固态电容和铝电解电容的区别是:
1、定义不同
固态电解电容与普通电容最大差别在于采用了不同的介电材料,液态铝电容介电材料为电解液,而固态电容的介电材料则为导电性高分子材料。
铝电解电容是电容的一种,金属箔为正极,与正极紧贴金属的氧化膜是电介质,阴极由导电材料、电解质和其他材料共同组成,电解质是阴极的主要部分。
2、原理不同
固态电容采用固态导电高分子材料取代电解液作为阴极,取得了革新性发展。导电高分子材料的导电能力通常要比电解液高2~3个数量级,应用于铝电解电容可以大大降低ESR、改善温度频率特性。
铝电解电容通常是由金属箔(铝/钽)作为正电极,金属箔的绝缘氧化层(氧化铝/钽五氧化物)作为电介质,电解电容器以其正电极的不同分为铝电解电容器和钽电解电容器;铝电解电容器的负电极由浸过电解质液的薄纸/薄膜或电解质聚合物构成;钽电解电容器均以电解质作为负电极。
简介。
有机半导体铝电解电容的结构与液态铝电解电容相似,多采用直插立式封装方式。不同之处在于固态铝聚合物电解电容的阴极材料用固态的有机半导体浸膏替代电解液,在提高各项电气性能的同时有效解决了电解液蒸发、泄漏、易燃等难题。
固态铝聚合物贴片电容则是结合了铝电解电容和钽电容的特点而形成的一种独特结构。同液态铝电解电容一样,固态铝聚合物多采用贴片形式。高导电率的聚合物电极薄膜沉积在氧化铝上,作为阴极,炭和银为阴极的引出电极,这一点与固态钽电解电容结构相似。
固态电容全称为:固态铝质 电解电容 。它与普通电容(即液态铝质电解电容)最大差别在于采用了不同的介电材料,液态铝电容介电材料为电解液,而固态电容的介电材料则为导电性高分子材料。 在各类电容中,唯有铝电解电容存在寿命问题。在确保电容质量的前提下,高温、超压是导致液态电解电容失效的重要因素。液态电解电容的工作温度每上升十摄氏度其使用寿命就会缩短一半以上。电容的热量一方面来自工作环境造,可以通过散热措施减少这种热量传递。另一方面则是因电容的电解质存在电阻,电流流过电容时在其内部产生的,要减少这种情况引起的发热只有通过电解质的技术创新来实现。 20 世纪90 年代以来,采用固态导电高分子材料取代电解液作为阴极的固态铝电解 电容应运而生。导电高分子材料的导电能力通常要比电解液 高2~3 个数量级,应用于铝电解电容可以大大降低ESR、改善温度频率特性;并且由于高分子材料的可加工性能良好,易于包封,极大地促进了铝电解电容的片式化发展。目前商品化的固态铝电解电容主要有两类:有机半导体铝电解电容(OS-CON)和聚合物导体铝电解电容(PC-CON)。 有机半导体铝电解电容的结构与液态铝电解电容相似,多采用直插立式封装方式。不同之处在于固态铝聚合物电解电容的阴极材料用固态的有机半导体浸膏替代电解液,在提高各项电气性能的同时有效解决了电解液蒸发、泄漏、易燃等难题。由于采用了新型的固态电解质,固态电解电容具有液态电解电容无法企及的优良特性。这些电气性能对于提高计算机系统中以高频为特征的应用显得尤为重要。固态电解电容的多种优良特性可以为主板提供进补疗效,固态电解电容比液态电解电容的优势主要有三点。 1.高稳定性 固体铝电解电容可以持续在高温环境中稳定工作,使用固态铝电解电容可以直接提升主板性能。同时,由于其宽温度范围的稳定阻抗,适于电源滤波。它可以有效地提供稳定充沛的电源,在超频中尤为重要。固态电容在高温环境中仍然能正常工作,保持各种电气性能。其电容量在全温度范围变化不超过15%,明显优于液态电解电容。同时固态电解电容的电容量与其工作电压基本无关,从而保证其在电压波动环境中稳定工作。 2.寿命长 固态铝电解电容具有极长的使用寿命(使用寿命超过50 年)。与液态铝电解电容相比,可以算作“长命百岁”了。它不会被击穿,也不必担心液态电解质干涸以及外泄影响主板稳定性。由于没有液态电解质诸多问题的困扰,固态铝电解电容使主板更加稳定可靠。固态的电解质在高热环境下不会像液态电解质那样蒸发膨胀,甚至燃烧。即使电容的温度超过其耐受极限,固态电解质仅仅是熔化,这样不会引发电容金属外壳爆裂,因而十分安全。工作温度直接影响到电解电容的寿命,固态电解电容与液态电解电容在不同温度环境下寿命明显较长。3.低ESR 和高额定纹波电流 ESR(Equivalent Series Resistance)指串联等效电阻,是电容非常重要的指标。ESR 越低,电容充放电的速度越快,这个性能直接影响到微处理器供电电路的退藕性能,在高 频电路中固态电解电容的低ESR 特性的优势更加明显。可以说,高频下低ESR 特性是固态电解电容与液态电容性能差别的分水岭。固态铝电解电容的ESR 非常低,同时具有非常小的能量耗散。在高温、高频和高功率工作条件下固态电容的极低ESR 特性可以充分吸收电路中电源线间产生的高幅值电压,防止其对系统的干扰。采购人都会关注的 固态电容 供应商 深圳新富林电子 () 简介:深圳新富林电子有限公司多年来专业从事 电子元器件配套 服务(包括代理销售)业务,主营 贴片电容 , 贴片电阻 ,铝电解电容,固态电容,已取得风华(FengHua)、三星(SAMSUNG),国巨(YAGEO),华新(Walsin),立隆等原厂授予的代理权,原厂品质,现货直供。
固态电容器的漏电流及损耗随温度的升高而变大。1、当温度从室温25℃上升到85℃时,漏电流通常将增大3倍电容器的漏电流及损耗是造成电容器发热的主要原因,所以降低电容器的使用环境温度,是延长电容器使用寿命,提高可靠性的有利措施。2、固态电容器被称为:固体铝电解电容,它是一种极性电容,与普通电容(即液体铝电解电容器)相同。
可以找我加Q 九八三七七零零四八
倒是听说有同学写这个,我帮你问问看能不能把论文传给你
维普、超星、万方 cnki ScienceDirect 这些期刊网站进到大学,或地方图书馆都会有开放的账号可以进去
1主题词一般不超过20个字符; 摘要是一个完整的文章,该机构的缩写,也就是说300-500。为了突出内容的毕业论文(设计)中心,独立和自足; 关键词3-5个,标题连接到后面的总结提炼的关键字; 4简介介绍了研究背景和意义的毕业论文(设计)。解释一下你为什么要在这个问题上,环境和条件的问题,什么样的角色就可以解决问题发表评论。此外,提出的方法来研究这个问题; 5。文本8000-10000字,阅读大量的文献和研究的基础上,使用逻辑的辩证的思维方式,立法全面的题材,具体的,科学的论证的性质,是一个突出的主题,结构合理,层次分明,语言流畅,认为有力的论据; 6结论(单占一后的文本),其内容之一是毕业论文(设计)的总结,突出核心内容的两所大学和人民感谢。
,是不属于的;丙酮丙二醇缩酮(或称Propylene glycol monomethyl ether)它是由丙酮与丙二醇起缩合反应而得,是一种功能性有机磺酸盐类溶剂;而氧杂环戊烷又名四氢呋喃,是一个杂环有机化合物。所以丙酮丙二醇缩酮是不属于属于132氧杂环戊烷类的化合物的。
你好,是不属于的;丙酮丙二醇缩酮(或称Propylene glycol monomethyl ether)它是由丙酮与丙二醇起缩合反应而得,是一种功能性有机磺酸盐类溶剂;而氧杂环戊烷又名四氢呋喃,是一个杂环有机化合物。所以丙酮丙二醇缩酮是不属于属于132氧杂环戊烷类的化合物的。
车东西(公众号:chedongxi)文 | Bear
三星在全固态电池的量产之路上取得了突破性的进展!
