首页 > 期刊论文知识库 > 贝叶斯公式的论文题目

贝叶斯公式的论文题目

发布时间:

贝叶斯公式的论文题目

贝叶斯公式直接的应用就是学习,啥意思,就是根据经验对新发生的事物进行判断。抽象地说就是这样。应用的原因就是为了预测未来,规避风险。就和你知道很多鸟都是黑色的,但是其中乌鸦是黑色的可能性最大,于是当你再看到一只黑色的鸟的时候,你就会想着这只鸟是不是乌鸦。包括你学习贝叶斯也是这样的,别人都说贝叶斯很厉害[先验],然后你找了很多案例,最后想看看贝叶斯成功的概率是多少[后验],其本质就是这个

设拿出白球为事件A,盒子里原来的球是黑球为事件B。 剩下为黑球的概率其实就是: P(B|A) = P(A|B)*P(B)/P(A) 而P(A) = P(A|B)*P(B)+P(A|^B)*P(^B) 其中P(B) = P(^B) = 1/2,因为原来的球不是黑的就是白的,概率相等 P(A|B)指的是盒子里原来的球是黑球的情况下,拿出白球的概率,为1/2 而P(A|^B)指的是盒子里原来的球是白球的情况下,拿出的是白球的概率,显然为1 所以P(B|A) = *(**) = 1/3 所以P(^B|A) = 1 - P(B|A) = 2/3

写作话题: 贝叶斯预测模型在矿物含量预测中的应用 贝叶斯预测模型在气温变化预测中的应用 贝叶斯学习原理及其在预测未来地震危险中的应用 基于稀疏贝叶斯分类器的汽车车型识别 讯号估计中的贝叶斯方法及应用 贝叶斯神经网路在生物序列分析中的应用 基于贝叶斯网路的海上目标识别 贝叶斯原理在发动机标定中的应用 贝叶斯法在继电器可靠性评估中的应用 相关书籍: Arnold Zellner 《Bayesian Econometrics: Past, Present and Future》 Springer 《贝叶斯决策》 黄晓榕 《经济资讯价格评估以及贝叶斯方法的应用》 张丽 , 闫善文 , 刘亚东 《全概率公式与贝叶斯公式的应用及推广》 周丽琴 《贝叶斯均衡的应用》 王辉 , 张剑飞 , 王双成 《基于预测能力的贝叶斯网路结构学习》 张旭东 , 陈锋 , 高隽 , 方廷健 《稀疏贝叶斯及其在时间序列预测中的应用》 邹林全 《贝叶斯方法在会计决策中的应用》 周丽华 《市场预测中的贝叶斯公式应用》 夏敏轶 , 张焱 《贝叶斯公式在风险决策中的应用》 臧玉卫 , 王萍 , 吴育华 《贝叶斯网路在股指期货风险预警中的应用》 党佳瑞 , 胡杉杉 , 蓝伯雄 《基于贝叶斯决策方法的证券历史资料有效性分析》 肖玉山 , 王海东 《无偏预测理论在经验贝叶斯分析中的应用》 严惠云 , 师义民 《Linex损失下股票投资的贝叶斯预测》 卜祥志 , 王绍绵 , 陈文斌 , 余贻鑫 , 岳顺民 《贝叶斯拍卖定价方法在配电市场定价中的应用》 刘嘉焜 , 范贻昌 , 刘波 《分整模型在商品价格预测中的应用》 《Bayes方法在经营决策中的应用》 《决策有用性的资讯观》 《统计预测和决策课件》 《贝叶斯经济时间序列预测模型及其应用研究》 《贝叶斯统计推断》 《决策分析理论与实务》

P(A | B) 是B发生的条件下A发生的概率 P(AB)是A、B同时发生的概率P(AB)=P(A|B)P(B) 在盗贼入侵时狗叫的概率:盗贼的入侵使得狗叫,B是因,A是果,所以是P(A|B),当然狗叫也有其他原因B1、B2,……,即BUB1UB2U……=S(S为总空间,即P(S)=1),此时狗叫的概率为P(A)=P(A|BUB1UB2U……),B只是一个原因 在盗贼入侵的同时狗叫了的概率:盗贼入侵的时候,狗恰好叫了,可能是因为入侵引起了,也可能只是随便乱叫了,概率为P(AB) 应用中,一般因果导致出某件事的概率都为条件概率,同时发生的概率则为联合概率

这位同学首先说明一下,Bayes公式是有适用条件的。 比如设有A,B,C,3个事件,但是你不确定他们的关系 是不是相互独立的就不能确定求他们都发生的概率的 演算法。Bayes公式只适用于A,B,C是一个完备事件组的 情况. P(Ai| B)={P(Ai)P(B| Ai)}/{∑P(Ai)P(B| Ai)}, i=1,2,3……,n 此式被称为贝叶斯公式 如果你说的问题满足它的条件,那么它详细地说明了 多个条件下的概率求法,就是有几个条件,i就为几 希望对你能有帮助。

贝叶斯定理由英国数学家贝叶斯 ( Thomas Bayes 1702-1763 ) 发展,用来描述两个条件概率之间的关系,比如 P(A|B) 和 P(B|A)。按照乘法法则:P(A∩B)=P(A)*P(B|A)=P(B)*P(A|B),可以立刻汇出。如上公式也可变形为:P(B|A)=P(A|B)*P(B)/P(A)。

P(?C)= P(?A|C)= P(A|?C)= P(C|A)=P(C)P(A|C)/[P(C)P(A|C)+P(?C)P(A|?C)] = 刚好最近在学概率 希望能帮助到你 不知为什么非的符号都变成问号了

在过去很长的时间里,频率统计论一直是概率理论研究中的主流思想。然而,随着贝叶斯理论的发展,人们发现在很多实际应用中,贝叶斯理论更具普适性,并且能得到更好的结果。统计物理学也不例外,传统的研究方法主要基于频率统计论,而贝叶斯理论能让我们从资料中发掘出更多的资讯。

贝叶斯定理是关于随机事件A和B的条件概率(或边缘概率)的一则定理。 其中P(A|B)是在B发生的情况下A发生的可能性。 人们根据不确定性资讯作出推理和决策需要对各种结论的概率作出估计,这类推理称为概率推理。概率推理 既是概率学和逻辑学的研究物件,也是心理学的研究物件,但研究的角度是不同的。概率学和逻辑学研究的是客观概率推算的公式或规则;而心理学研究人们主观概率估计的认知加工过程规律。贝叶斯推理的问题是条件概率推理问题,这一领域的探讨对揭示人们对概率资讯的认知加工过程与规律、指导人们进行有效的学习和判断决策都具有十分重要的理论意义和实践意义。 贝叶斯定理也称贝叶斯推理,早在18世纪,英国学者贝叶斯(1702~1763)曾提出计算条件概率的公式用来解决如下一类问题:假设H[1],H[2]…,H[n]互斥且构成一个完全事件,已知它们的概率P(H[i]),i=1,2,…,n,现观察到某事件A与H[,1],H[,2]…,H[,n]相伴随机出现,且已知条件概率P(A/H[,i]),求P(H[,i]/A)。 贝叶斯公式(发表于1763年)为: P(H[i]|A)=P(H[i])*P(A│H[i])/{P(H[1])*P(A│H[1]) +P(H[2])*P(A│H[2])+…+P(H[n])*P(A│H[n])} 这就是著名的“贝叶斯定理”,一些文献中把P(H[1])、P(H[2])称为基础概率,P(A│H[1])为击中率,P(A│H[2])为误报率[1][

