业及过程装备与控制专业的技术基础课程,主要研究自动检测系统中的信息提取、信息转换及信息处理的理论与技术为主要内容的一门应用技术课程。传感技术是自动检测系统,更是控制系统的前哨,它广泛的应用于各个领域,在在促进生产发展和现代科技进步方面发挥着重要作用。学生学好这门课程不仅能为后续课程打下好的基础,也对学生综合运用所专业学知识有着关键的作用,自从2005年课程教学大纲调整以后,在教学中出现了一些新的问题,原有的传统教学模式很难获得良好的教学质量与效果。 一、课程教学现存的问题 自2005年起我校重新制定了自动化专业的教学大纲,其中将传感器与检测技术由考试课调整为考查课,并将课时由64学时更改为32课时,通过几年的 教学 总结 出该课程在教学中存在的一些困难: (一)教学内容多而散 课程内容多且散,涉及知识面广,有物理学,化学,电子学,力学等等,属于多学科渗透的一门课程,学生学习有难度,特别是对于一些基础不太好的同学更是有困难。 (二)典型应用性 传感器与检测技术属于典型的应用课程,要学习各种传感器的原理,并掌握它的使用,在此基础上掌握搭建检测系统的方法,单靠理论的学习必定是有差距的。而实验课时不充裕,实验条件也有限。 (三)学时越来越少 学校目前对学生的定位是“培养优秀的工程应用型人才”,为了加大实践环节的因此对课程设置与课时作了调整,本课程课时被缩减至32课时。 (四)学生的学习主动性差 由于本课程被定为考查课,所以有相当一部份同学从 学习态度 上不太重视,没有投入必要的精力和时间,学习主动性差,直接影响教学效果。 二、教学内容与教学方法的探索 (一)教学内容的调整 目前大部分的传感器与检测技术的教材多侧重于传感器的工作原理、测量线路及信息处理等方面,而对具体应用涉及较少,针对课程的内容多课时少的情况,教学时无法做到面面俱到,教学内容必须做适当调整。根据学校对工科本科生工程应用型人才的定位,教学内容的调整遵循以下原则: 1、避免繁琐的理论推导过程,以避繁就简的方式向学生讲解传感器的工作原理。例如:用幻灯片演示使用酒精灯分别燃烧热电偶的两端,在两端存在温差的时候两电极间即出现电势差,无温差时电势差消失,通过这个实例讲解电势差之所以存在的原因,可以配以大家能够理解的简单的公式推导,而不把重心放在构成热电偶的温差电动势和接触电动势形成的公式推导上。 2、重点讲述传感器的实物应用。增加实际案例是学生能够对传感器的应用有更感性的认识。 3、适当补充传感器与系统互联的方法。在先期几种传感器的应用中加入传感器接入控制器的方式介绍,使其思考所学课程之间的关联,对所学专业课程之间的联系能更加深入的认识,建立起系统的概念。 (二)教学方法的改革 为了克服课程教学中客观存在的困难,获得良好的教学效果,在课堂教学使用多种教学方法和手段,力求将教学内容讲解得更加生动、具体。 1、采用多媒体技术,使用现代化的教学手段来提升教学效果和教学质量 采用多媒体课件教学,一方面可以省去教师用于黑板板书的大量时间,克服课时减少的问题;另一方面,以动画的形式生动形象的演示传感器的工作原理,展示所学传感器的各种照片、复杂检测系统的原理图或线路图,使学生能够直观地认识传感器,更容易理解传感器的工作原理和应用。例如,学习光栅传感器时,使用传统的教学手段,很难使同学们理解莫尔条文的形成及其移动过程,使用对媒体课件就可以以动画的形式使同学们直观的明暗相间的莫尔条纹是什么样子,还可以以不同的速度使指示光栅在标尺光栅上进行移动,清晰的看出条纹移动的方向与光栅夹角及指示光栅移动方向的关系。学习增量式光电编码器时,很多同学很难理解编码器的辨向问题,通过使用幻灯片展示编码器的内部结构,直接了解光栏板上刻缝、码盘及光电元件的位置关系后,同学们就能更容易的理解辨向码道、增量码道与零位码道形成脉冲的相位关系,佐以简单的辨向电路就可以使同学们更高效的学习该传感器的工作原理及应用方法。 总而言之,利用多媒体技术使学生能够获取更多的信息,增强学习的趣味性和生动性。 2、重视绪论,提升学生的学习主动性 很多教材的绪论写的比较简略,但我个人认为这不代表它不重要,特别是面对学生主观上不重视课程的情况下,更要下大力气上好绪论这第一次课,吸引学生的注意力,激发学习兴趣,使学生认识到这门课程的实用价值。通过幻灯片演示传感器与检测技术在国民经济中的地位和作用,使同学们了解到小到日常生活,大到航空航天、海洋预测等方面都有着传感器与检测技术的应用,更根据各种行业背景中需要检测的物理量,自动控制理论在实现过程中传感器与检测技术的关键作用,使学生认识该课程的重要性。另一方面,我校长年开展本科生科研实训项目,在开设本课程时已有部分同学成功申请实训课题,一般本专业的同学还是围绕专业应用领域申请课题,其中大部分会涉及传感器与检测技术的内容,所以也就他们正在进行的课题中使用传感器解决的具体问题进行讨论,更加直接的体会到本课程的关键作用,从而提升学生学习的兴趣,增强主动性,克服考查课为本课程教学带来的部分阴影。 3、加大案例教学比重、侧重应用 根据培养工程应用型人才的目标,本课程教学的首要目的是使学生能够合理选择传感器,对传感器技术问题有一定的分析和处理能力,知晓传感器的工程设计方法和实验研究方法。所以在教学中注意分析各类传感器的区别与联系,利用大量的具体案例分析传感器的应用特点。 例如,教材中在介绍电阻应变式传感器是,主要是从传感器的结构、工作原理及测量电路几个方面进行分析介绍的,缺乏实际应用案例。在教学中用幻灯片展示不同应用的实物图,譬如轮辐式的地中衡的称重传感器,日常生活中常见的悬臂梁式的电子秤、人体称、扭力扳手等。用生动的动画显示不同应用下的传感器的反应,例如,进行常用传感器热电偶的学习时,展示各种类型热电偶的实物照片,补充热电偶安装的方式,以换热站控制系统为案例,分析热电偶在温度测量上的应用,重点讲解传感器的输出信号及与控制系统互连问题。在介绍光电池传感器时补充用于控制的干手器、用于检测的光电式数字转速表及照度表的应用案例,通过案例是同学们对传感器应用的认识更加深入。 