日前,三星高等研究院与三星日本研究中心在《自然-能源》(Nature Energy)杂志上发布了一篇名为《通过银碳负极实现高能量密度长续航全固态锂电池》的论文,展示了三星对于困扰全固态电池量产的锂枝晶与充放电效率问题的解决方案。
▲三星在《自然-能源》杂志上发表论文
据了解,这一解决方案将帮助三星的全固态电池实现900Wh/L(区别于Wh/kg的计量单位,因不同材料密度不同,二者不可换算)的能量密度,1000次以上的充放电循环以及的库伦效率(也可称为充放电效率)。我国目前较为先进的固态电池技术虽然同样也能够实现1000次以上的充放电循环,但在库伦效率方面目前还达不到接近100%的程度。
据论文介绍,三星通过引入银碳复合负极、不锈钢(SUS)集电器、辉石型硫化物电解质以及特殊材料涂层,对固态电池的负极、电解质与正极进行了处理,有效解决了锂枝晶生长、低库伦效率与界面副反应,这三大固态电池量产所面临的核心问题,推动固态电池技术离产业化更进一步。
关键技术的突破,意味着固态电池市场卡位赛的开启,包括松下、宁德时代、丰田、宝马在内的一众玩家磨刀霍霍。可以预见,未来五年,固态电池技术将会成为这些公司技术交锋、产业布局的关键所在。
而三星,则会因为率先实现了技术上的突破,在这场竞赛中拥有相当大的领先优势。
一、全球争夺固态电池新风口 三星率先取得技术突破
固态电池一度被视为最适合电动汽车的电池技术,但这究竟是一种什么样的技术呢?
单从字面上理解,全固态电池意味着将现有电池体系中的液态电解质,完全替换为固态电解质。但在电池产业的定义中,固态电池有着三大技术特征——固态电解质、兼容高能量的正负极以及轻量化的电池系统。
固态电解质很好理解,区别于传统锂电池中所使用的碳酸乙烯酯、碳酸丙烯酯、碳酸二乙酯等液态电解质,固态电解质是一种新型的,作为电池正负极之间离子移动通道的材料,目前主要分为三类——聚合物材料、无机氧化物材料、无机硫化物材料。
与液态电解质对比,固态电解质具有高温下稳定、不易燃的理化特性,同时其机械结构也能抑制锂枝晶生长,避免其刺穿隔膜造成电池短路。
同时,常规液态电解质高压之下易氧化的特点对于固态电解质而言也不复存在,因此固态电池可采用能量密度更高、放电窗口更高、电势差更大的正负极解决方案。
而由于固态电池电芯内部不含液体,可以实现先串联后并联组装的方式,减轻了电池PACK的重量;固态电池性质稳定的特点,也可以省去动力电池内部的温控元件,进一步实现动力电池的减重。
上述三大特征所对应的,正是固态电池对比传统锂电池所具有的技术优势。简单来说,就是更高的能量密度、更大的放电倍率、更长的循环寿命以及更加轻量化的电池系统设计。
这些技术优势决定,固态电池将会是未来十年内最适合电动汽车的动力电池,以动力电池产业内部对固态电池量产进度的研判,到2025年之后,固态电池将逐渐成为动力电池领域的主流产品。
可以说,谁抢下了固态电池,谁就抢下了未来十年内,新能源产业发展的先机。
在这一思想的主导下,丰田、宝马、大众等国际一线车企,松下、三星、宁德时代等动力电池企业,甚至是戴森、NGK|NTK等跨界而来的巨头玩家,纷纷涌入固态电池领域,试图通过投资并购、技术合作、独立研发等手段,在固态电池尚未实现产业化之前完成卡位。
▲大众推出了搭载固态电池的奥迪PB18 e-tron
但当这些玩家真正下场布局的时候,固态电池的技术难度远超他们的想象。当下固态电池技术距离量产还需要解决诸多难点,有研究显示,锂枝晶的形成、界面阻抗导致的库伦效率低、固态电解质与正负极产生副反应等问题在固态电池的实验中尤为明显。
三星日前在《自然-能源》杂志上发表的论文,正式针对这些问题提出了解决方案。
▲三星在《自然-能源》杂志上发表论文
首先,三星通过银碳复合材料与不锈钢(SUS)集电器减少了负极锂离子过量不均匀沉积,并采用锂离子迁移数更高的硫化物固态电解质(一般液态电解质锂离子迁移数为,硫化物固态电解质锂离子迁移数为1),减少了电解质中锂离子的沉积,在负极与电解质两个区域内减少了锂枝晶形成的可能性。
其次,三星对NCM正极层进行了LZO涂层的涂覆处理,使用的LZO涂层将正极材料与硫化物固态电解质分隔开,并通过LZO涂层自身良好的电导率实现阻抗的减小,用以提升电池系统的库伦效率。
与此同时,LZO涂层与银碳复合材料层的存在也阻断了硫化物固态电解质与正负极产生副反应的可能,最大限度地保证了固态电池在工作过程中的正常表现与可循环性。
通过这套解决方案,三星的全固态电池实现了900Wh/L的能量密度、1000次以上的充放电循环以及的库伦效率。
而同样在研究固态电池的丰田、松下团队,目前的固态电池技术虽然能做到更高水平的循环次数,但其能量密度仅为700Wh/L,库伦效率也在90%左右。宁德时代的固态锂电池理论上能够做到1000Wh/L以上的能量密度,但在库伦效率方面,同样要弱三星一筹。
三星的这套解决方案有效地克服了固态电池产业化的技术难点,如果以卡位赛的思路来评价三星在众多对手中间的地位,那么三星在固态电池关键技术上的突破,无疑为其赢下了起跑阶段的优势。
二、三星解决锂枝晶生长问题的三大法门
三星在全固态电池研究过程中遇到的第一个难题就是锂枝晶问题,锂枝晶的形成对于所有的锂电池而言,都是不得不面对的问题。
其生成原理是锂离子在负极与电解液中的不均匀沉积,所形成的树杈状的锂离子结晶体,这些结晶体在放电倍率超过电池设计上限以及长期的充放电循环中均有可能出现。
而锂枝晶一旦出现,则意味着电池内部的锂离子出现了不可逆的减少,同时锂枝晶会不断吸附游离的锂离子实现生长,最终可能会刺破隔膜,导致电池正负极直接产生接触引发短路。
曾有观点认为,固态电解质的力学特性能够抑制锂枝晶的生长,阻止其对隔膜的破坏,但实际上,这样的设想并未实现。
有研究显示,通过固态电解质离子通道的锂离子抵达负极时的位置更不均匀,固态电解质与负极界面之间也存在间隙,因此容易造成锂离子的不规则沉积,从而形成锂枝晶。并且在这种情况下,导致锂枝晶出现的电压甚至低于传统的锂电池。
面对这一难题,三星提出了一种三合一的解决方案:
1、银碳复合材料层
三星在硫化物固态电解质与负极材料之间,添加了一层银碳复合材料层。
其充电过程中的工作原理,是在锂离子通过电解质抵达负极最终沉积的过程中,使锂离子与银碳材料层中间的银离子实现结合,降低锂离子的成核能(可简单理解为聚集在一起的能力),从而使锂离子均匀地沉积在负极材料上。
▲银碳复合层(红线部分)在电池结构中的示意图
而放电过程中,原本沉积在负极材料上的银-锂金属镀层中,锂离子完全消失,返回正极,银离子则会分布在负极材料与银碳复合材料层之间,等待下一次充电过程中锂离子的到来。
针对银碳复合材料层是否在锂离子沉积过程中产生了效果,三星团队进行了对照实验。
首先,该团队研究了无银碳复合材料层,负极直接与硫化物固态电解质接触的情况。
当充电率(SOC)50%,且充电速率为()时,尽管锂离子在负极的沉积并不致密,但其沉积物较厚且形状随机,具备生成锂枝晶的可能性。
▲无银碳层时锂离子在负极的沉积情况
并且,在10次完整充放电循环之后,该电池容量与初始容量对比出现了大幅下滑,大约在经历了25次充放电循环之后,电池的容量已经下降至初始容量的20%左右。
▲无银碳层电池电量衰减情况
据三星研究团队分析,这种情况很可能是电池内部产生了锂枝晶,导致活动的锂离子数量大幅减少,从而减少了电池的放电容量。
而在存在银碳复合层的情况下,首次充电过程(,)中,锂离子通过银碳层后,在负极形成了致密且均匀的沉积物。
据三星研究团队推测,银碳层中的银在锂离子经过时,与锂离子进行结合,形成银锂合金,降低了锂离子的成核能,并在抵达负极的过程中形成了固溶体,使锂离子均匀地沉积在负极材料上。
▲银离子在多次循环后的分布情况
而在随后的放电过程中,电子显微镜下的图像显示,锂离子100%返回了正极材料,并未在负极材料中存在残留,这意味着本次充放电的过程中,锂离子几乎没有发生损失,也没有存留沉积,避免锂枝晶的形成。
2、SUS集电器负极
银碳复合材料层很大程度上解决了锂离子不均匀沉积的问题,但为了尽可能减少锂枝晶的形成,还需要对电池中“过量”的锂进行削减。