贝叶斯定理由英国数学家贝叶斯 ( Thomas Bayes 1702-1761 ) 发展,用来描述两个条件概率之间的关系,比如 P(A|B) 和 P(B|A)。按照乘法法则,可以立刻汇出:P(A∩B) = P(A)*P(B|A)=P(B)*P(A|B)。如上公式也可变形为:P(B|A) = P(A|B)*P(B) / P(A)。 例如:一座别墅在过去的 20 年里一共发生过 2 次被盗,别墅的主人有一条狗,狗平均每周晚上叫 3 次,在盗贼入侵时狗叫的概率被估计为 ,问题是:在狗叫的时候发生入侵的概率是多少? 我们假设 A 事件为狗在晚上叫,B 为盗贼入侵,则以天为单位统计,P(A) = 3/7,P(B) = 2/(20*365) = 2/7300,P(A|B) = ,按照公式很容易得出结果:P(B|A) = *(2/7300) / (3/7) = 。

原题:A Beginner's Guide to Variational Methods: Mean-Field Approximation 给初学者的变分法指导:平均场近似

这种 推断-优化 的二元性,赋予我们强大的能力。我们既可以使用最新、最好的优化算法来解决统计机器学习问题,也可以反过来,使用统计技术来最小化函数。

这篇文章是关于变分方法的入门教程。 我将推导出最简单的VB方法的优化目标,称为 平均场近似 。 这个目标,也称为 变分下界 ,与变分自动编码器( VAE )中使用的技术完全相同(我将在后续文章中相信介绍它,堪称入木三分)。

1.问题的前提和符号约定 2.问题的表述 3.平均场近似的变分下界 4.前传KL与反传KL 5.与深度学习的联系

本文假设读者熟悉随机变量、概率分布和数学期望等概念。如果你忘了这些概念,可以在 这里 进行复习。机器学习和统计领域的符号约定没有被严格地标准化,因此在这篇文章中,我们约定如下符号,确定的符号将对理解文意很有帮助:

许多学术论文将术语“变量”、“分布”、“密度”,甚至“模型”互换使用。这种做法本身不一定导致错误,因为 、 和 都可以通过一对一的对应关系相互指代。但是,将这些术语混合在一起,容易让人感到困惑。因为它们的指代范畴各不相同(比如对函数进行 抽样 没有意义,对分布 积分 同样没有意义)。

我们将系统建模为随机变量的集合,其中一些变量( )是“可观察的”,而其他变量( )是“隐藏的”。 【译者按:后文称二者为“观察变量”和“隐变量”】我们可以通过下图绘制这种关系:

从 到 ,通过条件分布 这条边,将两个变量联系在一起。

说一个更形象的例子: 可能代表“图像的原始像素值”,而 是二值变量。如果 是猫的图像, 。

贝叶斯定理 给出了任意一对随机变量之间的一般关系: 其中的各项与如下常见名称相关联:

是后验概率:“给定图像,这是猫的概率是多少?” 如果我们可以从 进行采样,我们可以用它作一个猫分类器,告诉我们给定的图像是否是猫。

是似然概率:“给定 的值,计算出该图像 在该类别下的‘可能’程度({是猫/不是猫})” 如果我们可以从 进行采样,那么我们就可以生成猫的图像和非猫的图像,就像生成随机数一样容易。如果你想了解更多相关信息,请参阅我的关于生成模型的其他文章: [1] , [2] 。

是先验概率。它指代我们所知道的关于 的任何先前信息——例如,如果我们认为所有图像中,有1/3是猫,那么 并且 。

这部分是为了感兴趣的读者准备的。请直接跳到下一部分,继续学习本教程。

前面猫的示例提供了观察变量、隐变量和先验的理解角度,是传统的一个示例。 但是请注意,我们定义隐变量/观察变量之间的区别有些随意,你可以自由地将图形模型按需求进行分解。

我们可以通过交换等式的项来重写贝叶斯定理: 现在的“后验概率”是 。

从贝叶斯统计框架,隐变量可以解释为附加到观察变量的 先验信念 。 例如,如果我们认为 是多元高斯,则隐变量 可以表示高斯分布的均值和方差。 另外,参数 上的分布是 的先验分布。

你也可以自由选择 和 代表的值。 例如, 可以代之以“均值、方差的立方根、以及 ,其中 ”。 虽然有点突兀、奇怪,但只要相应地修改 ,结构仍然有效。

你甚至可以往系统中“添加”变量。先验本身可能通过 依赖于其他随机变量, 具有它们自己的 的先验分布,并且那些先验仍然是有先验的,依此类推。任何超参数都可以被认为是先验的。 在贝叶斯统计中, 先验是无穷递归的 。【译者按:1.英文中俗语“turtles all the way down”表示问题无限循环、递归,作者用了"priors all the way down"来诙谐地表达先验系统的递归性。2.先验的层次越深,对结果的影响越 小 】

我们感兴趣的关键问题是隐变量 的后验推断或密度函数。后验推断的一些典型例子:

我们通常假设,我们已知如何计算似然分布 和先验分布 【译者按:原文为“function”函数,应为讹误,后文类似情况以符号为准】。

然而,对于像上面的复杂任务,我们常常不知道如何从 采样或计算 。或者,我们可能知道 的形式,但相应的计算十分复杂,以至于我们无法在合理的时间内对其评估【译者按:“评估”的意思是给定似然函数,求出该函数在某一点上的值】。 我们可以尝试使用像 MCMC 这样的基于采样的方法求解,但这类方法很难收敛。

变分推断背后的想法是这样的:对简单的参数分布 (就像高斯分布)进行推断。对这个函数,我们已经知道如何做后验推断,于是任务变成了调整参数 使得 尽可能接近 。【译者按:“推断”在这里指的是从观察变量 的概率分布导出隐变量 的概率分布】

这在视觉上如下图所示:蓝色曲线是真实的后验分布,绿色分布是通过优化得到的拟合蓝色密度的变分近似(高斯分布)。

两个分布“接近”意味着什么? 平均场变分贝叶斯(最常见的类型)使用反向KL散度作为两个分布之间的距离度量。

反向KL散度测量出将 “扭曲(distort)”成 所需的信息量(以nat为单位或以2为底的对数bits为单位)。我们希望最小化这个量。【译者按:1.“扭曲”的意思是,把 和 贴合在一起,即通过某种映射引发函数图像的形变,使二者图像一致;2.许多研究产生式模型的论文会比较不同方法下的散度值。】

根据条件分布的定义, 。 让我们将这个表达式代入原来的KL表达式,然后使用分配律: 为了使 相对于变分参数 最小化,我们只需要最小化 ,因为 对于 来说是常数。 让我们重新写这个数量作为对分布 的期望。 最小化上面的式子等价于最大化负的式子: 在文献中, 被称为 变分下界 。如果我们能够估计 、 、 ,我们就可以计算它。我们可以继续调整式子里各项的顺序,使之更符合直觉: 如果说采样 是将观察变量 “编码”为隐变量 的过程,则采样 是从 重建观察变量 的“解码”过程。

由此得出 是预期的“解码”似然(即变分分布 能在多大程度上将样本 解码回样本 ),再减去变分近似的分布与先验 之间的KL散度【译者按:原文是“加上”,应该是减去】。如果我们假设 是条件高斯的,那么先验 通常被指定为平均值0、标准偏差1的对角高斯分布。

为什么 称为变分下界? 将 代入 ,我们有: 的含义,用大白话说就是,真实分布下的数据点 的对数似然 ,等于 ,加上 用来捕获在该特定值 处 和 之间距离的差。

由于 , 必大于(或等于) 。因此 是 的下界。 也被称为证据下界(ELBO),通过调整公式:

注意, 本身包含近似后验和先验之间的KL散度,因此 中总共有两个KL项。

KL散度函数不是对称距离函数,即 (当 时除外)第一个被称为“前向KL”,而后者是“反向KL””。 我们为什么要使用反向KL呢?因为推导的目标要求我们近似 ,所以【在 和 不能同时得到最优形式的情况下】我们要优先确保 的形式准确。

我很喜欢Kevin Murphy在 PML教科书 中的解释,我在这里尝试重新说明一下:

让我们首先考虑正向KL。正如上述推导,我们可以将KL写为,权重函数 加权下,“惩罚”函数 的期望。 只要 ,惩罚函数在任何地方都会给总KL带来损失。对于 , 。 这意味着前向KL将在 未能“掩盖” 时,将会很大。

因此,当我们确保前向KL最小化时 时, 。 优化的变分分布 被称为“避免零(zero-avoiding)”(密度 为零时 避免为零)。

如果 ,我们必须确保分母 的地方,加权功能的 ,否则KL会爆炸。这被称为“必设零(zero-forcing)”:

在机器学习问题中,使用平均场近似时,留意反向KL的后果很重要。 如果我们将单峰分布拟合到多模态分布,我们最终会得到更多的假阴性的样例(也就是说, 实际上存在概率,但我们依据 认为没有可能性)。

变分法对于深度学习非常重要。 我将在后面再写文章详细说明。这是“太长不看版”:

结合深度学习和变分贝叶斯方法,我们可以对 极其 复杂的后验分布进行推断。 事实证明,像变分自动编码器这样的现代技术,可以优化得到上文中形式完全相同的平均场变分下界!