4、利用学校的科研实训提升学生的学习兴趣、加强学生的实践能力 我校学生自二年级起可以开始申请科研实训项目,指导老师指导,学生负责,本课程在学生三年级第一学期开设,在此之前已有部分同学参加了科研实训项目,在这些项目中,譬如智能车项目、数据采集系统实现等实训项目中都包含传感器与检测技术的应用,上课前教师了解这些项目,就可以就实际问题提出问题,让学生带着问题来学习,提升学习的兴趣。另外可以在学习的同时启发同学们集思广益,与实验中心老师联系,联合二年级同学进行传感器的设计制作,或者进入专业实验室进行传感器应用方面的实训实验,鼓励同学申报的科研实训项目,提高学生的实践能力。 三、结束语 通过几年的教学与总结,对教学内容、教学方法进行了分析研究,作了适当的改革。调整的教学内容重点更突出,侧重应用,补充了丰富的案例,激发了学生的学习兴趣,多媒体的教学方法增强了教学的生动性,与科研实训的相结合,对课堂教学进行拓展,加强了学习的主动性,提升了实践能力。从近几年的网上评教结果来看,所做的教学调整与改革受学生的欢迎和好评,取得了较好的教学效果。 参考文献: [1]袁向荣.“传感器与检测技术”课程教学方法探索与实践\[J\].中国电力 教育 ,2010,(21):85-86. [2]陈静.感器与检测技术教学改革探索\[J\].现代教育装备,2011,(15):94-95. [3]周祥才,孟飞.检测技术课程教学改革研究\[J\].常州工学院学报,2010,(12):91-92. [4]张齐,华亮,吴晓.“传感器与检测技术”课程教学改革研究\[J\].中国教育技术装备,2009,(27):42-43. 传感器与检测技术论文篇二 传感器与自动检测技术教学改革探讨 摘要:传感器与自动检测技术是电气信息类专业重要的主干专业课,传统授课方法侧重于理论知识的传授,而忽略了应用层面的培养。针对此问题试图从教学目的、教学内容、教学形式、教学效果等多个方面进行分析,对该课程的教学方案改革进行探讨,提出一套技能与理论知识相结合、行之有效的教学方案。 关键词:传感器与自动检测技术;教学内容;教学模式;工程思维 “传感器与自动检测技术”是电气信息类专业重要的主干专业课,是一门必修课,也是一门涉及电工电子技术、传感器技术、光电检测技术、控制技术、计算机技术、数据处理技术、精密机械设计技术等众多基础理论和技术的综合性技术,现代检测系统通常集光、机、电于一体,软硬件相结合。 “传感器与自动检测技术”课程于20世纪80年代开始在我国普通高校的本科阶段和研究生阶段开设。本课程侧重于传感器与自动检测技术理论的传授,重知识,轻技能;教师之间也缺乏沟通,教学资源不能得到充分利用,教学效果不理想,学生学习兴趣不高。 一、教学过程中发现的问题及改革必要性分析 笔者在独立学院讲授“传感器与自动检测技术”课程已有四年,最开始沿用了研究型大学的教学计划和教学大纲,由于研究型大学是以培养研究型人才为主,而独立学院是以培养应用型人才为主,在人才培养目标上有较大差异,在逐渐深入的过程中发现传统方案不太符合学院培养应用型人才的定位,存在以下几方面的问题。 1.重理论,轻实践 该课程是应用型课程,其中也有大量的理论知识、数学推导,而传统的研究型教学方法普遍都以理论教学为主,在课堂上大篇幅讲解传感器的原理,进行数学公式推导,相比而言传感器的应用通常只是通过一个实例简单介绍,导致最后大多数学生只是粗略地知道该传感器的结构,而不知道如何用,在哪里用。 2.教学模式单一 该课程传统上以讲授的教学方式为主,将现成的结论、公式和定理告诉学生,学生不能主动地思考和探索,过程枯燥乏味,导致学生产生了厌学情绪。同时理论教学与实训、实践教学脱节问题也很严重。 3.教学实验安排不合理 传统的实验课程安排,验证性实验比例高达80%,综合设计性实验极少,缺少实训、实践环节。然而应用型人才的培养应该以实践教学为核心,重点培养学生的工程思维和实践能力、动手能力,以在学生 毕业 时达到企业对技术水平与能力的要求,使学生毕业后能尽快适应工作岗位。 二、适合独立学院培养应用型人才的教学方案改革 传统的传感器与自动检测技术课程重理论、轻实践,教学模式单一,教学实验以验证性实验为主,这种方案能够培养研究型人才,但却无法培养合格的应用型人才。在教学过程中,笔者潜心研习,并反复实践,总结出以下几个可以改革的方面。 1.优化教学内容,注重工程思维 本课程一个很重要的内容是各种类型传感器的原理,传统的教学要讲清楚其中的来龙去脉,而本人则认为针对应用型人才培养,充分讲授清楚基本概念、基本原理和基本方法即可,涉及大额数学公式可以选择重要的进行讲解,其他则可作为学生的自学内容,让学生课余自学。同时应该重点讲解该传感器的工程应用实例;另一方面要结合最新实际工程讲解。这样才能激发学生的学习兴趣,培养学生应用型工程学习思维。 2.改革教学方法,改变教学模式 传统的教学是“灌输式”的方法,无论学生是否接受,直接把要讲的内容全部讲述给学生,而这也违背了培养学生分析问题和解决问题的能力以及创新能力的出发点和归宿。笔者认为应该应用工程案例教学,实行启发式、讨论式、研究式等与实践相结合的教学方法,发挥学生在教学活动中的主体地位。 3.与工程实际相结合,与其他课程相结合 教学过程中要从不同行业提取典型的工程应用实例,精简以后作为实例进行讲解。在进行教学时,要培养学生的系统观,让学生明白这不是一门独立的课程,而是与自动控制原理、智能控制理论等课程相融合的,以达到融会贯通的学习效果。 4.实验环节改革 实验教学主要是为了提高学生的动手能力、分析问题和解决问题的能力,加深学生对课堂教学中理论、概念的感性认识。以往该课程的实验内容大部分为原理性、验证性的实验,学生容易感到枯燥无味,毫无学习积极性,很少有学生进行独立思考并发现问题,实验效果极不理想。为了改变这种模式化的教育,笔者将实验内容由传统的验证性实验调整为设计开发型实验。在实验教学中根据客观条件在适当减少验证性实验的基础上,增加了开拓性实验项目以及设计综合性实验。 5.改革教学评价方法,提高课堂教学效率 高效的学习成果反馈机制是促进教学相长的必要手段,目前该课程都是通过课程作业进行学习效果反馈,可以采用每一个章节布置一道设计型题目,让学生更加广泛地查阅资料,并在一定知识广度的基础上深入分析题目中用到的内容,进而从更深的层面分析解决问题,以达到深度、广度相结合的效果。 本文针对传感器与自动检测技术传统研究型大学的方案,提出了三个方面的问题,并根据四年的教学积累,在教学内容、教学模式、实验环节、教学评价及反馈等几个方面进行了探讨分析并提出了一套改革的方法和 措施 。本方案以实际工程应用实例为核心,在教学内容上侧重于传感器应用方面的讲解,以提出问题、分析问题、解决问题为主线调动学生的学习积极性和主动性,培养学生的工程思维和能力,重视实验环节,以设计性、综合性实验代替验证性实验培养学生将抽象的知识具体化、培养学生的实际应用能力、动手能力和创新能力。 参考文献: [1]吴建平,甘媛.“传感器”课程实验教学研究[J].成都理工大学学报. [2]曹良玉,赵堂春.传感器技术及其应用.课程改革初探[J].中国现代教育装备. [3]李玉华,胡雪梅.传感器及应用.课程教学改革的探讨Ⅱ技术与市场. (作者单位 重庆邮电大学移通学院)