提出这一说法的原因,是因为三星发现被盛传适合作为高能量密度(3,860 mAh g?1)负极材料的金属锂,在固态电池中并不适用。
过量的锂在高电压的作用下很可能会自发聚集,形成锂枝晶。
因此,三星在其全固态电池解决方案中使用了不含锂的不锈钢(SUS)集电器作为负极,作为锂离子的沉积载体和电池的结构体而言,SUS材料的机械强度十分可靠。
并且由于负极材料不含锂,也能够抑制锂枝晶的形成。
3、辉石型硫化物固态电解质
锂枝晶形成的另一处位置是电解质,由于传统电解质锂离子迁移数通常为,过量放电造成的大量锂离子迁移会使锂离子沉积在离子通道内,在长期的循环中有可能形成锂枝晶。
而三星在全固态电池解决方案中使用的电解质是锂离子迁移数为1的辉石型硫化物固态电解质,其锂离子迁移数较一般电解质更大,不容易使锂离子沉积其中,因此也能够抑制锂枝晶的形成。
通过上述三种方法,三星的全固态电池解决方案有效避免了锂枝晶的形成,在其数千次的循环试验中,采用这一方案的固态电池没有形成锂枝晶。
三、特殊涂料解决阻抗问题 充放电效率高达
针对全固态电池研发的另外两个难点——界面阻抗高引起的库伦效率问题、固态电解质与正负极产生副反应的问题,三星也给出了解决方案。
在固态电池中,固态电极与固体电解质之间会形成固-固界面,与传统电池的固-液界面拥有良好的接触性不同,固体与固体之间的直接接触难以做到无缝。即是说,固-固界面的接触面积要比相同规格的固-液界面接触面积小。
根据接触面积影响离子电导率的原理,接触面积越小,界面之间的离子电导率就越低,阻抗也就越大。
而在相同电压下,阻抗越大,电流也就越小,电池的库伦效率就越低。
不仅如此,固态电解质在与活性正极材料接触的过程中,也会产生界面副反应。
根据加州大学圣地亚哥分校的研究成果,正极锂离子脱嵌过程中产生的氧将会与硫化物固态电解质中的锂产生强烈的静电作用,电解质与正极材料之间阳离子的互扩散会形成SEI膜(一种覆盖在电极表面的钝化层),并在反复的循环中出现增厚、阻碍离子运输的现象。
这一现象也会导致电池的库伦效率降低。
为应对上述两个问题,三星在正负电极方面均进行了处理。
在正极方面,三星通过对正极NCM材料涂覆一层5nm厚的LZO(Li2O–ZrO2)涂层,用来改善正极与电解质固-固界面的阻抗性能。
▲NCM正极材料外涂覆的LZO涂层
与此同时,涂覆的LZO涂层阻断了正极材料与硫化物固态电解质之间的副反应,这使得二者间不会出现SEI膜,库伦效率得到了提升,放电容量的衰减也同时被大幅减缓。
在负极方面,硫化物固态电解质通过银碳层与负极间接接触,界面阻抗同样得到了改善,银离子还能够帮助锂离子完成在负极的均匀沉积,阻抗进一步减小。
而三星使用SUS集电器作为负极材料的另一个原因也是因为SUS集电器与硫化物几乎不产生反应,也就是说负极与硫化物固态电解质的副反应的可能性也被断绝。
除此之外,三星所选用的辉石型硫化物固态电解质拥有与一般液态电解质相同的离子传导率(1-25ms/cm),因此,该电解质本身的导电能力就很强,对于提升库伦效率也有帮助。
在三星研究团队1000次的充放电循环中,该套电池解决方案的平均库伦效率大于。而在去年7月,我国中科院物理所发表的固态电池解决方案中,其电池的库伦效率大约为。
四、三星领先一步 其他玩家仍有五年窗口期
三星的全固态电池解决方案,在一定程度上解决了当下固态电池产业化的三大技术难点。关键技术被攻克,意味着固态电池离产业化更进一步,电动汽车能用上固态电池的日子,也变得更近了。
三星研究团队在论文中直言:“我们研发的全固态电池拥有900Wh/L以上的能量密度与1000次以上的充放电循环寿命,出色的性能使得这套解决方案成为固态电池领域的关键性突破,很可能助推全固态电池成为未来电动汽车高能量密度与高安全性电池的选择。”
但需要注意的是,当一家企业宣布完成前瞻性技术关键难点突破的同时,也意味着该企业的技术壁垒正在建立,其他企业的机会则相应缩小。尤其是在电池这类技术优势大过天的产业中,技术壁垒的突破难度不言而喻。
此前,日本锂电材料商日立化成完成碳基负极技术研发,对我国材料企业的封锁时长达到30年之久。
而三星、LG化学、SKI等企业更是早早布局电池上游的隔膜、电解液、电极等领域,培养了自己的供应商体系的同时,将大量专利收入手中,形成了对其他电池企业的封锁之势。
此次三星率先突破固态电池技术难点,势必也会对其他电池企业进行专利封锁,中日韩等动力电池企业突破固态电池难点的技术路径又少了一条。
这就是三星在固态电池卡位赛中,取得先发优势的结果。
但对于三星而言,先发优势并不意味着胜券在握。固态电池的量产对于三星来说,仍有许多难点。
首先,硫化物固态电解质对生产过程的要求极高,暴露在空气中容易发生氧化,遇水易产生 H2S 等有害气体,生产过程需隔绝水分和氧气。
其次,银碳层的规模化投产需要规模不小的贵金属银的采购,成本颇高。
对于近年来盈利状况不佳的三星电池业务而言,新建产线采购贵金属的成本与固态电池量产后的市场之间形成的投入产出比,值得衡量。
因此,在固态电池的风口还未到来之前(业内认为会在2025年小规模量产),其他动力电池企业仍然拥有一段市场与技术的窗口期,固态电池的第一把交椅目前仍然虚位以待。
在日本,松下已经与丰田结盟,在两年之前拿出了700Wh/L能量密度的固态电池解决方案。
国内宁德时代近日公布的专利则显示,其全固态锂金属电池的能量密度理论上能够超过1000Wh/L,中科院物理所也完成了能将固态电池库伦效率提升至93%以上的材料研发。
美国动力电池初创公司Solid Power得到了现代、宝马、福特等车企的投资,宣布将在2026年量产能够用于电动汽车的固态电池。
可以预见的是,未来五年内,动力电池产业将围绕固态电池这一关键技术打响一场暗战。中、日、美、韩的动力电池企业均已入场布局,准备在固态电池风口到来之时,争抢该领域的龙头位置。
结语:固态电池难点被三星攻克
在此前的固态电池研发中,锂枝晶问题、库伦效率问题与界面副反应问题难倒了众多电池领域的研发团队。
但此次三星通过银碳复合材料与SUS集电器负极,有效解决了锂枝晶形成的问题,LZO涂层对正极的包覆也使得电池系统的库伦效率达到了。
可以认为,固态电池技术的关键难点已被三星攻克,固态电池产品距离量产又近了一步。
这一现象意味着在未来五年的时间里,布局固态电池领域的车企、动力电池供应商以及跨界玩家都将顺着这一思路进行研究,推动固态电池领域实现从研发到量产的突破。
综合入局玩家体量、资本助推以及电动汽车产业的需求三点来看,固态动力电池产业的风口或许很快就会到来。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
第一章 丙酮丙二醇缩酮相关概念一、丙酮丙二醇缩酮简介二、丙酮丙二醇缩酮的分类三、丙酮丙二醇缩酮的质量指标第二节 丙酮丙二醇缩酮的主要作用及用途简介第三节 丙酮丙二醇缩酮产品主要生产技术分析一、丙酮丙二醇缩酮生产工艺概述二、丙酮丙二醇缩酮主要生产工艺简介第二章 2010-2015年世界丙酮丙二醇缩酮行业发展状况分析第一节 2010-2015年世界丙酮丙二醇缩酮行业运行概况一、世界丙酮丙二醇缩酮行业市场供需分析二、世界丙酮丙二醇缩酮价格分析第二节 2010-2015年世界主要地区丙酮丙二醇缩酮行业运行情况分析一、美国二、日韩地区三、欧洲第三节 2010-2015年世界丙酮丙二醇缩酮行业发展趋势分析第三章 2010-2015年中国丙酮丙二醇缩酮的行业发展环境分析第一节 2010-2015年中国经济环境分析一、宏观经济二、工业形势三、固定资产投资第二节 2010-2015年中国丙酮丙二醇缩酮的行业发展政策环境分析一、行业政策影响分析二、相关行业标准分析第三节 2010-2015年中国丙酮丙二醇缩酮行业发展社会环境分析第四章 2015年中国丙酮丙二醇缩酮行业市场运行动态分析第一节 2015年中国丙酮丙二醇缩酮行业市场供需分析一、丙酮丙二醇缩酮市场消费结构分析二、丙酮丙二醇缩酮进出口形势分析三、中国丙酮丙二醇缩酮企业动态分析第二节 