感谢阅读,敬请期待!

鉴于标题,我们值得给出“平均场近似”这个名字背后的一些动机。

从统计物理学的观点来看,“平均场”是指忽略二阶效应,将困难的优化问题放松到更简单的问题。例如,在图模型的情境中,我们可以把估计 马尔可夫随机场 的配分函数(partition function)问题,转为最大化吉布斯自由能(对数配分函数减去相对熵)的问题。这显著地简化了全概率测量空间的全局优化的形式(参见M. Mezard和A. Montanari,Sect )。

整体分解: 平均场近似的分解:

从算法的观点来看,“平均场”是指用于计算马尔可夫随机场边缘概率的朴素平均场算法(naive mean field algorithm)。回想一下,朴素平均场算法的固定点【即最终解】是吉布斯变分问题的平均场近似的最优点。这种方法是“均值”,因为它是吉布斯采样器的平均/期望/ LLN版本,因此忽略了二阶(随机)效应(参见,和M. Jordan,()和())。

【译者按: 1.上述说明主要针对配分函数而言的。 的隐空间为标准高斯分布,协方差矩阵为对角单位阵,而不考虑非对角元素的影响。这体现了“平均场”的思想。 的实验效果显示,产生图像较为模糊或“平均”,不够锐利,也许正是平均场近似的结果】

贝叶斯公式的论文答辩问题

老师们同学们,大家上午好,我是某专业某班的某某,我的毕业设计题目是***,这个题目是我在(什么样的背景下,什么什么样的契机)选的,通过什么样的方法进行的研究,想达到一种什么样的效果。然后把大纲念一遍,加点连接语更好。(期间礼节性用语还是说点)答辩这个事,每个学校会不一样。我给我答辩的过程敲下来,作为一个参考嘛,并不一定要选为最佳答案。分享一下而已。我是国际商务专业,专业课程跟楼主的还是有一定关联。答辩小组的老师都是我们院的老师,不会太为难你的。答辩注意的问题:细节。也就是论文格式问题,一定要过关,可以找个模板,一个一个弄好,然后多找几个朋友互相交换纠正一下。我们是分成小组上去答辩的,团支书在旁边记录答辩过程。首先老师会叫你简单描述一下你写的论文,其实也就是提纲。我是把论文打印了一下,然后用笔把提纲在背面写了一遍,拿着上去念的。这个过程只要装着不紧张,说话流利就行,一般老师都没听这个内容,他们这个时候正在考虑怎么问你(当让问题是他们提前看论文后想好的),和看你在台上的表达状况。流利是王道。回答问题阶段,这个很关键啊,这个考的是临场反应,和基础知识的掌握程度。当然这些都是围绕你的论文来的,你肯定得把你论文吃透撒。关于问题的难度,如果你的论文写的很好,老师会问一些深一点的问题,写得一般,也就随便问问吧。他们的原则是,不为难。回答问题一定要有层次性,逻辑性。不能咿呀呜呜的,要口齿清楚。如果紧张,那么放缓语速吧。然后然后,你论文写得很好的话,会被选派到院里,系里进行答辩,我们这个有录像的,面子工程吗?不晓得其他学校是不是也有这个传统。总之:只要你答了,论文写了,格式对了,成绩70+毫无疑问。如果85+,得稍微努点力。

我也是法学专业的,前天刚答辩完,只不过我是刑法第一个出场,论文又涉及极具争议的邓玉娇案,所以答辩居然花了50分钟。根据我的答辩过程,说说我的感受吧,希望对你有用。自述方面,先向老师说问候语,然后介绍自己是某级某班的某某,自己论文的题目,论文主体研究的目的,意义。接着介绍论文的结构,分几个部分,每个部分写的是什么,以及自己的研究成果。最后结束语要感谢自己的导师,希望各位答辩老师指正。自述要尽量简练,让答辩老师熟悉论文的大概,尽量在5分钟内完成。你也可以上网搜一些答辩自述的范文来修改,然后背下来也行。接下来就是老师问问题了。问题只要根据你论文的内容来定,比如对于小产权房的一些法律问题发表你的观点,也会对你论文中的案例进行提问,也会问一些理论方面的问题等。每个老师的注重都不一样,根据你刚写的论文目录,我觉得你论文的每一个部分都可能被问,特别是法律界定、法律风险和小产权房问题的解决对策。所以一定要多看自己的论文,最好滚瓜烂熟,因为好多问题都是论文中会涉及到的,老师也想看看你对你论文研究的熟悉程度。一般来说,答辩需要15分钟左右(包括自述5分钟),老师会至少提2到3个问题,由易到难。我因为邓玉娇案子就杯具了,被问了十多个问题。最后,还有杀手锏,如果碰到一些很难的问题不会答,你就直接说:“老师,我水平有限,这个问题我还没有深入研究,请您指教。”这招屡试不爽,这样老师也不会为难你了。最后还是那句话,要熟悉自己的论文,答辩的时候要随即应变,不要跟老师降嘴,这样对你没好处。答辩时候没必要紧张,一般都会过的,除非你真的是答非所问,一问三不知。以上就是我的经验,祝你好运。

设拿出白球为事件A,盒子里原来的球是黑球为事件B。 剩下为黑球的概率其实就是: P(B|A) = P(A|B)*P(B)/P(A) 而P(A) = P(A|B)*P(B)+P(A|^B)*P(^B) 其中P(B) = P(^B) = 1/2,因为原来的球不是黑的就是白的,概率相等 P(A|B)指的是盒子里原来的球是黑球的情况下,拿出白球的概率,为1/2 而P(A|^B)指的是盒子里原来的球是白球的情况下,拿出的是白球的概率,显然为1 所以P(B|A) = *(**) = 1/3 所以P(^B|A) = 1 - P(B|A) = 2/3

写作话题: 贝叶斯预测模型在矿物含量预测中的应用 贝叶斯预测模型在气温变化预测中的应用 贝叶斯学习原理及其在预测未来地震危险中的应用 基于稀疏贝叶斯分类器的汽车车型识别 讯号估计中的贝叶斯方法及应用 贝叶斯神经网路在生物序列分析中的应用 基于贝叶斯网路的海上目标识别 贝叶斯原理在发动机标定中的应用 贝叶斯法在继电器可靠性评估中的应用 相关书籍: Arnold Zellner 《Bayesian Econometrics: Past, Present and Future》 Springer 《贝叶斯决策》 黄晓榕 《经济资讯价格评估以及贝叶斯方法的应用》 张丽 , 闫善文 , 刘亚东 《全概率公式与贝叶斯公式的应用及推广》 周丽琴 《贝叶斯均衡的应用》 王辉 , 张剑飞 , 王双成 《基于预测能力的贝叶斯网路结构学习》 张旭东 , 陈锋 , 高隽 , 方廷健 《稀疏贝叶斯及其在时间序列预测中的应用》 邹林全 《贝叶斯方法在会计决策中的应用》 周丽华 《市场预测中的贝叶斯公式应用》 夏敏轶 , 张焱 《贝叶斯公式在风险决策中的应用》 臧玉卫 , 王萍 , 吴育华 《贝叶斯网路在股指期货风险预警中的应用》 党佳瑞 , 胡杉杉 , 蓝伯雄 《基于贝叶斯决策方法的证券历史资料有效性分析》 肖玉山 , 王海东 《无偏预测理论在经验贝叶斯分析中的应用》 严惠云 , 师义民 《Linex损失下股票投资的贝叶斯预测》 卜祥志 , 王绍绵 , 陈文斌 , 余贻鑫 , 岳顺民 《贝叶斯拍卖定价方法在配电市场定价中的应用》 刘嘉焜 , 范贻昌 , 刘波 《分整模型在商品价格预测中的应用》 《Bayes方法在经营决策中的应用》 《决策有用性的资讯观》 《统计预测和决策课件》 《贝叶斯经济时间序列预测模型及其应用研究》 《贝叶斯统计推断》 《决策分析理论与实务》