光纤传感器(fibre sensor)的基本工作原理是将来自光源的光经过光纤送入调制器,使待测参数与进入调制区的光相互作用后,导致光的光学性质发生变化,成为被调制的信号光,在经过光纤送入光探测器,经解调后,获得被测参数。光纤传感器的优点是与传统的各类传感器相比,光纤传感器用光作为敏感信息的载体,用光纤作为传递敏感信息的媒质,具有光纤及光学测量的特点,有一系列独特的优点。光纤传感器可用于位移、震动、转动、压力、弯曲、应变等的测量。传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。光纤具有很多优异的性能,例如:具有抗电磁和原子辐射干扰的性能,径细、质软、重量轻的机械性能;绝缘、无感应的电气性能;耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。
参考下: 进入21世纪后,特别在我国加入WTO后,国内产品面临巨大挑战。各行业特别是传统产业都急切需要应用电子技术、自动控制技术进行改造和提升。例如纺织行业,温湿度是影响纺织品质量的重要因素,但纺织企业对温湿度的测控手段仍很粗糙,十分落后,绝大多数仍在使用干湿球湿度计,采用人工观测,人工调节阀门、风机的方法,其控制效果可想而知。制药行业里也基本如此。而在食品行业里,则基本上凭经验,很少有人使用湿度传感器。值得一提的是,随着农业向产业化发展,许多农民意识到必需摆脱落后的传统耕作、养殖方式,采用现代科学技术来应付进口农产品的挑战,并打进国外市场。各地建立了越来越多的新型温室大棚,种植反季节蔬菜,花卉;养殖业对环境的测控也日感迫切;调温冷库的大量兴建都给温湿度测控技术提供了广阔的市场。我国已引进荷兰、以色列等国家较先进的大型温室四十多座,自动化程度较高,成本也高。国内正在逐步消化吸收有关技术,一般先搞调温、调光照,控通风;第二步搞温湿度自动控制及CO2测控。此外,国家粮食储备工程的大量兴建,对温湿度测控技术提也提出了要求。 但目前,在湿度测试领域大部分湿敏元件性能还只能使用在通常温度环境下。在需要特殊环境下测湿的应用场合大部分国内包括许多国外湿度传感器都会“皱起眉头”!例如在上面提到纺织印染行业,食品行业,耐高温材料行业等,都需要在高温情况下测量湿度。一般情况下,印染行业在纱锭烘干中,温度能达到120摄氏度或更高温度;在食品行业中,食物的烘烤温度能达到80-200摄氏度左右;耐高温材料,如陶瓷过滤器的烘干等能达到200摄氏度以上。在这些情况下,普通的湿度传感器是很难测量的。 高分子电容式湿度传感器通常都是在绝缘的基片诸如玻璃、陶瓷、硅等材料上,用丝网漏印或真空镀膜工艺做出电极,再用浸渍或其它办法将感湿胶涂覆在电极上做成电容元件。湿敏元件在不同相对湿度的大气环境中,因感湿膜吸附水分子而使电容值呈现规律性变化,此即为湿度传感器的基本机理。影响高分子电容型元件的温度特性,除作为介质的高分子聚合物的介质常数ε及所吸附水分子的介电常数ε受温度影响产生变化外,还有元件的几何尺寸受热膨胀系数影响而产生变化等因素。根据德拜理论的观点,液体的介电常数ε是一个与温度和频率有关的无量纲常数。水分子的ε在T=5℃时为,在T=20℃时为。有机物ε与温度的关系因材料而异,且不完全遵从正比关系。在某些温区ε随T呈上升趋势,某些温区ε随T增加而下降。多数文献在对高分子湿敏电容元件感湿机理的分析中认为:高分子聚合物具有较小的介电常数,如聚酰亚胺在低湿时介电常数为一。而水分子介电常数是高分子ε的几十倍。因此高分子介质在吸湿后,由于水分子偶极距的存在,大大提高了吸水异质层的介电常数,这是多相介质的复合介电常数具有加和性决定的。由于ε的变 化,使湿敏电容元件的电容量C与相对湿度成正比。在设计和制作工艺中很难组到感湿特性全湿程线性。作为电容器,高分子介质膜的厚度d和平板电容的效面积S也和温度有关。温度变化所引起的介质几何尺寸的变化将影响C值。高分子聚合物的平均热线胀系数可达到 的量级。例如硝酸纤维素的平均热线胀系数为108x10-5/℃。随着温度上升,介质膜厚d增加,对C呈负贡献值;但感湿膜的膨胀又使介质对水的吸附量增加,即对C呈正值贡献。可见湿敏电容的温度特性受多种因素支配,在不同的湿度范围温漂不同;在不同的温区呈不同的温度系数;不同的感湿材料温度特性不同。总之,高分子湿度传感器的温度系数并非常数,而是个变量。所以通常传感器生产厂家能在-10-60摄氏度范围内是传感器线性化减小温度对湿敏元件的影响。 国外厂家比较优质的产品主要使用聚酰胺树脂,产品结构概要为在硼硅玻璃或蓝宝石衬底上真空蒸发制作金电极,再喷镀感湿介质材料(如前所述)形式平整的感湿膜,再在薄膜上蒸发上金电极.湿敏元件的电容值与相对湿度成正比关系,线性度约±2%。虽然,测湿性能还算可以但其耐温性、耐腐蚀性都不太理想,在工业领域使用,寿命、耐温性和稳定性、抗腐蚀能力都有待于进一步提高。 陶瓷湿敏传感器是近年来大力发展的一种新型传感器。优点在于能耐高温,湿度滞后,响应速度快,体积小,便于批量生产,但由于多孔型材质,对尘埃影响很大,日常维护频繁,时常需要电加热加以清洗易影响产品质量,易受湿度影响,在低湿高温环境下线性度差,特别是使用寿命短,长期可靠性差,是此类湿敏传感器迫切解决的问题。 