2015年中国丙酮丙二醇缩酮行业市场营销策略分析一、不断推出新的销售方式二、辨别并选择正确的销售对象三、创造性的广告策略四、密切关注消费者的需求第三节 2015年中国丙酮丙二醇缩酮市场供需平衡分析第五章 2010-2015年中国丙酮丙二醇缩酮行业数据调查分析第一节 2010-2015年中国丙酮丙二醇缩酮行业规模分析一、企业数量增长分析二、从业人数增长分析三、资产规模增长分析第二节 2010-2015年中国丙酮丙二醇缩酮行业结构分析一、企业数量结构分析二、销售收入结构分析第三节 2010-2015年中国丙酮丙二醇缩酮行业产值分析一、产成品增长分析二、工业销售产值分析三、出口交货值分析第四节 2010-2015年中国丙酮丙二醇缩酮行业成本费用分析一、销售成本统计二、费用统计第五节 2010-2015年中国丙酮丙二醇缩酮行业盈利能力分析一、主要盈利指标分析二、主要盈利能力指标分析第六章 2010-2015年中国丙酮丙二醇缩酮进出口数据监测分析第一节 2010-2015年中国丙酮丙二醇缩酮进口数据分析一、进口数量分析二、进口金额分析第二节 2010-2015年中国丙酮丙二醇缩酮出口数据分析一、出口数量分析二、出口金额分析第三节 2010-2015年中国丙酮丙二醇缩酮进出口平均单价分析第四节 2010-2015年中国丙酮丙二醇缩酮进出口国家及地区分析第七章 中国丙酮丙二醇缩酮区域市场调查状况分析第一节 华北市场一、地区生产状况二、地区需求状况三、地区竞争状况第二节 中南市场一、地区生产状况二、地区需求状况三、地区竞争状况第三节 华东市场一、地区生产状况二、地区需求状况三、地区竞争状况第四节 东北市场一、地区生产状况二、地区需求状况三、地区竞争状况第五节 西南市场一、地区生产状况二、地区需求状况三、地区竞争状况第八章 中国丙酮丙二醇缩酮用户度市场调查情况分析第一节 丙酮丙二醇缩酮用户认知程度第二节 丙酮丙二醇缩酮用户关注因素一、功能二、质量三、价格四、外观五、服务第九章 2010-2015年中国丙酮丙二醇缩酮产业市场竞争格局分析第一节 2010-2015年中国丙酮丙二醇缩酮产业竞争现状分析一、市场竞争程度分析二、丙酮丙二醇缩酮产品价格竞争分析三、丙酮丙二醇缩酮产业技术竞争分析四、丙酮丙二醇缩酮产业品牌竞争分析第二节 丙酮丙二醇缩酮竞争优劣势分析第三节 2010-2015年中国丙酮丙二醇缩酮行业集中度分析一、市场集中度分析二、区域集中度第四节 2010-2015年中国丙酮丙二醇缩酮企业提升竞争力策略分析第十章 2010-2015年中国丙酮丙二醇缩酮行业重点厂商分析第一节 企业A一、企业概况二、企业主要经济指标分析三、企业盈利能力分析四、企业偿债能力分析五、企业运营能力分析六、企业成长能力分析第二节 企业B一、企业概况二、企业主要经济指标分析三、企业盈利能力分析四、企业偿债能力分析五、企业运营能力分析六、企业成长能力分析第三节 企业C一、企业概况二、企业主要经济指标分析三、企业盈利能力分析四、企业偿债能力分析五、企业运营能力分析六、企业成长能力分析第四节 企业D一、企业概况二、企业主要经济指标分析三、企业盈利能力分析四、企业偿债能力分析五、企业运营能力分析六、企业成长能力分析第五节 企业E一、企业概况二、企业主要经济指标分析三、企业盈利能力分析四、企业偿债能力分析五、企业运营能力分析六、企业成长能力分析第十一章 2010-2015年中国丙酮丙二醇缩酮行业产业链分析第一节 丙酮丙二醇缩酮上游行业分析一、上游行业发展现状二、上游行业发展趋势三、上游行业对丙酮丙二醇缩酮行业的影响第二节 丙酮丙二醇缩酮下游行业分析一、下游行业发展现状二、下游行业发展趋势三、下游行业对丙酮丙二醇缩酮行业的影响第十二章 2016-2021年中国丙酮丙二醇缩酮产业发展趋势预测分析第一节 2016-2021年中国丙酮丙二醇缩酮产业发展趋势分析一、丙酮丙二醇缩酮技术发展方向分析二、丙酮丙二醇缩酮行业前景分析第二节 2016-2021年中国丙酮丙二醇缩酮产业市场预测分析一、丙酮丙二醇缩酮市场供给预测分析二、丙酮丙二醇缩酮产品需求预测分析三、丙酮丙二醇缩酮进出口预测第三节 2016-2021年中国丙酮丙二醇缩酮产业市场盈利预测分析第十三章 2016-2021年中国丙酮丙二醇缩酮产业投资机会与风险分析第一节 2016-2021年中国丙酮丙二醇缩酮产业投资环境分析第二节 2016-2021年中国丙酮丙二醇缩酮产业投资机会分析一、丙酮丙二醇缩酮行业区域投资热点分析二、丙酮丙二醇缩酮行业投资潜力分析第三节 2016-2021年中国丙酮丙二醇缩酮产业投资风险分析一、市场运营风险二、技术风险三、政策风险四、进入退出风险第十四章 结论和建议查看全部>>返回首页收藏报告个性定制关闭窗口返回顶部报告标题:丙酮丙二醇缩酮研究报告:2016-2021年中国丙酮丙二醇缩酮产业运行态势及投资战略研究报告本文地址:上一篇:奶粉报告下一篇:煮蛋器报告相关研究报告2017-2022年中国丙酮丙二醇缩酮行业发展前景分析及发展策略研究报告2017-2022年中国丙酮丙二醇缩酮项目行业市场深度调研及投资战略研究分析报告2017-2022年中国丙酮丙二醇缩酮行业细分市场研究及重点企业深度调查分析报告化工报告化工市场研究报告化工市场调查报告化工前景预测报告化工市场分析报告化工市场评估报告化工投资咨询报告化工市场供需分析报告化工重点企业分析报告化工项目可行性研究报告化工发展前景分析报告化工投资规划分析报告化工深度研究报告化工投资前景分析报告化工项目调研报告化工专项调研报告中国报告大厅简介中国报告大厅()成立于2002年10月,是由宇博智业机构开通并运营的一家大型专业化市场研究网站,提供针对企业用户的各类信息,如深度研究报告、市场调查、统计数据等。为了满足企业对原始数据的需求,也为了能给企业提供更为全面和客观的研究报告,中国报告大厅与国内各大数据源(包括政府机构、行业协会、图书馆、信息中心等权威机构)建立起战略合作关系。经过多年的努力,中国报告大厅与国内100多家最优质研究公司建立良好的合作关系,推出超过50000份有价值的研究报告,中国报告大厅目标是打造一个真正的一站式服务的多用户报告平台。中国报告大厅汇聚全国各大市场研究信息生产商的研究成果,正是依托独有的资源优势,为客户提供最准确、最及时、最权威、最专业的研究报告。最新研究报告 更多2017-2022年中国坚固型手持设备行业细分市场研究及重点企业深度调查分析报告2017-2022年中国固态薄膜电池行业细分市场研究及重点企业深度调查分析报告2017-2022年中国固定翼无人机行业细分市场研究及重点企业深度调查分析报告2017-2022年中国固定牙套行业细分市场研究及重点企业深度调查分析报告2017-2022年中国固定式铅蓄电池行业细分市场研究及重点企业深度调查分析报告2017-2022年中国固定式柴油发电机行业细分市场研究及重点企业深度调查分析报告2017-2022年中国固定式天然气发电机行业细分市场研究及重点企业深度调查分析报告2017-2022年中国固定式发电机行业细分市场研究及重点企业深度调查分析报告资质证书客户回馈甲级工程咨询单位资格证书涉外调查许可证甲级工程咨询单位资格证书企业法人营业执照团体会员证书电信与信息服务业务经营许可证联系我们全国免费服务热线:北京客户服务专线:厦门客户服务专线:商业计划书:专项调研报告:个性定制报告:报告合作专线:传真: 邮箱:相关分类化工报告无机化工报告有机原料报告塑料及制品报告橡胶报告合成纤维报告染料及颜料报告聚合物报告涂料及油漆报告医药与生物化工报告化工中间体报告日用化工报告感光材料报告树脂报告胶粘剂报告香精香料报告化工设备报告其他报告化学矿报告石油及制品报告添加剂报告催化剂报告玻璃报告农药报告肥料报告报告搜索 快速搜索热门搜索:丙酮丙二醇缩酮 企业丙酮丙二醇缩酮 分析丙酮丙二醇缩酮 研究丙酮丙二醇缩酮 深度研究丙酮丙二醇缩酮 项目调研丙酮丙二醇缩酮购买方式更多A. 电话订购:B. 邮件订购: sales@. 网上订购:订购单下载D. 