P(A | B) 是B发生的条件下A发生的概率 P(AB)是A、B同时发生的概率P(AB)=P(A|B)P(B) 在盗贼入侵时狗叫的概率:盗贼的入侵使得狗叫,B是因,A是果,所以是P(A|B),当然狗叫也有其他原因B1、B2,……,即BUB1UB2U……=S(S为总空间,即P(S)=1),此时狗叫的概率为P(A)=P(A|BUB1UB2U……),B只是一个原因 在盗贼入侵的同时狗叫了的概率:盗贼入侵的时候,狗恰好叫了,可能是因为入侵引起了,也可能只是随便乱叫了,概率为P(AB) 应用中,一般因果导致出某件事的概率都为条件概率,同时发生的概率则为联合概率

这位同学首先说明一下,Bayes公式是有适用条件的。 比如设有A,B,C,3个事件,但是你不确定他们的关系 是不是相互独立的就不能确定求他们都发生的概率的 演算法。Bayes公式只适用于A,B,C是一个完备事件组的 情况. P(Ai| B)={P(Ai)P(B| Ai)}/{∑P(Ai)P(B| Ai)}, i=1,2,3……,n 此式被称为贝叶斯公式 如果你说的问题满足它的条件,那么它详细地说明了 多个条件下的概率求法,就是有几个条件,i就为几 希望对你能有帮助。

贝叶斯定理由英国数学家贝叶斯 ( Thomas Bayes 1702-1763 ) 发展,用来描述两个条件概率之间的关系,比如 P(A|B) 和 P(B|A)。按照乘法法则:P(A∩B)=P(A)*P(B|A)=P(B)*P(A|B),可以立刻汇出。如上公式也可变形为:P(B|A)=P(A|B)*P(B)/P(A)。

P(?C)= P(?A|C)= P(A|?C)= P(C|A)=P(C)P(A|C)/[P(C)P(A|C)+P(?C)P(A|?C)] = 刚好最近在学概率 希望能帮助到你 不知为什么非的符号都变成问号了

在过去很长的时间里,频率统计论一直是概率理论研究中的主流思想。然而,随着贝叶斯理论的发展,人们发现在很多实际应用中,贝叶斯理论更具普适性,并且能得到更好的结果。统计物理学也不例外,传统的研究方法主要基于频率统计论,而贝叶斯理论能让我们从资料中发掘出更多的资讯。

贝叶斯定理是关于随机事件A和B的条件概率(或边缘概率)的一则定理。 其中P(A|B)是在B发生的情况下A发生的可能性。 人们根据不确定性资讯作出推理和决策需要对各种结论的概率作出估计,这类推理称为概率推理。概率推理 既是概率学和逻辑学的研究物件,也是心理学的研究物件,但研究的角度是不同的。概率学和逻辑学研究的是客观概率推算的公式或规则;而心理学研究人们主观概率估计的认知加工过程规律。贝叶斯推理的问题是条件概率推理问题,这一领域的探讨对揭示人们对概率资讯的认知加工过程与规律、指导人们进行有效的学习和判断决策都具有十分重要的理论意义和实践意义。 贝叶斯定理也称贝叶斯推理,早在18世纪,英国学者贝叶斯(1702~1763)曾提出计算条件概率的公式用来解决如下一类问题:假设H[1],H[2]…,H[n]互斥且构成一个完全事件,已知它们的概率P(H[i]),i=1,2,…,n,现观察到某事件A与H[,1],H[,2]…,H[,n]相伴随机出现,且已知条件概率P(A/H[,i]),求P(H[,i]/A)。 贝叶斯公式(发表于1763年)为: P(H[i]|A)=P(H[i])*P(A│H[i])/{P(H[1])*P(A│H[1]) +P(H[2])*P(A│H[2])+…+P(H[n])*P(A│H[n])} 这就是著名的“贝叶斯定理”,一些文献中把P(H[1])、P(H[2])称为基础概率,P(A│H[1])为击中率,P(A│H[2])为误报率[1][

贝叶斯定理由英国数学家贝叶斯 ( Thomas Bayes 1702-1761 ) 发展,用来描述两个条件概率之间的关系,比如 P(A|B) 和 P(B|A)。按照乘法法则,可以立刻汇出:P(A∩B) = P(A)*P(B|A)=P(B)*P(A|B)。如上公式也可变形为:P(B|A) = P(A|B)*P(B) / P(A)。 例如:一座别墅在过去的 20 年里一共发生过 2 次被盗,别墅的主人有一条狗,狗平均每周晚上叫 3 次,在盗贼入侵时狗叫的概率被估计为 ,问题是:在狗叫的时候发生入侵的概率是多少? 我们假设 A 事件为狗在晚上叫,B 为盗贼入侵,则以天为单位统计,P(A) = 3/7,P(B) = 2/(20*365) = 2/7300,P(A|B) = ,按照公式很容易得出结果:P(B|A) = *(2/7300) / (3/7) = 。

各位老师,上午好!我叫谢天香,是07计 2班的学生,我的论文题目是贝叶斯分类算法的设计与实现。论文是在导师的悉心指导下完成的,在这里我向我的导师表示深深的谢意,同时向各位老师参加我的论文答辩表示衷心的感谢。下面我将本论文设计的目的和主要内容向各位老师作一汇报,恳请各位老师批评指导。首先,我想谈谈这个毕业论文设计的目的及意义。……其次,我想谈谈这篇论文的结构和主要内容。本文分成4个部分.第1章,绪论。主要介绍了贝叶斯分类器研究的意义,国内外发展现状和本课题研究内容。第2章,贝叶斯分类算法概述。介绍了本系统采取的核心算法—贝叶斯算法的数学模型,贝叶斯分类器的工作原理与理论原型。第3章,贝叶斯分类算法的设计与实现。讨论了贝叶斯分类算法的设计模型,分析了该模型实验的各个步骤,以及具体实现。第4章,总结。对本论文进行了总结工作,并指出这些方法不足之处,为将来的实验研究作好了铺垫。最后,我想谈谈这篇论文和系统存在的不足。由于我把178个样本分成了130个训练样本和48个测试样本,训练样本与测试样本的比例不是很高,所以得到的TP没有达到理想的程度。这篇论文的写作以及修改的过程,也是我越来越认识到自己知识与经验缺乏的过程。虽然,我尽可能地收集材料,运用自己所学的知识进行论文写作,但论文还是存在许多不足之处,有待改进。请各位评委老师多批评指正,让我在今后的学习中学到更多,谢谢!这是我的开场白 希望对你有用