当前在湿敏元件的开发和研究中,电阻式湿度传感器应当最适用于湿度控制领域,其代表产品氯化锂湿度传感器具有稳定性、耐温性和使用寿命长多项重要的优点,氯化锂湿敏传感器已有了五十年以上的生产和研究的历史,有着多种多样的产品型式和制作方法,都应用了氯化锂感湿液具备的各种优点尤其是稳定性最强。 氯化锂湿敏器件属于电解质感湿性材料,在众多的感湿材料之中,首先被人们所注意并应用于制造湿敏器件,氯化锂电解质感湿液依据当量电导随着溶液浓度的增加而下降。电解质溶解于水中降低水面上的水蒸气压的原理而实现感湿。 氯化锂湿敏器件的衬底结构分柱状和梳妆,以氯化锂聚乙烯醇涂覆为主要成份的感湿液和制作金质电极是氯化锂湿敏器件的三个组成部分。多年来产品制作不断改进提高,产品性能不断得到改善,氯化锂感湿传感器其特有的长期稳定性是其它感湿材料不可替代的,也是湿度传感器最重要的性能。在产品制作过程中,经过感湿混合液的配制和工艺上的严格控制是保持和发挥这一特性的关键。 在国内九纯健科技依托于国家计量科学研究院、中科院自动化研究所、化工研究院等大型科研单位从事温湿度传感器产品的研制、生产。选用氯化锂感湿材料作为主攻方向,生产氯化锂湿敏传感器及相关变送器,自动化仪表等产品,在吸取了国内外此项技术的成功经验的同时,努力克服传统产品存在的各项弱点,取得实质性进展。产品选用了Al2O3及SiO2陶瓷基片为衬底,基片面积大大缩小,采用特殊的工艺处理,耐湿性和粘覆性均大大提高。使用烧结工艺,在衬底集片上烧结5个9的工业纯金制成的梳妆电极,氯化锂感湿混合液使用新产品添加剂和固有成份混合经过特殊的老化和涂覆工艺后,湿敏基片的使用寿命和长期稳定性大大提高,特别是耐温性达到了-40℃-120℃,以多片湿敏元件组合的独特工艺,是传感器感湿范围为1%RH-98%RH,具备了15%RH范围以下的测量性能,漂移曲线和感湿曲线均实现了较好的线性化水平,使湿度补偿得以方便实施并较容易地保证了宽温区的测湿精度。采用循环降温装置封闭系统,先对对被测气体采样,然后降温检测并确保绝对湿度的恒定,使探头耐温范围提高到600℃左右,大大增强了高温下测湿的功能。成功解决了“高温湿度测量”这一湿度测量领域难题。现在,不采用任何装置直接测量150度以内环境中的湿度的分体式高温型温湿度传感器JCJ200W已成功应用在木材烘干,高低温试验箱等系统中。同时,JCJ200Y产品能耐温高达600度,也已成功应用在印染行业纱锭自动烘干系统、食品自动烘烤系统、特殊陶瓷材料的自动烘干系统、出口大型烘干机械等方面,并表现出良好的效果,为国内自动化控制域填补了高温湿度测量的空白,为我国工业化进程奠定了一定基础。传感器论文: 低温下压阻式压力传感器性能的实验研究 Experimental Study On Performance Of Pressure Transducer At Low Temperature .... 灌区水位测量记录设备及安装技术 摘要:水位测量施测简单直观,易于为广大用水户所接受而且便于自动观测,因而在灌区水量计量乃至在整个灌区信息化建设中都占有十分重要的地位。目前我国灌区中水位监测采用的传感器依据输出量的不同主要分为模拟传感.... 主成分分析在空调系统传感器故障检测与诊断中的应用研究 摘要 本文阐述了用主成分分析法进行系统测量数据建模和传感器故障检测、故障诊断、故障重构及确定最优主成分数的原理。用主成分分析法对空调监测系统中的四类传感器故障进行检测方法。结果表明:主成.... 透光脉动传感器的影响因素研究 摘要:通过试验研究和总结生产应用经验,对透光脉动传感器的影响因素进行了分析,并提出了其最优工作参数。光源宜选择波长为860nm的激光二极管;传感器的管径根据使用目的确定,试验研究一般选用1~3mm,生.... 生物传感器的研究现状及应用 摘要:简述了生物传感器尤其是微生物传感器近年来在发酵工业及环境监测领域中的研究与应用,对其发展前景及市场化作了预测及展望。生物电极是以固定化生物体组成作为分子识别元件的敏感材料,与氧电极、膜电极和燃料.... 方向盘转角传感器接口 汽车环境对电子产品而言是非常苛刻的:任何连接到12V电源上的电路都必须工作在9V至16V的标称电压范围内,其它需要迫切应对的问题包括负载突降、冷车发动、电池反向、双电池助推、尖峰信号、噪声和极宽的温度.... 用于电容传感器接口的模拟前端元件 因为采用了传统机械开关,用户使用电容传感器接口的方式直接与各种工作条件下(可靠性)接触传感器的响应度(员敏度)梧关。本文将介绍一些通用电容传感器模拟前端测量方法 灵敏度 电容传感器的灵敏度是由其物理结.... 智能传感器与现代汽车电子 现代汽车电子从所应用的电子元器件到车内电子系统的架构均已进入了一个有本质性提高的新阶段。其中最有代表性的核心器件之一就是智能传感器。 一、汽车电子操控和安全系统谈起 近几年来我国汽车工业增长迅速,发展.... 霍尔元件是一种基于霍尔效应的磁传感器,已发展成一个品种多样的磁传感器产品族,并已得到广泛的应用。本文简要介绍其工作原理, 产品特性及其典型应用。 霍尔器件具有许多优点,它们的结构牢固,体积小,重量轻,寿命长,安装方便,功耗小,频率高(可达1MHZ),耐震动,不怕灰尘、油污、水汽及盐雾等的污染或腐蚀。 霍尔线性器件的精度高、线性度好;霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高(可达μm级)。取用了各种补偿和保护措施的霍尔器件的工作温度范围宽,可达-55℃~150℃。 按照霍尔器件的功能可将它们分为: 霍尔线性器件 和 霍尔开关器件 。前者输出模拟量,后者输出数字量。 按被检测的对象的性质可将它们的应用分为:直接应用和间接应用。前者是直接检测出受检测对象本身的磁场或磁特性,后者是检测受检对象上人为设置的磁场,用这个磁场来作被检测的信息的载体,通过它,将许多非电、非磁的物理量例如力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电量来进行检测和控制。 一 霍尔器件的工作原理 在磁场作用下,通有电流的金属片上产生一横向电位差如图1所示: 这个电压和磁场及控制电流成正比: VH=K╳|H╳IC| 式中VH为霍尔电压,H为磁场,IC为控制电流,K为霍尔系数。 在半导体中霍尔效应比金属中显著,故一般霍尔器件是采用半导体材料制作的。 