直接到我公司上门购买:温馨提示:1、购买报告请认准“中国报告大厅”网站,公司从未通过第三方代理,请来电购买。 2、中国报告大厅欢迎广大客户上门洽谈购买。我们的优势我们的优势丰富的信息资源宇博智业依托国家发展改革委和国家信息中心系统丰富的数据资源,以及国内其他各大数据源(包括行业协会、图书馆、相关研究机构等)建立的战略合作关系,建成了独具特色和覆盖全面的产业监测体系。专业的研究团队公司人员拥有不同背景和资历的研究人员,每份报告都由多年从事相关行业的资深研究员撰写,他们长期专门从事行业研究,掌握着大量的第一手资料;同时,为保证研究成果的前瞻性,我们与国内众多研究机构和专家有着密切的合作关系。品质保证①宇博智业创立于2002年,中国最早的市场研究机构之一;②公司拥有强大的调研团队,能为报告的撰写提供可靠的一手资料。③研究人员根据对中国文化的深刻理解,实现国际领先研究方法与本土实践经验巧妙结合。售前售后服务公司拥有一批专业的业务人员,将根据您的需求,为您提供详细的解答并提供相符合的报告目录;报告售出后,我们的研究人员将会为您提供全程的后续修改及补充服务。赠送增值服务购买我们研究报告可获赠报告大厅数据中心会员资格,全方面了解行业动态。行业资讯更多自主新药研发获得重大进展 药品报销范围进一步扩大人工智能如何献力教育均衡发展环保部向WTO递交文件:年底前禁止24种高污染固体废物入境共享单车改善乱象 摩拜单车通过欧盟及国际标准认证全国食品安全周又有哪些新热点?日媒:日IT业劳动力紧缺 在日中国留学生迎好时机医改试点城市扩大到200个 公立医院和民营资本共建6月房地产销售创单月纪录 库存降至28个月新低免费报告更多2017大红酸枝价格趋势分析新能源汽车价格行情分析大亚湾房价行情分析安庆房价行情分析乌鲁木齐房价行情分析硫酸钾价格行情分析生猪价格走势分析长沙房价走势分析数据中心更多2015年中国十大品牌面包机排行榜生猪价格最新行情:2016年4月12日黑龙江生猪价格今日猪价分析2016年3月汽车品牌销量排行榜top20:长安品牌力压丰田等位居第二2016年3月汽车厂商销量排行榜top20:上汽通用五菱以183982辆夺冠2015年中国民营企业服装排行榜南京2016企业退休人员养老金上调最新消息:约涨幅大豆价格今日走势:2016年4月12日大豆价格最新行情预测一览钢铁价格最新行情:2016年4月12日全国建材价格汇总一览行业年鉴更多《中国贸易外经统计年鉴2013》《中国民营医院发展报告2013》《中国环境统计年鉴2013》《2012年有色金属工业统计资料汇编》《中国外商投资报告2013》《中国教育年鉴2012》《能源与电力分析年度报告系列:中国发电能源供需与电源发展分析报告2013》《能源与电力分析年度报告系列:世界能源与电力发展状况分析报告2013》报告研究报告分析报告市场研究报告市场调查报告投资咨询商业计划书项目可行性报告项目申请报告资金申请报告ipo咨询ipo一体化方案ipo细分市场研究募投项目可行性研究ipo财务辅导市场调研专项定制调研市场进入调研竞争对手调研消费者调研数据中心产量数据行业数据进出口数据宏观数据购买帮助订购流程常见问题支付方式联系客服售后保障售后条款实力鉴证版权声明投诉与举报关于我们|帮助中心|友情链接|我们的服务|报告订制|报告订购表|网站地图|品牌大全|联系我们|法律声明© 2023 报告大厅(),市场研究报告门户,提供海量的行业报告及市场前景研究报告。服务热线:北京: 传真: E-mail:福建: 传真: 中文域名:中国报告大厅.com报告大厅—宇博智业市场研究中心主办,宇博智业集团旗下网站闽ICP备09008123号-21 京公网安备 11010502031895号
本文将介绍国外在固态电池的发展现状:
日本:
2018年7月,日本国立研究机构——新能源产业技术综合开发机构(NEDO)宣称,日本部分企业(包括丰田、松下等23家 汽车 、电池和材料企业)及15家学术机构将在未来5年内联合研发电动车全固态锂电池。目前第二阶段固态锂离子电池研发项目已经启动,预计将投资100亿日元(约合人民币亿元)。
在整车厂商的研究进展方面,丰田 汽车 凭借雄厚的技术经验积累处于领先地位:2018年9月,丰田披露了其全固态电池的框架,并计划于本世纪20年代初实现商业化。
丰田全固态电池基础就是降低固态电池内电阻的技术。凭借该技术,丰田将全固态电池的能量输出密度(按照体积)提高至约。同时,成功将能量密度提高至400Wh/L,比2010年左右生产的锂离子(Li-ion)电池的能量密度高一倍。
但是目前丰田的全固态电池的性能远远比不上现有的锂离子电池。因此,为了使固态电池可以尽早商业化,丰田正努力提高其性能。
韩国:
韩国企业选择抱团研发固态电池技术:
2018年11月消息,韩国三大蓄电池厂商LG化学、三星SDI和SKI将联手开发固态电池、锂金属电池和锂硫电池,此外,它们将成立一个规模1000亿韩元(约合9000万美元)的基金,来打造下一代电池产业生态系统。
三星SDI在2017年北美车展便已展出过固态电池和基于21700圆柱电芯的电池模组;LG化学本身在固态电池的研发上也有布局。
整车厂商现代 汽车 则选择投资材料技术公司——位于马萨诸塞州的初创固态电池材料企业Ionic Materials来布局固态电池,推动电池技术发展。有业内人士透露,现代正通过南阳研发中心(Namyang R&D Center)旗下的电池研发团队进行固态电池的研发,目前已取得一定的技术水平,预计2025年可实现固态电池量产。
德国:
德国政府在资金上给予了固态电池研发工作支持。
据外媒报道,为了减少德国车企对于中日韩电池供应商的依赖,德国总理默克尔将计划拨发10亿欧元用于支持德国的一家电池生产商,同时也将资助一家电池研发机构,用于开发下一代的固态电池。
宝马:宝马一方面在自建电芯研发中心,研发固态电池技术并有望于2026年实现固态电池突破性进展并随后量产。另一方面,宝马也积极和Solid Power在固态电池方面深度合作,快速提升电池研发能力。
大众:老牌 汽车 厂商大众此前宣布将计划自主生产固态电池,可能从2024或2025年开始批量生产,工厂或将建在欧洲或德国。此外,大众还获得了美国外国投资委员会(CFIUS)的许可,同意其向电池技术公司-QuantumScape投资1亿美元成为QuantumScape最大股东,增持股份。QuantumScape拥有200多项固态电池技术专利和专利申请量,这将为大众研发固态电池提供强有力的帮助。目标在2025年前建立固态电池生产线。
美国:
2018年10月,菲斯克宣称其新款固态锂电池充电仅需9分钟,并将实现量产。此后,该公司的固态电池技术获得了重型机械制造商卡特彼勒(Caterpillar)的投资,但并未透露具体投资数额。菲斯克表示,正申请专利的菲斯克柔性固态电池的成本每千瓦时不到100美元,可用于建筑、储能、交通和采矿业。预计将于2018-2033年间实现商业化。
英国:
2018年10月,Ricardo宣布与4家机构/企业合作开展PowerDrive Line项目,目的是建立固态电池的预试验线,并为固态电池材料供应链开发流程。
项目合作方包括Ilika technologies公司、英国技术创新中心- Centre for Process Innovation、本田欧洲研发中心(Honda R&D Europe)以及英国伦敦大学学院(University College)。
澳洲:
2018年10月,澳洲马格尼斯资源有限公司(Magnis Resources Limited)宣布其合作伙伴C4V(Charge CCCV)已经生产出固态电池的原型。该原型电池容量目前为380Wh/kg和700Wh/L,预计进一步优化可达400Wh/kg和750Wh/L。该新型电池降低了生产成本,并且无需使用钴金属,减少了制约因素。
C4V计划将于2019年第二个季度开始商业生产。
若要看全球固态电池平均的进度,目前整个产业有一起向前的趋势,越来越多机构可以做出钮扣型或小型的样品,目前已有辉能和博洛雷两家可以量产固态电池。前景部分,若固态电池产能可以冲起来,基本上能够直接接手传统锂电池的市场。