贝斯论文题目

大概在十四年前,我和两个胖子用准备买色情小报的钱换来了这张盗版碟,当时我们觉得中分的蘑菇头很帅,上网的人很素质,我们会在聊天室里给自己起譬如“阳光男孩”这种今天想起来恨不得把自己阉了的网名,然后找个很女生的网名对她说,“你好,可以聊聊吗?你是哪里的呀?”当时我们在众人面前大谈佛洛依德,波德莱尔,卡尔维诺;背地里却抢着一本《查泰莱夫人的情人》看的面红耳赤不能自持。当时我们披着年少无知的外衣做了很多今天看来脑残无比的事情,只有一件事今天看来是无比的可爱,那就是,在看完这张盗版盘之后,决定扒运煤的火车到北京去,然后把三个小混蛋扔给窦唯何勇张楚他们,说“这腔热血只卖与识货的!”---当时我们天真的认为,所有的明星都住在京城。 我无法确切描述初次看这张唱片时的感受,我只觉得有无数的热情无处发泄,这个世界瞬间显得如此渺小,我们觉得大陆的摇滚是这个星球上最NB的存在没有之一,我们认为只要攒钱买把吉他然后混入他们乐队的话就能体验到比凯撒拿破仑亚历山大成吉思汗征服天下时更High的感受,我们把摇滚当作自己的图腾,把这些人当成自己的上帝,我们鄙视一切不听摇滚的异类。我在把老师气的浑身发抖然后骂我是个废物的时候,自我感觉无比良好的对他说“我们生活的这个世界,就是一个垃圾场。”当时我天真的认为,我这一辈子都会活在这个图腾之中,我将永远如此NB的过下去,因为我的上帝会统治整个世界的音乐爱好者,任何一个人都没理由不爱上他们。 十几年后,他们说,何勇疯了,张楚废了,窦唯老了。中国摇滚界进入了一个史无前例的低潮期,特别是和他们光彩万丈的前辈们比起来,现在的所谓摇滚人不过是弄些个还算过得去的动静,想尽办法把自己弄得特立独行,然后发几张唱片,数数票子,姑娘。当花儿乐队都把自己标榜成摇滚的时候,我想我可以理解为什么人们对摇滚二字如此的厌恶。这是周杰伦蔡依林们的时代,这是美丽脸蛋和完美身材的时代,这是凭一首口水歌混同一首歌就能混到你死的时代,每个人都在绞尽脑汁的琢磨着人民的币,大城市的房子,能让美女两眼放光的车子,至于理想,坚持,信念这些不能当饭吃的东西,根本不存在于现在的娱乐圈。 十几年前,我把张楚放给某女听,她听后说,有点怪怪的不过挺好。我又把何勇放给她听,她说,这人是个疯子嘛?十几年后,我把何勇拿出来给某90后听,她坚持了不到1分钟后跟我说,你这是什么垃圾东西啊?然后带上她的Ipod继续周杰伦蔡依林。看着她摇头晃脑的样子我想,我们小的时候是一堆人围在一个日本产的录音机跟前像圣徒朝拜一样在听这个的啊。不过,那种录音机再也看不见了,记忆中的魔岩三杰,也一去不复返了。 我一直以为我还青春年少,但当我一改往日的冷静开始跟小孩子们争吵周杰伦根本不是摇滚,唱摇滚的也不是一定要留长发摔吉他砸汽车烧房子的时候,看着他们眼中的茫然,我知道,这已经不是我可以昂着头继续装无谓然后冲上去和他们狠狠干一架的年代了。 曾经我想做个亡命徒,做个像他们一样的疯子,时间让我发现我们其实都是一样的俗人而已。那几个胖子和我一样,早就剪短了头发,把专门磨破洞的牛仔裤扔进垃圾箱,人模狗样的穿着衬衫夹着公文包开始日复一日的上班,等死。 只有一件事,我们拒绝否认我们曾经的信仰,因为麻木的心灵最深处还有着一小块无比柔软的地方。这就是为什么我们会在小孩子们问“为什么王菲会和窦唯结婚啊他一点都不帅”的时候露出无奈的笑容,为什么在穿水手衫的时候忍不住想系条红领巾,以及在看到苍老的张楚多年后再次站在台上唱“上帝保佑吃饱了饭的人民”的时候,会忍不住泪流满面。 这几个满身伤痕而又媚俗的SB,很多年前,是一群无比骄傲的要改变世界的小亡命徒啊 老实说,窦唯、张楚、何勇的年代不属于我,那时我还太小(还在上小学的),对于摇滚乐这种东西是没法理解的。 所以对于他们的音乐,我属于后来网络发达之后开始补课的,我想对于中国的青年们,这种补课应该是必不可少的。 窦唯、张楚、何勇,他们那时的音乐绝对可以说是经典,既是最中国的,也是最摇滚的。有人郁闷的说,为什么他们就不能把中国摇滚继续辉煌下去,为什么就没有出现新的经典的乐手。不奇怪,我知道为什么,但我就是不说。 看看那时的窦唯、张楚、何勇们吧,他们呐喊,他们诅咒,他们反讽,他们……(摇滚要的就是最直接的表达)现在你给我在和谐社会中来个这个试试。所以现在人们用无厘头和恶搞来颠覆权威,在游戏中麻醉自己。甚至一个超女海选都被民主派们高喊为民主的尝试(民主难道是指针对娱乐的吗?民主难道不是个政治词汇吗?)我想我们社会确实是越来越堕落和无聊了。 又:看到何勇在《钟鼓楼》表演时介绍到:“三弦,何玉生,我的父亲。”并深深鞠了一躬的时候,我突然想起了我的父亲。过年无法回家,只能默默的祝你身体健康!

摇滚乐是流行音乐的一种形式,通常由显著的人声伴以吉他、鼓和贝斯演出,很多形态的摇滚乐也使用键盘乐器,如风琴、钢琴、电子琴或合成器。其他乐器,比如萨克斯管、口琴、小提琴、笛、班卓琴、口风琴或定音鼓有时也被应用在摇滚乐之中。此外,不太出名的曼陀铃或锡塔琴等弦乐器也被使用过。摇滚乐经常有强劲的强拍,围绕电吉他,空心电吉他,以及木吉他展开。摇滚乐源自于1940和1950年代的“rock and roll”运动及rockabilly,此二者是由布鲁斯音乐,乡村音乐及其他音乐形式演进而来。All Music Guide杂志认为,“最纯粹的摇滚乐形式有三个和弦层次,一段有力而连贯的背景节奏,及吸引人的旋律。早期摇滚乐师从颇多,主要是布鲁斯乐,R&B,乡村音乐;同时也被宗教福音,传统流行乐,爵士乐和民间音乐影响。所有的这些影响都汇集到一个简单的、基于布鲁斯的歌曲结构中,它节奏快,引人起舞,引人陶醉。”在20世纪60年代晚期,摇滚乐与民间音乐的融合产生出民谣摇滚,与布鲁斯的融合产生了布鲁斯摇滚乐,还与爵士乐融合产生出融合爵士乐。在某个不确定的时期又产生了迷幻摇滚。在70年代,摇滚乐吸纳了来自灵魂乐,放克以及拉丁音乐的元素。与此同时,摇滚乐产生出许多下属类型,比如软性摇滚,重金属,硬摇滚,前卫摇滚及朋克摇滚。20世纪80年代产生的摇滚类型包括合成器流行乐,硬核朋克以及另类摇滚。在90年代,这些类型中又加入了油渍摇滚,英伦流行乐,独立摇滚和新金属。专门演奏摇滚乐的艺人团体被称为摇滚乐队或摇滚乐团。大部分摇滚乐团包括吉他手,主唱,贝斯手和鼓手,组成一个四人阵容。部分乐队取消了这其中的一个或几个角色或者让主唱同时担负起演奏乐器的任务,由此成为一个二人或三人组合。另外的乐团会增补一个或两个节奏吉他手或者一个键盘手。在比较罕见的情况下,乐队会使用诸如小提琴或大提琴这样的弦乐器,或者萨克斯管,小号,长号这样的管乐器。历史上著名的摇滚歌手和乐队有:披头士乐队,猫王,Beyond,鲍勃·迪伦,滚石乐队,平克·弗洛伊德,涅盘乐队,联合公园,枪与玫瑰,蝎子,玛丽莲·曼森,狂想曲,电台司令,邦乔飞等等。摇滚乐不仅唱出人们对爱情,美好生活的追求,还发泄出对现实世界的不满,涉及到战争与和平,民主与政治等方面。其种类、风格繁杂,从几个大的方面来看,现代摇滚的发展主要基于黑人音乐、地下文化、现代科技以及“后现代”浪潮,形成以“金属”、“朋克”、“歌德”、“迷幻”、“说唱”、“黑色氛围”为主要风格的非主流音乐。更多关于摇滚乐的资料论文