用霍尔器件,可以进行非接触式电流测量,众所周知,当电流通过一根长的直导线时,在导线周围产生磁场,磁场的大小与流过导线的电流成正比,这一磁场可以通过软磁材料来聚集,然后用霍尔器件进行检测,由于磁场与霍尔器件的输出有良好的线性关系,因此可利用霍尔器件测得的讯号大小,直接反应出电流的大小,即: I∞B∞VH 其中I为通过导线的电流,B为导线通电流后产生的磁场,VH为霍尔器件在磁场B中产生的霍尔电压、当选用适当比例系数时,可以表示为等式。霍尔传感器就是根据这种工作原理制成的。 二 霍尔传感器的应用 1 霍尔接近传感器和接近开关 在霍尔器件背后偏置一块永久磁体,并将它们和相应的处理电路装在一个壳体内,做成一个探头,将霍尔器件的输入引线和处理电路的输出引线用电缆连接起来,构成如图1所示的接近传感器。它们的功能框见图19。(a)为霍尔线性接近传感器,(b)为霍尔接近开关。 图1 霍尔接近传感器的外形图 a)霍尔线性接近传感器 (b)霍尔接近开关 图2 霍尔接近传感器的功能框图 霍尔线性接近传感器主要用于黑色金属的自控计数,黑色金属的厚度检测、距离检测、齿轮数齿、转速检测、测速调速、缺口传感、张力检测、棉条均匀检测、电磁量检测、角度检测等。 霍尔接近开关主要用于各种自动控制装置,完成所需的位置控制,加工尺寸控制、自动计数、各种计数、各种流程的自动衔接、液位控制、转速检测等等。霍尔翼片开关 霍尔翼片开关就是利用遮断工作方式的一种产品,它的外形如图20所示,其内部结构及工作原理示于图21。 图3 霍尔翼片开关的外形图 2 霍尔齿轮传感器 如图4所示,新一代的霍尔齿轮转速传感器,广泛用于新一代的汽车智能发动机,作为点火定时用的速度传感器,用于ABS(汽车防抱死制动系统)作为车速传感器等。 在ABS中,速度传感器是十分重要的部件。ABS的工作原理示意图如图23所示。图中,1是车速齿轮传感器;2是压力调节器;3是控制器。在制动过程中,控制器3不断接收来自车速齿轮传感器1和车轮转速相对应的脉冲信号并进行处理,得到车辆的滑移率和减速信号,按其控制逻辑及时准确地向制动压力调节器2发出指令,调节器及时准确地作出响应,使制动气室执行充气、保持或放气指令,调节制动器的制动压力,以防止车轮抱死,达到抗侧滑、甩尾,提高制动安全及制动过程中的可驾驭性。在这个系统中,霍尔传感器作为车轮转速传感器,是制动过程中的实时速度采集器,是ABS中的关键部件之一。 在汽车的新一代智能发动机中,用霍尔齿轮传感器来检测曲轴位置和活塞在汽缸中的运动速度,以提供更准确的点火时间,其作用是别的速度传感器难以代替的,它具有如下许多新的优点。 (1)相位精度高,可满足°曲轴角的要求,不需采用相位补偿。 (2)可满足度曲轴角的熄火检测要求。 (3)输出为矩形波,幅度与车辆转速无关。在电子控制单元中作进一步的传感器信号调整时,会降低成本。 用齿轮传感器,除可检测转速外,还可测出角度、角速度、流量、流速、旋转方向等等。 图4 霍尔速度传感器的内部结构 1. 车轮速度传感器2.压力调节器3.电子控制器 2. 图4 ABS气制动系统的工作原理示意图 3 旋转传感器 按图5所示的各种方法设置磁体,将它们和霍尔开关电路组合起来可以构成各种旋转传感器。霍尔电路通电后,磁体每经过霍尔电路一次,便输出一个电压脉冲。 (a)径向磁极(b)轴向磁极(c)遮断式 图5 旋转传感器磁体设置 由此,可对转动物体实施转数、转速、角度、角速度等物理量的检测。在转轴上固定一个叶轮和磁体,用流体(气体、液体)去推动叶轮转动,便可构成流速、流量传感器。在车轮转轴上装上磁体,在靠近磁体的位置上装上霍尔开关电路,可制成车速表,里程表等等,这些应用的实例如图25所示。 图6的壳体内装有一个带磁体的叶轮,磁体旁装有霍尔开关电路,被测流体从管道一端通入,推动叶轮带动与之相连的磁体转动,经过霍尔器件时,电路输出脉冲电压,由脉冲的数目,可以得到流体的流速。若知管道的内径,可由流速和管径求得流量。霍尔电路由电缆35来供电和输出。 图6 霍尔流量计 由图7可见,经过简单的信号转换,便可得到数字显示的车速。 利用锁定型霍尔电路,不仅可检测转速,还可辨别旋转方向,如图27所示。 曲线1对应结构图(a),曲线2对应结构图(b),曲线3对应结构图(c)。 图7 霍尔车速表的框图 图8 利用霍尔开关锁定器进行方向和转速测定 4 在大电流检测中的应用 在冶金、化工、超导体的应用以及高能物理(例如可控核聚变)试验装置中都有许多超大型电流用电设备。用多霍尔探头制成的电流传感器来进行大电流的测量和控制,既可满足测量准确的要求,又不引入插入损耗,还免除了像使用罗果勘斯基线圈法中需用的昂贵的测试装置。图9示出一种用于DⅢ-D托卡马克中的霍尔电流传感器装置。采用这种霍尔电流传感器,可检测高达到300kA的电流。 图9(a)为G-10安装结构,中心为电流汇流排,(b)为电缆型多霍尔探头,(c)为霍尔电压放大电路。 (a)G�10安装结构(b)电缆型多霍尔探头(c)霍尔电压放大电路 图9 多霍尔探头大电流传感器 图10霍尔钳形数字电流表线路示意图 图11霍尔功率计原理图 (a)霍尔控制电路 (b)霍尔磁场电路 图12霍尔三相功率变送器中的霍尔乘法器 图13霍尔电度表功能框图 图14霍尔隔离放大器的功能框图 5 霍尔位移传感器 若令霍尔元件的工作电流保持不变,而使其在一个均匀梯度磁场中移动,它输出的霍尔电压VH值只由它在该磁场中的位移量Z来决定。图15示出3种产生梯度磁场的磁系统及其与霍尔器件组成的位移传感器的输出特性曲线,将它们固定在被测系统上,可构成霍尔微位移传感器。从曲线可见,结构(b)在Z<2mm时,VH与Z有良好的线性关系,且分辨力可达1μm,结构(C)的灵敏度高,但工作距离较小。 图15 几种产生梯度磁场的磁系统和几种霍尔位移传感器的静态特性 用霍尔元件测量位移的优点很多:惯性小、频响快、工作可靠、寿命长。 以微位移检测为基础,可以构成压力、应力、应变、机械振动、加速度、重量、称重等霍尔传感器。 6 霍尔压力传感器 霍尔压力传感器由弹性元件,磁系统和霍尔元件等部分组成,如图16所示。在图16中,(a)的弹性元件为膜盒,(b)为弹簧片,(c)为波纹管。