hcufudysydyfufigivivibobobononoblnlboblblnlblblnlnlbbpblbkbkvjv
成果简介
由二维MXene材料制成的独立和可弯曲薄膜由于其高度的灵活性、结构稳定性和高导电性,已显示出作为储能器件电极的巨大潜力。然而,MXene板不可避免重新堆叠很大程度上限制了其电化学性能。 本文,西北工业大学材料学院党阿磊、李铁虎教授等研究人员在《ACS Appl. Energy Mater.》期刊 发表名为“Flexible Ti3C2Tx/Carbon Nanotubes/CuS Film Electrodes Based on a Dual-Structural Design for High-Performance All-Solid-State Supercapacitors”的论文, 研究通过交替过滤Ti3C2Tx/碳纳米管(CNT)杂化和CuS分散的逐层(LbL)方法,通过双重结构设计制备了具有三明治状结构的膜电极。
引入的碳纳米管和赝电容CU提供了丰富的活性位点,以增加电极的存储容量。增大的层间距有利于电解质离子的传输。因此,厚度为17μm的优化Ti3C2Tx/CNTs/CuS-LbL-15薄膜电极( mg/cm3)在聚乙烯醇(PVA)/H2SO4凝胶电解质中仍表现出1 a/g的高重量电容( F/g)和体积电容( F/cm3),这两者在过去的报告中在相同厚度下都是最高的。同时,该样品在电流密度为9A/g时表现出令人印象深刻的速率能力,57%的电容保持率,在高速率为5a/g的5000次循环后保持的初始容量的超稳定循环,以及在不同弯曲状态下的良好柔韧性。此外,全固态对称超级电容器在340 W/L的功率密度下显示出 Wh/L的能量密度。这项工作为组装高性能储能器件的Ti3C2Tx/CNT和CuS混合电极提供了有效途径。
图文导读
图1. (a) LbL法制备夹层状Ti3C2Tx /CNTs/CuS薄膜的工艺示意图。(b)在直径为5mm的玻璃棒上包裹独立的柔性 Ti3C2Tx /CNTs/CuS薄膜的数字图像,以及 (c) 用手折叠的相应平面状薄膜。
图2. Ti3C2Tx /CuS-LbL-5 (a) 和Ti3C2Tx /CuS-LbL-15 (b) 薄膜横截面的SEM图像及其对应的 Ti 和铜元素。(c) 样品XRD光谱的比较。(d)和(e)分别是(c)在2θ的5-10和26-35 范围内的放大图。(f) 样品的相应拉曼光谱。
图3. (a) Ti3C2 Tx基薄膜电极全固态超级电容器示意图。(b) 纯Ti3C2 Tx、Ti3C2 Tx /CuS-LbL-5 和Ti3C2 Tx/CuS-LbL-15薄膜在5 mV扫描速率下的CV曲线比较/秒。(c) Ti3C2 Tx/CuS-LbL-15在1至9 A/g 的不同电流密度下的恒电流充电/放电 (GCD) 曲线。(d) Ti3C2 Tx/CuS-LbL-15 的CV曲线比较和Ti3C2 Tx/CuS-hybrid-15在5mV/s 的扫描速率下和 (e) 在1A/g电流密度下的相应GCD曲线。
图4、电化学性能
图5. (a) 组装后的超级电容器在不同弯曲状态下的光学图像。(b) Ti3C2 Tx/CNTs/CuS-LbL-5薄膜在5 mV/s的扫描速率下不同弯曲角度的CV曲线。(c) 与之前报道的作品相比,超级电容器的体积功率和能量密度图。
小结
综上所述,采用 LbL 方法制备了具有夹层结构的可弯曲和独立的 Ti3C2 Tx /CNTs/CuS 复合膜电极,其中 Ti3C2 Tx/CNTs 杂化片材和CuS活性材料分别为通过过滤交替堆积。这项工作为全固态SCs设计高性能电极提供了一种有效的方法,在柔性和可穿戴电子产品中具有巨大的应用潜力。
文献:
在材料学科上,要求学生掌握坚实宽广的基础理论和系统深入的专门知识,了解材料科学的发展前沿。下文是我为大家搜集整理的有关材料学的论文范文的内容,欢迎大家阅读参考!
论高电化学性能聚苯胺纳米纤维/石墨烯复合材料的合成
石墨烯是一种二维单原子层碳原子SP2杂化形成的新型碳材料,因其非凡的导电性和导热性、极好的机械强度、较大的比表面积等特性,引起了国内外研究者极大的关注.石墨烯已经被探索应用在电子和能源储存器件、传感器、透明导电电极、超分子组装以及纳米复合物[8]等领域中.而rGO因易聚集或堆叠而导致电容量较低(101 F/g)[9],这限制了其在超级电容器电极材料领域的应用.
另一方面,PANI作为典型的导电高分子之一,由于合成容易,环境稳定性好和导电性能可调等特性备受关注.具有纳米结构的导电材料,由于纳米效应不但能提高材料固有性能,并开创新的应用领域.PANI纳米结构的合成取得了许多的成果.PANI作为超级电容器电极材料因具有高的赝电容,其电容量甚至可高达3 407 F/g[10];然而,当经过多次充放电时PANI链因多次膨胀和收缩而降解导致其电容损失较大.碳材料具有高的导电性能和稳定的电化学性能,为了提高碳材料的电化学电容和PANI电化学性能的稳定性,人们把纳米结构的PANI与碳材料复合以期获得电容较高且稳定的超级电容器电极材料[11].
作为新型碳材料的石墨烯和PANI的复合引起了极大的关注[12].但是用Hummers法合成的GO直接与PANI复合构建PANI/GO复合电极因导电率低而必须还原GO,化学还原剂的加入虽然还原了部分GO而提高了导电性能,但也在一定程度上钝化了PANI [13],另外排除还原剂又对环境造成一定程度的污染.因而开拓一条简单且环境友好的制备PANI/rGO复合材料作为超级电容器的电极路线仍然是一个难题.
基于以上分析,首先使PANI和GO相互分散和组装,借助水热反应这一绿色环境友好的还原方法制备PANI/rGO复合材料,以期获得高性能的超级电容器电极材料.
1实验部分
原材料
苯胺(AR, 国药集团),经减压蒸馏后使用;氧化石墨烯(自制);过硫酸铵(APS, AR, 湖南汇虹试剂);草酸(OX, AR, 天津市永大化学试剂);十六烷基三甲基溴化铵(CTAB, AR, 天津市光复精细化工研究所).
的制备
PANIF的制备按我们先前提出的方法 [14],制备过程如下:把250 mL去离子水加入三口烧瓶后,依次加入 g CTAB, g 草酸以及 mL苯胺,在12 ℃水浴上搅拌8 h;随后,往上述溶液中一次性加入20 mL含苯胺等量的过硫酸铵水溶液,同样条件下使反应保持7 h.所制备的样品用大量去离子水洗涤至滤液为中性,随后30 ℃真空干燥24 h. 的制备
采用Hummers法制备GO,具体过程如下:向干燥的2 000 mL三口烧瓶(冰水浴)中加入10 g天然鳞片石墨(325目),加入5 g硝酸钠固体,搅拌下加入220 mL浓硫酸,10 min后边搅拌边加入30 g高锰酸钾,在冰水浴下搅拌120 min,再将三口烧瓶移至35 ℃水浴中搅拌180 min,然后向瓶中滴加460 mL去离子水,同时将水浴温度升至95 ℃,保持95 ℃搅拌60 min,再向瓶中快速滴加720 mL去离子水,10 min后加入80 mL双氧水,过10 min后趁热抽滤.将抽干的滤饼转移到烧杯中,加大约800 mL热水及200 mL浓盐酸,趁热抽滤,随后用大量去离子水洗涤直至中性.所得产品边搅拌边超声12 h后5 000 r/min下离心10 min,得氧化石墨烯溶液.
复合材料制备
按照一定比例将含一定量的PANIF液与一定量的 mg/mL 的GO溶液混合,使混合液总体积为30 mL, GO在混合液中的最终浓度为 mg/ mL,磁力搅拌10 min后,将混合液转移到含50 mL聚四氟乙烯内衬的反应釜中进行水热反应,在180 ℃保温3 h;待反应釜自然冷却至室温后取出,用去离子水洗涤产物直至洗液无色后,于60 ℃真空干燥24 h,待用.按照上述步骤制备的PANIF与GO的质量比分别为5,10以及15,相应命名为PAGO5,PAGO10和PAGO15,对应的PANIF质量为75 mg,150 mg和225 mg.