学术论文有多重要呢?很多人都不知道,它具有的新的科学研究成果或创新见解和知识的科学记录,我整理了对学术论文重要性的认识,欢迎阅读! 对学术论文重要性的认识 1、学术论文是某一学术课题在实验性、理论性或预测性上具有的新的科学研究成果或创新见解和知识的科学记录,或是某种已知原理应用于实际上取得新进展的科学总结,用以提供学术会议上宣读、交流、讨论或学术刊物上发表,或用作其他用途的书面文件。 2、学术论文的写作是非常重要的,是衡量一个人学术水平和科研能力的重要标志。在学术论文撰写中,选题与选材是头等重要的问题。一篇学术论文的价值关键并不只在写作的技巧,也要注意研究工作本身。在于作者选择了什么课题,并在这个特定主题下选择了什么典型材料来表述研究成果。科学研究的实践证明,只有选择了有意义的课题,才有可能收到较好的研究成果,写出较有价值的学术论文。所以学术论文的选题和选材,是研究工作开展前具有重大意义的一步,是必不可少的准备工作。 3、学术论文,就是用系统的、专门的知识来讨论或研究某种问题或研究成果的学理性文章。具有学术性、科学性、创造性、学理性。 4、其分类如下: (1)按研究的学科,可将学术论文分为自然科学论文和社会科学论文。每类又可按各自的门类分下去。如社会科学论文,又可细分为文学、历史、哲学、教育、政治等学科论文。 (2)按研究的内容,可将学术论文分为理论研究论文和应用研究论文。理论研究,重在对各学科的基本概念和基本原理的研究;应用研究,侧重于如何将各学科的知识转化为专业技术和生产技术,直接服务于社会。 (3)按写作目的,可将学术论文分为交流性论文和考核性论文。交流性论文,目的只在于专业工作者进行学术探讨,发表各家之言,以显示各门学科发展的新态势;考核性论文,目的在于检验学术水平,成为有关专业人员升迁晋级的重要依据。 关于庙壁画的学术论文 召庙壁画考 【摘要】 本文介绍了呼和浩特大召寺乃琼庙壁画的内容,论述了壁画中主要尊像之间的关系。认为呼和浩特大召寺乃琼庙壁画中的主要尊像为白哈尔、铁匠神、白梵天,三者出现在一个佛殿之中,其中应该存在着一定的关系。这对进一步揭示明末以来内蒙古与中央政府以及西藏地区的关系具有重要的意义。 【关键词】 大召寺;乃琼庙壁画;内容;主像关系;考证 位于呼和浩特市的旧城玉泉区的大召寺,其蒙语名为“伊克召”(大庙),是呼和浩特地区最大的黄教寺庙。呼和浩特大召寺及其他各大寺院的建立,使得呼和浩特从明朝开始就成为了一座辉煌美丽的城镇,是当时的蒙、藏、汉各族以及蒙古之间文化、经济交流的中心。呼和浩特的大召寺因为供奉过清朝康熙帝的万岁金牌,所以视为呼和浩特众多寺院中的“帝庙”。 大召寺壁画作为一种宗教艺术品,其意义不仅仅具有宣扬佛法,劝人积极向上的单纯目的,这种召庙壁画更是内蒙古统治阶层解决内外矛盾、稳定民心、维系部落团结的内容体现。召庙壁画是十六世纪末叶以来西藏佛教文化传入蒙古草原后的产物。本文所指的是大召寺壁画,以独特的造型语言和绘画,表达了当时土默特蒙古族人民虔诚的宗教情感,是研究当时民族史、蒙古文化史、蒙藏宗教史、蒙藏关系史的重要文化遗存。 一、呼和浩特大召寺乃琼庙壁画内容考 关于呼和浩特大召寺的文献与史料是相对完整的,但是对大召寺乃琼庙的相关记载就相形见绌了,文献与史料则少之又少。 大召寺内现存的古代壁画主要存于乃琼庙佛殿东、西、北正壁三壁及大雄宝殿经堂北壁东西两侧和佛殿内。呼和浩特大召寺乃琼庙佛殿北壁横长米,纵高米,东、西、北三面墙壁上从殿顶至佛台间的墙壁上均布满壁画。北壁面积最大,东、西两壁比北壁墙面低大约40厘米,两壁墙面上方都以木质结构与北壁持平。 大召寺乃琼庙北壁有主尊像5尊,5尊像身量远大于壁画中的其他尊像,壁画中央的尊像相较其它4尊又属身量最大,身量尺寸突出了其中心位置,这5尊像的周围又散布着众多的身量较小的尊像。 呼和浩特大召寺乃琼庙的名称与西藏哲蚌寺乃琼庙的名字相同,西藏乃琼庙主供白哈尔护法神,所以呼和浩特大召寺乃琼庙也应该与白哈尔神有着必然联系。北壁壁画中从西向东的第五位主尊是3面6臂的白色身相,左3只手分别持刀、弓、杖,右3只手分别持钩、箭、剑,尊像显游戏座,座骑是一雪狮,如此造像特征与奥地利学者贝斯基的著作中对白哈尔神的图像描述一致。北壁的其余4尊主尊像造像特征也与该书所述的白哈尔五身神组中的另外四尊神相对应,所以我们基本可以认为北壁五尊主像为白哈尔五身神。 此外,《西藏喇嘛教图像学》书中就列出了白哈尔五身神组的图像规范表,当中的五身神与内贝斯基在《西藏的神灵体系和鬼怪》对白哈尔五身神的描述是一致的。其中内贝斯基对白哈尔五身神组成的坛城中诸神的方位描述为:位之中央的意之王帝释,位之东方的身之王门普布查,语之王战神一男位之西方,功德之王具木鸟形者位之南方,位之北方的是叶之王白哈尔。以上对白哈尔五身神造像特征的描述与和呼和浩特大召寺乃琼庙佛殿北壁壁画内容中的五身神组是基本吻合的,所以我们基本可以判定:呼和浩特大召寺乃琼庙佛殿北壁所描绘的主尊像是白哈尔五身神组。五身神组形成的坛城,是以意之王帝释为中心的坛城,乃琼庙北壁的五位主尊自西向东的顺序为:身之王门普布查、语之王战神一男、意之王帝释、功德之王具木鸟形者、叶之王白哈尔,这样的五身神组就形成了以意之王帝释为中心的坛城。 我们再将视线移向东壁壁画,东壁壁画主尊头戴一骷髅冠,面显忿怒态,两臂长开,左手握一吹火皮囊,右手持一冒火锤,呈游戏座,座骑为一褐色公山羊。主尊与座骑与《西藏的神灵和鬼怪》中的具誓护法单坚的造像特征很为相似,唯一的不同点就是书中尊像头戴的是“沃贝夏”或者“太虚帽”。具誓护法是格鲁派密教寺院的护法,也是宁玛派的三根本护法之一,被称为“具誓金刚”、“善金刚居士”。单坚护法骑绿鬃白狮,骑羊也是他的主要化像之一。骑羊护法呈铁匠装容,也被西藏当地的铁匠称为保护神,其左右手的手持之物吹火皮囊和铜冒火锤就是和铁匠有关的法器,所以民间一般称之为“铁匠神”。 与东壁相对应的西壁壁画主尊正面面向来者,主尊头顶有一白海螺,手持法器为长矛、宝剑和宝盆,呈游戏座,座骑为一白马。根据其头顶的白海螺为辨识其身份的最主要特征,藏传佛教将头顶海螺的护法尊像称为“具海螺髻白梵天”。此壁画中所绘制的白梵天的伴神以及怒相神与《西藏的神灵和鬼怪》中所提到的造像特征也基本相符。白梵天有善身形和梵天怒相形,西壁壁画的主尊是善相白梵天。 由此可知,呼和浩特大召寺乃琼庙佛殿北壁绘制的是以意之王帝释为中心组成的五身神组坛城;东壁壁画主尊为铁匠神;西壁壁画主尊为白梵天。由于藏传佛教绘画中主要尊像的绘制要严格按照相关的教义规定来绘制,所以尊像的姿态表现有些固定,程式化的特征有些明显。但是这三面壁画中的七位主尊身形高大魁梧,北壁中央的意之王帝释表现最为明显,达到了寺庙壁画应有的宗教威慑效果。乃琼庙壁画中其他的伴神也被绘制的栩栩如生。 二、大召寺乃琼庙佛殿壁画中主要尊像之间的关系 呼和浩特大召寺乃琼庙壁画中的主要尊像为白哈尔、铁匠神、白梵天。三者出现在一个佛殿之中,其中应该存在着一定的关系。 白哈尔、铁匠神、白梵天都是藏传佛教之中的世间护法神,可以对世间之事做出预言。他们都具有财神的身份,这其中也不难表明内蒙古地区上层社会对生活富足、民族强大的美好愿望。 白哈尔神与铁匠神有相同的财神性质,二者在诸多的图像中都有所关联。除了呼和浩特大召寺乃琼庙佛殿壁画中同时出现外,蒙古国有一私人收藏的以多吉秀丹为主尊的唐卡中,右下角就是铁匠神,在左边的中部绘制有以白哈尔为中心的五身神组坛城。雍和宫以意之王帝释为主尊的五身神组唐卡中,铁匠神位于主尊正下,在这幅唐卡中除白哈尔五身神组外,也就仅仅绘制了莲花生与铁匠神。在雍和宫的另一幅以多吉秀丹为主尊的唐卡中,铁匠神作为其伴神出现在了画面的右下角。在藏传佛教的教义之中,多吉秀丹是以白哈尔接替者的身份出现的,这都可以反映出白哈尔和铁匠神之间的关系。 在藏传佛教的历史上,白哈尔神与白梵天神也存在着一定的联系,在清代的西藏,二者在西藏的政治和宗教领域中的地位是至高无上的。在藏传佛教的教义中,白哈尔和白梵天就有多重称谓上的关系。内贝斯基在“具海螺髻白梵天”与白哈尔名称共用关系的问题上就给出了这样的解释,即“早期的一些翻译家,当他们为源于印度的一些神灵选择译名时,有时就使用现成的属于佛教传入以前西藏土著万神殿中的神灵的藏语名称,这是极有可能的”。一些西藏人认为被称为白梵天怒相神灵的李庆哈拉神就是白哈尔的一个身形或者“化身”。 三、结语 呼和浩特大召寺乃琼庙佛殿壁画是比较珍贵的历史遗存,对研究内蒙古的藏传佛教,尤其是当中的护法神体系的研究有着重要的学术价值,是内蒙古藏传佛教艺术发展历程中具有重要意义的艺术作品,这对进一步揭示明末以来内蒙古与中央政府以及西藏地区的关系也有重要的意义。 看了“对学术论文重要性的认识”的人还看: 1. 学术论文的重要性的认识 2. 对学术论文规范的看法 3. 对学术论文的认识 4. 学术论文写作的认识 5. 学术论文的学术评语