磁系统最好用能构成均匀梯度磁场的复合系统,如图29中的(a)、(b),也可采用单一磁体,如(c)。加上压力后,使磁系统和霍尔元件间产生相对位移,改变作用到霍尔元件上的磁场,从而改变它的输出电压VH。由事先校准的p~f(VH)曲线即可得到被测压力p的值。 图16 几种霍尔压力传感器的构成原理 7 霍尔加速度传感器 图17示出霍尔加速度传感器的结构原理和静态特性曲线。在盒体的O点上固定均质弹簧片S,片S的中部U处装一惯性块M,片S的末端b处固定测量位移的霍尔元件H,H的上下方装上一对永磁体,它们同极性相对安装。盒体固定在被测对象上,当它们与被测对象一起作垂直向上的加速运动时,惯性块在惯性力的作用下使霍尔元件H产生一个相对盒体的位移,产生霍尔电压VH的变化。可从VH与加速度的关系曲线上求得加速度。 图17 霍尔加速度传感器的结构及其静态特性 三 小结 目前霍尔传感器已从分立元件发展到了集成电路的阶段,正越来越受到人们的重视,应用日益广泛。
光纤传感技术除了个别学校老师用来做研究(其实已经进入技术停滞期了),主要就是应用在工业领域了。在工业里应用的主要有两条技术路线:分布式和准分布式。前者以基于OTDR技术为主,后者以基于FBG及M-Z干涉仪技术为主。这两条路线都可以监测温度、应力应变、振动/加速度等常规物理量。二者对比的话,分布式技术以安装简单、趋势态监测方便为主要优势;准分布式以单点精准、价格较低为主要优势。光纤系统与电子系统相比,优势主要体现在传感器的安全性高、稳定性较好及寿命长。分布式技术国内以上海波汇公司为代表,国际以sensor optasense为代表;准分布式技术国内以理工光科为代表,国际以smart fiber为代表。应用领域主要为电力系统(地埋、架空线)、消防系统(交通隧道)、桥梁、石化(管道、站场/阀室)、水利等。现阶段最热门是分布式光纤振动探测技术,应用在各种安防领域。在个别细分市场已逐步替代掉主/被动红外对射、激光对射、泄露电缆及振动电缆等技术。光纤传感器结构简单,精度高,灵敏度高,且在许多环境下便于实现,目前非常热门。光子晶体光纤也是现在研究的一个热点,尤其是光子晶体光纤中微结构的灵活性使其在众多领域有独特的优势。但光纤传感的局限是稳定的宽带光源价格昂贵,在需要宽光谱范围时比较难实现,且微结构光纤与普通单模光纤熔接结构的稳定性不易保证,这也是目前微结构光纤研究中的一个问题。
本项研究受国家杰出青年科学基金项目(40225006)和国家教育部重点项目(01086)资助。
施斌丁勇索文斌高俊启
(南京大学光电传感工程监测中心,江苏南京,210093)
【摘要】分布式光纤传感技术,如布里渊散射光时域反射测量技术(简称BOTDR),是国际上近几年才发展成熟的一项尖端技术,应用非常广泛。本文着重介绍 BOTDR分布式光纤传感技术在隧道、基坑和路面等3个方面的应用。在工程监测过程中积累起来的大量监测数据表明,BOTDR分布式光纤传感技术,是一种全新而可靠的监测方法,它在工程实践中的应用为工程监测提供了一种新的思路,因而必将拥有一个广阔的发展前景。
【关键词】BOTDR光纤传感工程监测应变
1引言
随着人们对工程安全要求的日益提高,近年来,一批新式的传感监测技术得到发展,它们不是对传统传感监测技术简单地加以改良,而是从根本上改变了传感原理,从而提供了全新的监测方法和思路。其中,尤以 BOTDR分布式光纤传感技术为世人所瞩目,它利用普通的通讯光纤,以类似于神经系统的方式,植入建筑物体内,获得全面的应变和温度信息。该技术已成为日本、加拿大、瑞士、法国及美国等发达国家竞相研发的课题。这一技术在我国尚处于发展阶段,目前已在一些隧道工程监测中得到成功应用,并逐步向其他工程领域扩展。
南京大学光电传感工程监测中心在南京大学985工程项目和国家教育部重点项目的支持下,建成了我国第一个针对大型基础工程的BOTDR分布式光纤应变监测实验室,开展了一系列的实验研究,并成功地将这一技术应用到了地下隧道等工程的实际监测中,取得了一批重要成果,为将这一技术全面应用于我国各类大型基础工程和地质工程的质量监测和健康诊断提供了坚实基础。
2BOTDR分布式光纤传感技术的原理
布里渊散射同时受应变和温度的影响,当光纤沿线的温度发生变化或者存在轴向应变时,光纤中的背向布里渊散射光的频率将发生漂移,频率的漂移量与光纤应变和温度的变化呈良好的线性关系,因此通过测量光纤中的背向自然布里渊散射光的频率漂移量(vB)就可以得到光纤沿线温度和应变的分布信息。BOTDR的应变测量原理如图1所示。
为了得到光纤沿线的应变分布,BOTDR需要得到光纤沿线的布里渊散射光谱,也就是要得到光纤沿线的vB分布。BOTDR的测量原理与OTDR(Optical Time-Domain Reflectometer)技术很相似,脉冲光以一定的频率自光纤的一端入射,入射的脉冲光与光纤中的声学声子发生相互作用后产生布里渊散射,其中的背向布里渊散射光沿光纤原路返回到脉冲光的入射端,进入 BOT-DR的受光部和信号处理单元,经过一系列复杂的信号处理可以得到光纤沿线的布里渊背散光的功率分布,如图1中(b)所示。发生散射的位置至脉冲光的入射端,即至 BOTDR的距离 Z可以通过式(1)计算得到。之后按照上述的方法按一定间隔改变入射光的频率反复测量,就可以获得光纤上每个采样点的布里渊散射光的频谱图。
图1BOTDR的应变测量原理图
如图1中(c)所示,理论上布里渊背散光谱为洛仑滋形,其峰值功率所对应的频率即是布里渊频移 vB。如果光纤受到轴向拉伸,拉伸段光纤的布里渊频移就要发生改变,通过频移的变化量与光纤的应变之间的线性关系就可以得到应变量。式中:c—真空中的光速;
地质灾害调查与监测技术方法论文集
n——光纤的折射率;
T—发出的脉冲光与接收到的散射光的时间间隔。
目前国际上最先进的BOTDR监测设备以日本 NTT公司最新研制开发的最新一代 AQ8603型BOTDR光纤应变分析仪为代表。表1为AQ8603的主要技术性能指标。
表1AQ8603光纤应变分析仪的主要技术性能指标
3隧道安全监测
BOTDR分布式光纤传感技术在隧道方面的应用,目前已经在国内日渐成熟。我们在几条隧道变形监测系统的建设过程中,已形成了一整套的成功经验,为该技术在岩土和地质工程安全监测中的推广提供了坚实的技术基础。