仪器与表征
用日本日立公司S4800场发射扫描电镜(SEM)分析样品的形貌;样品经与KBr混合压片后,用Nicolet 5700傅立叶红外光谱仪进行红外分析;用德国Siemens公司Xray衍射仪进行XRD分析;电化学性能测试使用上海辰华CHI660c电化学工作站.
电极制备和电化学性能测试:将活性物质(PANIF或PANIF/rGO)、乙炔黑以及PTFE按照质量比85∶10∶5混合形成乳液,将其均匀地涂在不锈钢集流体上,在10 MPa压力下压片,之后烘干得工作电极.在电化学性能测试过程中,使用饱和甘汞电极(SCE)作为参比电极,铂片(Pt)作为对电极,在三电极测试体系中使用1 M H2SO4作为电解液进行电化学测试,电势窗为~.
比电容计算依据充放电曲线,按式(1)[15]计算:
Cs=iΔtΔVm.(1)
式中:i代表电流,A;Δt代表放电时间,s;ΔV代表电势窗,V;m代表活性物质质量,g.
2结果与讨论
形貌表征
图1为PANIF和PAGO10形貌的SEM图.低倍的SEM(图1(a))显示所制备PANIF为大面积的纳米纤维网络;高倍的图1(b)清晰地显现该3D纳米纤维网络结构含许多交联点.PANIF和PAGO10混合液经过水热反应后,从低倍的SEM(图1(c))可以看出,PAGO10复合物具有交联孔状结构;提高观察倍数(图1(d)和图1(e))后可以发现样品中rGO 与PANIF共存;而高倍的图1(d)清晰地显示出了rGO与PANIF紧密结合,且合成的褶皱rGO因层数较少而能观察到其遮盖的PANIF.从图1可知:成功合成了大面积的PANIF以及互相均匀分散的PANIF/rGO复合材料.
分析
图2为PANIF,GO以及PAGO10 3种样品的FTIR图.图2中a曲线在1 581 cm-1,1 500 cm-1,1 305 cm-1,1 144 cm-1,829 cm-1等波数处展现的尖锐峰为PANI的特征峰,它们分别对应醌式结构中C=C双键伸缩振动、苯环中C=C双键伸缩振动、C-N伸缩振动峰、共轭芳环C=N伸缩振动、对位二取代苯的C-H面外弯曲振动.图2中b曲线为GO的红外谱图,在3 390 cm-1, 1 700 cm-1的峰分别对应-COOH中的O-H,C=O键振动,1 550~1 050 cm-1范围内的吸收峰代表COH/ COC中的C-O振动[16],可以看出,GO中存在大量的含氧官能团.图2中c曲线为PAGO10复合物红外吸收谱图,与GO,PANIF谱图比较, 可以发现PAGO10中的GO特征峰不太明显而PANI的特征峰全部出现,这个结果归结于GO含量少以及GO经水热反应后形成了rGO,另外也表明水热反应对PANI品质无大的影响.
电化学性能分析
图4为样品的CV曲线,其中图4(a)为不同样品在1 mV/s扫描速率下的CV图,可以看出,4个样品均出现明显的氧化还原峰,这归因于PANI掺杂/脱掺杂转变,表明PANIF以及复合物显示出优良的法拉第赝电容特性.图4(b)为PAGO10在不同扫描速率下的CV曲线,由图可知PAGO10电极的比电容随着扫描速率减小而稳步增加,在扫描速率为1 mV/s时,PAGO10电极的比电容为 F/g.
图5为PANI,PAGO5,PAGO10和PAGO15的充放电曲线以及交流阻抗图.图5(a)为电流密度为1 A/g时样品的放电曲线图,由图可知:4种样品均有明显的氧化还原平台,这与前述CV分析中的结果相吻合.根据充放电曲线,借助式(1),计算了4种样品在不同电流密度下的比电容,结果如图5(b)所示,很明显,相同电流密度下PAGO10比电容最大,当电流密度为1 A/g时,其比电容为517 F/g,这个结果表明PAGO10的电化学性能明显优于PANI/石墨烯微球和3D PANI/石墨烯有序纳米材料(电流密度为 A/g时,比电容分别为 261和495 F/g)[18-19], 而PANIF比电容最小,仅为378 F/g;且在10 A/g电流密度下PAGO10的比电容仍保持在356 F/g 左右,这表明PAGO10电极具有优异的倍率性能.该复合材料比电容以及倍率性能得到极大提高源于rGO与PANIF两组分间的协同效应.在充放电过程中连接在PANIF间的rGO为电子转移提供了高导电路径;同时,紧密连接在rGO上的PANIF有效阻止水热还原过程中石墨烯的团聚,增加了电极/电解质接触面积,从而提高了PANIF的利用率而使得容量增加. 为了更清晰地了解所制备材料的电子转移特点以及离子扩散路径,对样品进行了交流阻抗测试,图5(c)为4个样品的Nyquist图.从图5(c)可知:在高频区、低频区均分别具有阻抗弧半圆、频响直线.在高频区,电荷转移电阻Rct大小顺序为RPAGO5
值说明rGO的加入提高了电极材料的导电性.在低频区,直线形状反映了样品电化学过程均受扩散控制,并且PAGO5所展现的直线斜率最大,说明其电容行为最接近理想电容,即频响特性最好,这也是源于rGO的加入提高了材料导电性以及复合物的独特微观结构.
氧化还原反应的发生,导致PANIF具有十分高的赝电容,但由于在大电流充放电过程中高分子链重复膨胀和收缩,导致其循环稳定性差而限制了其实际应用.为此,对ANIF和PAGO10进行循环稳定性分析.图6显示,PAGO10在5 A/g电流密度下经过1 000次充放电后,电容保持率为77%,而不含rGO的PANIF电极在2 A/g电流密度下充放电1 000次电容保持率仅为,这个结果表明PANIF循环稳定性较差;另外,rGO的加入形成的PANIF/rGO紧密的连接,降低了PANI链在充放电过程中的膨胀与收缩,使得链段不容易脱落或者断裂,从而PAGO10具有出色的循环稳定性.
3结论
采用自组装的方法,经水热反应,制备了PANIF/rGO复合电极材料.研究发现,rGO与PANIF紧密连接;而且,当PANIF与GO质量比为10∶1时,复合材料展现了最佳的电化学性能,当电流密度为1和10 A/g时,其比电容分别为517, 356 F/g.从上可知:合成的PAGO10具有高的比电容、较好的倍率性能和稳定性能,从而有望作为超级电容器电极材料在实践中应用.