学术沦为对于学术研究的人来说是十分重要的。首先学术论文的发表能提升学术素养与科研能力。论文是体现学生学术科研能力的重要途径,是学生基本素养、信息检索能力、逻辑表达能力、思辨能力的象征。其次,助力海外院校申请。对于国外院校来说,学生的科研能力是招生委员会最看重的一环。拥有科研论文发表经历可以让简历脱颖而出,增加获得录取的几率。保研加分,科研论文作为保研申请资料之一,对申请保研名额提供很大帮助,优秀的论文质量、发表刊物等级都能够提供给申请者不同程度的加分。增加求职砝码。创作论文的过程中,锻炼人的思辨、逻辑、细致程度、文字表达能力,这些都是用人单位看重的良好品质。众多名企网申中均有学术或科研信息需求职者填写。

关于贝叶斯研究的相关论文

之前看过一些贝叶斯的论文后,发现很多细节不理解,对贝叶斯在各个领域的应用也不清楚,便想着找本偏科普的书来看看,于是开始阅读贝叶斯思维(Think Bayes)这本书。很薄的一本。 贝叶斯的基本理论都是源于条件概率模型,作者用一个很有意思的例子来解释了条件概率。注意:不是抓球那种老掉牙的例子。 作者希望知道自己得FCA的概率(某种心脏病,具体病名叫First Coronary Attack),根据已有的统计报告,美国每年大概有785000人次患FCA。因为美国的人口是亿,因此可以得出一个美国人患上FCA的概率是。但作者觉得这种算法不够准确,因为他并不是一个随机抽取的美国人,平均值并不能代表他的值,某个具体人患上FCA的概率需要考虑很多其他因素,例如年龄,性别等。 作者男性,45岁,这些因素增加了他患FCA的概率;而他是低血压却减低了他患FCA的概率。综合这些因素,作者算出他下年患上FCA的概率是,低于平均值。而这种考虑多种因素后算出的概率被称为条件概率。而条件概率的定义就是大家所熟知的p(A|B):B发生的时候,发生A的概率。结合作者的例子来解释就是:A代表作者患上FCA的概率,B是作者列出的影响因素的集合(年龄,性别,血压等)。 联合概率用来描述两个事件A和B同时发生的概率,记做p(A and B)=p(A)p(B)。用抛硬币来举例,第一次抛硬币正面朝上的概率记做p(A),第二次抛硬币正面朝上的概率记做p(B),那么两次都朝上的概率是p(A)p(B)=。需要注意的是,p(A and B)=p(A)p(B)并不是什么时候都成立,要求事件A和B要彼此独立,也就是p(B|A)=p(B),直白点的解释就是B发生的概率与A发生与否没有关系。抛硬币的事件就满足这个条件。 再举一个事件不相互独立的例子。假设A代表今天下雨,B代表明天下雨。通常,如果今天下雨,明天下雨的概率会比较大,因此可以得出p(B|A)>p(B)。因此呢,p(A and B)写成p(A)p(B|A)会比较准确。 综上所述,联合概率的公式可以写成:p(A and B)=p(A)p(B|A)