光纤铺设
为了使光纤精确地反映被测构筑物的应变状态,必须将之与构筑物紧密相连,铺设在结构物上。铺设的好坏,直接关系到监测的实际效果,因而在工程应用中,有着十分重要的意义。
根据光纤监测系统的设计原则,结合工程实际情况以及AQ8603应力分布式光纤传感器的特点,基本有以下两种铺设方法:全面接着式铺设和定点接着式铺设,如图2所示。
图2全面接着和定点接着
全面接着式铺设
分别沿隧道纵深方向和横断面按全面接着方式布设传感光纤。沿纵深方向布设的传感光纤用于监测隧道纵向的整体变形情况,而沿横断面布设的光纤则是用于监测隧道横向的变形情况。
全面接着式铺设的特点是可以全程监测隧道的健康状况,监测对象为隧道整体,监测结果为隧道整体的变形情况。此种接着方式应用特定的铺设工艺,使用实验测定的效果优良的混合胶粘剂(以环氧树脂为主),将传感光纤按照设计线路粘着在混凝土的表面,并在传感光纤的末段接驳光缆,将监测信号传送至隧道监控中心。
定点接着式铺设
此种接着方式的特点是重点监测变形缝、应力集中区等潜在(或假定)变形处的变形情况。监测对象为变形缝等潜在(或假定)变形处,监测结果为变形缝等潜在(或假定)变形处的应力应变特征。此种接着方式的铺设方法大体等同于全面接着式铺设方式,所不同的是在设计施工面上选择一些特殊点进行粘着,即将光纤每隔1m至确定一个固定点,粘贴在混凝土墙面上,以此来检测隧道局部接缝处的变形(见图3)。在某些特点地点,根据实际情况,选择在特定的线路上在特定的位置安装接缝传感器,以监测变形缝的变形情况(见图4)。
图3隧道接缝布线示意图
变形计算
由于引起隧道变形的原因比较复杂,有温度造成的构筑物热胀冷缩的整体变形,也有不同方向裂缝开裂和错动引起的局部变形,因此,将 BOTDR所测到的隧道的应变转换到变形,有时比较困难。因此比较可行的解决方法一是要合理地布置光纤监测网,分别监测隧道的整体应变和局部应变及其方向,结合变形特点,计算出构筑物的整体变形与局部变形;二是要采用相应的计算方法,将光纤的应变换算为隧道的变形。
图4接缝传感器示意图
例如,对于均匀应变,可以由下式计算变形:
地质灾害调查与监测技术方法论文集
式中:ε为应变,d为应变段长度,δ为变形。
对于不均匀变形,可以采用按一定间距定点接着的方式铺设光纤,两个粘结点间的应变近似地认为是均匀应变,按上式同样可以得到光纤沿线的不均匀变形。
如果隧道发生整体的不均匀沉降,可以按照挠度的计算方法(见式(3)近似计算它的沉降变形量:
地质灾害调查与监测技术方法论文集
式中:ε1、ε2分别为铺设在构筑物顶部和底部的两条光纤的应变,d为两条光纤的间距。
此外,结合数值模拟技术也可以实现变形的计算。可以将光纤的应变作为数值计算的边界条件或者已知条件,通过有限元或有限差分等计算方法,得到构筑物不同部位的各种变形。
总之,从隧道的应变转换到变形的计算常常比较复杂,但是只要通过合理地布置光纤监测网,采用正确的计算方法,隧道变形的计算是可以得到满意的结果。
4基坑变形监测
基坑变形监测是岩土工程领域的基本问题之一,基坑稳定性的重要性不言而喻。近半年来,课题组通过大量的室内外试验研究,将 BOTDR技术成功地应用到了南京市的几个深大基坑工程中,取得了一些十分有价值的成果。
众所周知,基坑变形原因复杂、类型繁多,但总体来说,主要是由基坑开挖引起的坑体水平位移问题和基底隆起问题。传统的监测方式,如土压力盒、测斜管等,由于自身传感方式的限制,往往有精度不高、抗腐蚀性差、损耗较大、浪费人力等缺点。课题组通过研究,成功地研制了一种具有专利技术的基于BOTDR技术的基坑位移监测分布式光纤传感系统(分布式光纤传感智能测斜管)。
图5基坑位移监测分布式光纤传感系统
如图5所示,利用传统的测斜管器件与先进的BOTDR技术相结合,开发出上述传感器。应用传统的测斜管器件的目的在于:①经传统方法验证,测斜管能够较理想地反映土体变形,是一种良好的材料;②测斜管自身带有卡槽,免去了人工开槽的工作;③该材料是常用的基坑监测材料,方便易得,比较经济;④应用与传统监测方式一致的材料,方便对新、旧技术进行类比。该系统的构成,简言之是将光纤按照一定的施工工艺,用经室内外试验和工程实践验证过的特殊的胶黏着在测斜管上,构成传感系统,我们称之为分布式光纤传感智能测斜管。该传感器具有分布式光纤传感器的一切优点,并可进行准实时监测。
应用BOTDR技术的分布式光纤传感器所得到的监测结果,是沿光纤传感器的轴向物理信息(应变、温度等),因此,如何获得沿光纤传感器分布的基坑水平变形量,也就成了问题的核心。经过研究,应用计算挠度的方法来近似计算基坑的水平变形量。
由材料力学相关知识可知,沿线各点的挠度可利用下式计算。
地质灾害调查与监测技术方法论文集
式中:εx为所求点的光纤实测应变,其值为沿测斜管两侧的两条光纤的应变差;d为粘贴在测斜管两侧的光纤之间的距离;积分起点为深部某无应变点,v(x)为各点的挠度,可以近似地认为是基坑的水平变形量。
5连续配筋混凝土路面检测
连续配筋混凝土路面(CRCP)是全部省略接缝的连续混凝土板,是为了减轻因接缝而引起的振动与噪音,或为改善平整度、提高行车舒适性而使用的路面。对于这种高性能的路面结构形式,其钢筋应力状态、混凝土应力状态和路面的裂缝分布是反映该路面使用性能的主要因素[]。将 BOTDR这项优秀的无损检测技术应用于监测 CRCP路面钢筋、混凝土应力和路面裂缝,具有重要意义。
图6为BOTDR分布式光纤传感系统在连续配筋混凝土路面中的布置图。路面纵向钢筋共有11根。在其中9根钢筋上布设了传感光纤,温度补偿光纤4根,应变传感光纤5根,沿中心对称铺设。
图7为浇注混凝土开始5天内BOTDR检测的板表面混凝土应变变化。从图上可以清楚看出沿路面纵向表面混凝土应变分布情况,而且可以根据最大拉应变的位置预测出路面可能产生裂缝的位置。如图中79m处最有可能出现裂缝。
图6光纤传感系统布置
图7板表面混凝土应变分布
图8为浇注混凝土开始5天内 BOTDR检测的钢筋应变变化。从图上可以清楚看出沿路面纵向钢筋应变分布情况。在混凝土硬化这段时间里,钢筋应变不是均匀的,通过连续监测钢筋应变,有助于预测路面的使用性能。