浅谈水泥窑用新型环保耐火材料的研制及应用
1 概述
随着新型干法水泥生产技术在我国的迅速普及,我国水泥工业得到飞速发展,2012年,水泥总产量达亿吨,占世界总产量55%左右。在20世纪六、七十年代,镁铬质耐火材料因具有良好的挂窑皮和抗水泥熟料的化学侵蚀性能,而被广泛应用于新型干法水泥窑的烧成带[1],并取得了良好的使用效果,但由于镁铬砖在使用过程中砖内的Cr2O3组分与窑气、窑料中的碱、硫等相结合,形成有毒的Cr6+化合物[2]。再加上原燃料中所带入的硫,碱与硫共存时形成另一种水溶性Cr6+有毒性致癌物质:R2(Cr,S)O4。水泥窑在正常运转中,其窑衬中镁铬砖内的一部分Cr6+化合物随着窑气和粉尘外逸,飘落在厂区及周边环境中,造成厂区大气的污染; 另一部分则残留在拆下的废砖中,废弃的残砖一遇到水就会造成地下水的污染;更直接的危害是在水泥窑折砖和检修作业时,窑气和碎砖粉尘中的Cr+6会给现场人员造成毒害,据有关专家论证,Cr6+腐蚀皮肤,使人易患上大骨病,进而致癌。因此,镁铬质耐火材料作为水泥窑内衬会对环境和人类造成长期污染和公害。
发达工业国家在水源、环境和卫生方面有着一系列配套的规范,其中德国对水泥厂预防“铬公害”的规定最普遍,执行也是最严格的,具体内容如表1所示:
我国于1988年4月颁布国家标准GB3838-88,对地面水中Cr6+含量进行明确规定,如表2所示:
这就使得水泥企业在使用镁铬砖做水泥窑内衬投入的环保费用加大,特别是用过镁铬残砖处理费用非常昂贵,因此,水泥窑用耐火材料无铬化是必然的发展趋势。
2 水泥窑烧成带新型环保耐火材料的研制
研制思路
目前,用于水泥回转窑烧成带的无铬环保耐火材料主要有镁白云石砖和镁铝尖晶石砖。镁白云石砖对水泥熟料具有良好的化学相容性和优良的挂窑皮性,但是抗热震性差,抗水化性差;镁铝尖晶石砖具有良好的抗热震性和抗侵蚀性,但是挂窑皮性差[3,4]。镁砖中引入铁铝尖晶石制成的第二代新型环保耐火材料―新型环保耐火材料,结构韧性好,抗碱盐及水泥熟料侵蚀能力强,具有良好的挂窑皮性能,在烧成带能有效延长使用寿命,是目前适合我国国情的新一代水泥窑烧成带用无铬耐火材料。但该产品的关键是铁铝尖晶石原料的合成、加入量、加入方式及有关工艺条件对制品性能的影响。
试验与研究
铁铝尖晶石的合成。铁铝尖晶石是一种自然界少有的矿物,化学分子式为FeAl2O4,其中含和。铁铝尖晶石为立方体结构,二价阳离子占据四面体位置,三价阳离子填充在由氧离子构成的面心立方中。其理论密度为,莫氏硬度为。要形成铁铝尖晶石,必须保证氧化亚铁(FeO或FeOn)是处于其稳定存在的条件下。只有在FeO能稳定存在的区域内,才能保证与Al2O3形成的化合物是FeO? Al2O3尖晶石,而在FeO稳定存在的区域以外的条件下,铁的氧化物与Al2O3作用得到的产物很难说是FeO?Al2O3尖晶石,而可能是含有大量或主要是Fe2O3-Al2O3的固溶体[5]。FeOn- Al2O3的系相图如图1所示:
为了得到高质量的合成铁铝尖晶石,我们特聘请了欧洲知名耐材专家进行专业技术指导,经过大量试验,掌握了烧结合成铁铝尖晶石的关键技术,为生产达到国际水平的新型环保耐火材料打下了良好的基础。在生产中把FeO与Al2O3按一定比例混合均匀后压制成荒坯,在保证“FeO”稳定存在的气氛下,经高温烧成,制得FeO? Al2O3尖晶石含量为97%以上的烧结铁铝尖晶石。产品衍射如图2所示:
原料与制品的性能 ①原料的选择。根据我们的生产经验,结合水泥窑烧成带对耐火材料的要求,我们选用优质镁砂、合成尖晶石为原料,并加入特殊添加剂来强化制品的性能,研制生产出第二代无铬镁尖晶石砖―新型环保耐火材料。所用原料理化指标如表3所示。②制品的性能。将原料破碎成所需的粒度,采用四级配料,经强力混碾、高压成型、高温烧成。产品的显微结构见图3,产品理化指标与国外同类产品对比情况如表4所示。
铁铝尖晶石对制品性能的影响 ①铁铝尖晶石加入量对制品耐压强度的影响。从图4可以看出:随着铁铝尖晶石增加制品的耐压强度呈现出先升后降的趋势,这是由于铁铝尖晶石与镁砂互溶的结果,铁铝尖晶石的加入量在10%时,制品的强度达到最大值。②铁铝尖晶石加入形式对制品抗热震性能的影响。从实验结果表5可以看出:以颗粒形式加入铁铝尖晶石制品的抗热震性比以细粉形式加入铁铝尖晶石制品相对较好。
产品的性能
结构韧性好、热震稳定性优良。新型环保耐火材料在烧成及使用过程中Fe2+离子扩散进入周边的氧化镁基质中,同时部分Mg2+离子扩散进入铁铝尖晶石颗粒,与铁铝尖晶石分解残留的氧化铝反应生成镁铝尖晶石,这一活化效应使制品在烧成或使用过程中,内部形成大量的微裂纹,重要的是铁铝尖晶石的分解过程、Fe2+离子和Mg2+离子的相互扩散在高温下持续进行,使得MgO-FeAl2O4耐
火材料在整个高温使用过程中,可以形成大量的微裂纹,这些微裂纹的存在有利于缓冲热应力、提高制品的结构柔韧性和热震稳定性。
强度高。从制品显微结构可以看出:制品内部铁铝尖晶石与高纯镁砂互溶,结构非常均匀致密,晶粒发育良好,颗粒与基质间通过晶间尖晶石相连接,结合良好,明显的提高了砖的密度和高温强度。
具有良好的粘挂窑皮性能。在使用过程中,制品中的Fe2O3与Al2O3都易与水泥熟料中的CaO反应生成C2F、C4AF等低熔点矿物,该矿物具有一定的粘度,可牢固粘附在新型环保耐火材料的热面,形成稳定的窑皮。我们把新型环保耐火材料和直接结合镁铬砖分别制成40mm×40mm×60mm样块,用90%水泥生料+5%煤粉+5%K2SO4,压制成Φ30×10mm圆饼,把圆饼放在两个样块中间,放入电炉内加热,温度升到1500℃,保温3小时,冷却后测其抗折强度,二者基本相同。由此可见,新型环保耐火材料粘挂窑皮性能优良。
产品的应用
新型环保耐火材料自2012年研制成功投放市场以来,通过河北鹿泉曲寨水泥公司、宁夏瀛海天琛水泥公司、内蒙古哈达图水泥公司、陕西尧柏水泥集团、北方水泥集团、河南锦荣水泥公司、新疆天基水泥公司、安阳湖波水泥公司等二十多家大型水泥企业2500t/d、5000t/d、6500t/d水泥窑烧成带应用,寿命周期均达到12个月以上,受到用户认可。
3 结论
男,安徽当涂人,教授,博士生导师,山东省杰青,入围中国石油大学华东“拔尖人才建设工程”,从事多孔材料的制备及在吸附、电化学储能等领域的应用基础研究。2005年6月获中国石油大学(华东)工学博士学位。博士学位论文的题目为《纳米结构材料的合成、表征及在电化学电容器中的应用研究》。博士期间,于2002年3月至2002年6月,在韩国KAIST(Korean Advanced Institute of Science and Technology)做访问学生;2002年6月至2004年10月,在澳大利亚昆士兰大学功能纳米材料研究中心做访问学生。2010年6月至2010年9月,在澳大利亚昆士兰大学功能纳米材料研究中心做高级访问学者。在超级电容器领域,首次将介孔设计的概念引入过渡金属氧化物电极材料,率先研究了有序介孔炭孔系结构对电化学电容特性的影响,有关介孔氧化镍(J. Power Sources, 2004, 134, 324-330.)和有序介孔炭(Carbon, 2006, 44., 216-224.)电极材料的论文,分别被他引154和219次,其中后者于2008年被国际著名科技评论杂志《Science Watch》评为两年来介孔材料领域被引用最多的20篇论文之一,2011年被《Carbon》杂志评为“Most Cited Article 2006-2010”,即该杂志近5年被引用最多的论文之一。到目前为止,共发表SCI收录的期刊论文70余篇,所发表论文被J. Am. Chem. Soc.、Angew. Chem. Int. Ed.、Adv. Mater.、Nano Lett.等刊物上的论文他引1400余次,H因子为19。有三篇论文被美国情报研究所(ISI)评为全世界前1%“高被引用论文”。共申请发明专利7项,已获授权5项。 现主持山东省自然科学杰出青年基金《电化学储能材料》(JQ201215)、国家自然科学基金《有机电解液中氧化石墨插层复合物的电容形成机制和离子传输特性研究》(51107076)、教育部科学技术研究重点项目《生物质基超级电容器电极材料研究》(210125)、山东省中青年科学家奖励基金《不同电解液体系有序介孔碳电极材料的设计、制备与性能研究》(2008BS09007)、中国博士后科学基金面上项目《氧化石墨插层复合物电极材料研究》(20110491570)和中国石油创新科技基金《Meso-SAPO-11分子筛的合成及其在柴油异构降凝工艺中的应用研究》(2013D-5006-0404), 参与国家自然科学基金和其它省部级基金多项。获山东省自然科学一等奖一项(ZR2011-1-1,排名第四,山东省仅1项)。3) 学术兼职:国际期刊《The Scientific World Journal》化学工程领域编委。国际期刊《ISRN Electrochemistry》编委。国际期刊《Advances in Materials Science and Engineering》客座编辑(Leading guest editor)。Energy and Environmental Science, Carbon,J. Power Sources,Electrochim. Acta, Electrochem. Commun., Environ. Sci. Technol., Phys. Chem. Chem. Phys., Int. J. Hydrogen Energ., 等20余种国际期刊的审稿人山东省化学化工学会催化专业委员会理事山东省化学化工学会染料与染整专业委员会理事山东理工大学学报(自然科学版)英文编辑 (2008-2012)