本实验测试结果表明,BOTDR分布式光纤传感系统能够在线对连续配筋混凝土路面板中的钢筋和混凝土应变进行有效的检测。这说明BOTDR在路面板、桥面板及其他一些类似工程中具有良好的适用性及广阔的应用前景。
6结语
分布式光纤传感技术在我国尚处于起步阶段,虽然在隧道、基坑等部分领域取得了一定成功,但仍然有许多研究工作有待进一步开展,这包括两个方面,一是分布式光纤传感监测技术本身的进一步改良;二是要不断地解决在工程监测中的技术问题。可以相信,随着这一技术的不断研发和成熟,越来越多的大型基础工程将采用这一技术进行分布式监控和健康诊断,应用前景十分广阔,无法估量。
图8钢筋应变分布
参考文献
[1]Horiguchi T,Kurashima T,Tateda strain dependence of Brillouin frequency shift in silica optical Photonics Technology Letters,1989,1(5):107~108
[2]Ohno H,Naruse H,Kihara M,Shimada A,Industrial applications of the BOTDR optical fiber strain Fiber Technology,2001,7(1):45~64
[3]Wu Z S,Takahashi T,Kino H and Hiramatsu K,Crack Measurement of Concrete Structures with Optic Fiber of the Japan Concrete Institute,2000,22(1):409~414
[4]Wu Z S,Takahashi T and Sudo K,An experimental investigation on continuous strain and crack with fiber optic Research and Technology,2002,13(2):139~148
[5]Li C et al,Distributed optical fiber bi-directional strain sensor for gas trunk and Lasers in Engineering,2001,(36):41~47
[6]Uchiyama H,Sakairi Y,Nozaki T,An Optical Fiber Strain Distribution Measurement Instrument Using the New Detection Technical Bulletin,2002,(10):52~60
[7]黄民双,陈伟民,黄尚廉.基于Brillouin散射的分布式光纤拉伸应变传感器的理论分析.光电工程,1995,22(4):11~36
[8]查旭东,张起森,李宇峙,苏清贵,黄庆.高速公路连续配筋混凝土路面施工技术研究.中外公路,2003,23(1):1~4
[9]谢军,查旭东编译.连续配筋混凝土路面设计指南.国外公路,2000,20(5):4~6
[10]施斌等.BOTDR应变监测技术应用在大型基础工程健康诊断中的可行性研究.岩石力学与工程学报.
[11]Shi Bin et al,A Study on the application of BOTDR in the deformation monitoring for tunnel engineering,Structural Health Monitoring and Intelligent Infrastructure, Publishers, 2003:1025~1030
[12]徐洪钟,施斌,张丹,丁勇,崔何亮,吴智深.基于小波分析的BOTDR光纤传感器信号处理方法.光电子激光,2003(7)
[13] Zhang,Yong Ding,Heliang Cui,Data processing in botdr distributed strain measurement based on wavelet analysis,Structural Health Monitoring and Intelligent Infrastruc ture, Publishers,2003:345~349
[14]张巍,吕志涛.光纤传感器用于桥梁监测.公路交通科技,2003,20(3):91~95
[15]张丹,施斌,吴智深,徐洪钟,丁勇,崔何亮.BOTDR分布式光纤传感器及其在结构健康监测中的应用.土木工程学报,2003,36(11):83~87
[16]Dan Zhang,Bin Shi,Hongzhong Xu,Yong Ding,Heliang Cui&Junqi Gao,Application of BOTDR into structural bending monitoring,Structural Health Monitoring and Intelligent Infrastructure, Publishers,2003:271~276
[17]Dan ZHANG,Bin SHI,Junqi GAO,Hongzhong XU,The recognition and location of cracks in RC T-beam structures using BOTDR-based distributed optical fiber sensor,SPIE,2004
[18]张丹,施斌,徐洪钟,高俊启,朱虹.BOTDR用于钢筋混凝土 T型梁变形监测的试验研究.东南大学学报(待刊)
[19]丁勇,施斌,吴智深.岩土工程监测中的光纤传感器.第四届全国岩土工程大会会议论文集2003:283~291
[20]Ding,Y.,Shi,B.,Cui,.,&Chen, stability of optical fiber as strain sensor under invariable Health Monitoring and Intelligent Infrastructure, Publishers,2003:267~270