贝叶斯推理研究综述_思想政治教育

贝叶斯定理太有用了,不管是在投资领域,还是机器学习,或是日常生活中高手几乎都在用到它。 生命科学家用贝叶斯定理研究基因是如何被控制的;教育学家突然意识到,学生的学习过程其实就是贝叶斯法则的运用;基金经理用贝叶斯法则找到投资策 略;Google用贝叶斯定理改进搜索功能,帮助用户过滤垃圾邮件;无人驾驶汽车接收车顶传感器收集到的路况和交通数据,运用贝叶斯定理更新从地图上获得 的信息;人工智能、机器翻译中大量用到贝叶斯定理。 我将从以下4个角度来科普贝叶斯定理及其背后的思维: 1.贝叶斯定理有什么用? 2.什么是贝叶斯定理? 3.贝叶斯定理的应用案例 4.生活中的贝叶斯思维 1.贝叶斯定理有什么用? 英国数学家托马斯·贝叶斯(Thomas Bayes)在1763年发表的一篇论文中,首先提出了这个定理。而这篇论文是在他死后才由他的一位朋友发表出来的。 (ps:贝叶斯定理其实就是下面图片中的概率公式,这里先不讲这个公式,而是重点关注它的使用价值,因为只有理解了它的使用意义,你才会更有兴趣去学习它。) 在这篇论文中,他为了解决一个“逆概率”问题,而提出了贝叶斯定理。 在贝叶斯写这篇文章之前,人们已经能够计算“正向概率”,比如杜蕾斯举办了一个抽奖,抽奖桶里有10个球,其中2个白球,8个黑球,抽到白球就算你中奖。你伸手进去随便摸出1颗球,摸出中奖球的概率是多大。 根据频率概率的计算公式,你可以轻松的知道中奖的概率是2/10 如果还不懂怎么算出来的,可以看我之前写的科普概率的回答: 猴子:如何理解条件概率? 而贝叶斯在他的文章中是为了解决一个“逆概率”的问题。比如上面的例子我们并不知道抽奖桶里有什么,而是摸出一个球,通过观察这个球的颜色,来预测这个桶里里白色球和黑色球的比例。 这个预测其实就可以用贝叶斯定理来做。贝叶斯当时的论文只是对“逆概率”这个问题的一个直接的求解尝试,这哥们当时并不清楚这里面这里面包含着的深刻思想。 然而后来,贝叶斯定理席卷了概率论,并将应用延伸到各个问题领域。可以说,所有需要作出概率预测的地方都可以见到贝叶斯定理的影子,特别地,贝叶斯是机器学习的核心方法之一。 为什么贝叶斯定理在现实生活中这么有用呢? 这是因为现实生活中的问题,大部分都是像上面的“逆概率”问题。生活中绝大多数决策面临的信息都是不全的,我们手中只有有限的信息。既然无法得到全面的信息,我们就在信息有限的情况下,尽可能做出一个好的预测。 比如天气预报说,明天降雨的概率是30%,这是什么意思呢? 我们无法像计算频率概率那样,重复地把明天过上100次,然后计算出大约有30次会下雨。 而是只能利用有限的信息(过去天气的测量数据),用贝叶斯定理来预测出明天下雨的概率是多少。 同样的,在现实世界中,我们每个人都需要预测。想要深入分析未来、思考是否买股票、政策给自己带来哪些机遇、提出新产品构想,或者只是计划一周的饭菜。 贝叶斯定理就是为了解决这些问题而诞生的,它可以根据过去的数据来预测出概率。 贝叶斯定理的思考方式为我们提供了明显有效的方法来帮助我们提供能力,以便更好地预测未来的商业、金融、以及日常生活。 总结下第1部分:贝叶斯定理有什么用? 在有限的信息下,能够帮助我们预测出概率。 所有需要作出概率预测的地方都可以见到贝叶斯定理的影子,特别地,贝叶斯是机器学习的核心方法之一。例如垃圾邮件过滤,中文分词,艾滋病检查,肝癌检查等。 2.什么是贝叶斯定理? 贝叶斯定理长这样: 到这来,你可能会说:猴子,说人话,我一看到公式就头大啊。 其实,我和你一样,不喜欢公式。我们还是从一个例子开始聊起。 我的朋友小鹿说,他的女神每次看到他的时候都冲他笑,他想知道女神是不是喜欢他呢? 谁让我学过统计概率知识呢,下面我们一起用贝叶斯帮小鹿预测下女神喜欢他的概率有多大,这样小鹿就可以根据概率的大小来决定是否要表白女神。 首先,我分析了给定的已知信息和未知信息: 1)要求解的问题:女神喜欢你,记为A事件 2)已知条件:女神经常冲你笑,记为B事件 所以说,P(A|B)是女神经常冲你笑这个事件(B)发生后,女神喜欢你(A)的概率。 从公式来看,我们需要知道这么3个事情: 1)先验概率 我 们把P(A)称为'先验概率'(Prior probability),即在不知道B事件的前提下,我们对A事件概率的一个主观判断。这个例子里就是在不知道女神经常对你笑的前提下,来主观判断出女 神喜欢一个人的概率,这里我们假设是50%,也就是不能喜欢你,可能不喜欢还你的概率都是一半。 2)可能性函数 P(B|A)/P(B)称为'可能性函数'(Likelyhood),这是一个调整因子,即新信息B带来的调整,作用是使得先验概率更接近真实概率。 可 能性函数你可以理解为新信息过来后,对先验概率的一个调整。比如我们刚开始看到“人工智能”这个信息,你有自己的理解(先验概率/主观判断),但是当你学 习了一些数据分析,或者看了些这方面的书后(新的信息),然后你根据掌握的最新信息优化了自己之前的理解(可能性函数/调整因子),最后重新理解了“人工 智能”这个信息(后验概率) 如果'可能性函数'P(B|A)/P(B)>1,意味着'先验概率'被增强,事件A的发生的可能性变大; 如果'可能性函数'=1,意味着B事件无助于判断事件A的可能性; 如果"可能性函数"<1,意味着"先验概率"被削弱,事件A的可能性变小 还是刚才的例子,根据女神经常冲你笑这个新的信息,我调查走访了女神的闺蜜,最后发现女神平日比较高冷,很少对人笑。所以我估计出'可能性函数'P(B|A)/P(B)=(具体如何估计,省去1万字,后面会有更详细科学的例子) 3)后验概率 P(A|B)称为'后验概率'(Posterior probability),即在B事件发生之后,我们对A事件概率的重新评估。这个例子里就是在女神冲你笑后,对女神喜欢你的概率重新预测。 带入贝叶斯公式计算出P(A|B)=P(A)* P(B|A)/P(B)=50% * 因此,女神经常冲你笑,喜欢上你的概率是75%。这说明,女神经常冲你笑这个新信息的推断能力很强,将50%的'先验概率'一下子提高到了75%的'后验概率'。 在得到预测概率后,小鹿自信满满的发了下面的表白微博:无图 稍后,果然收到了女神的回复。预测成功。无图 现在我们再看一遍贝叶斯公式,你现在就能明白这个公式背后的最关键思想了: 我们先根据以往的经验预估一个'先验概率'P(A),然后加入新的信息(实验结果B),这样有了新的信息后,我们对事件A的预测就更加准确。 因此,贝叶斯定理可以理解成下面的式子: 后验概率(新信息出现后的A概率)=先验概率(A概率) x 可能性函数(新信息带来的调整) 贝叶斯的底层思想就是: 如果我能掌握一个事情的全部信息,我当然能计算出一个客观概率(古典概率)。 可是生活中绝大多数决策面临的信息都是不全的,我们手中只有有限的信息。既然无法得到全面的信息,我们就在信息有限的情况下,尽可能做出一个好的预测。也就是,在主观判断的基础上,你可以先估计一个值(先验概率),然后根据观察的新信息不断修正(可能性函数)。 如果用图形表示就是这样的: 其实阿尔法狗也是这么战胜人类的,简单来说,阿尔法狗会在下每一步棋的时候,都可以计算自己赢棋的最大概率,就是说在每走一步之后,他都可以完全客观冷静的更新自己的信念值,完全不受其他环境影响。 3.贝叶斯定理的应用案例 前面我们介绍了贝叶斯定理公式,及其背后的思想。现在我们来举个应用案例,你会更加熟悉这个牛瓣的工具。 为了后面的案例计算,我们需要先补充下面这个知识。 1.全概率公式 这个公式的作用是计算贝叶斯定理中的P(B)。 假定样本空间S,由两个事件A与A'组成的和。例如下图中,红色部分是事件A,绿色部分是事件A',它们共同构成了样本空间S。 这时候来了个事件B,如下图: 全概率公式: 它的含义是,如果A和A'构成一个问题的全部(全部的样本空间),那么事件B的概率,就等于A和A'的概率分别乘以B对这两个事件的条件概率之和。 看到这么复杂的公式,记不住没关系,因为我也记不住,下面用的时候翻到这里来看下就可以了。 案例1:贝叶斯定理在做判断上的应用 有两个一模一样的碗,1号碗里有30个巧克力和10个水果糖,2号碗里有20个巧克力和20个水果糖。 然后把碗盖住。随机选择一个碗,从里面摸出一个巧克力。 问题:这颗巧克力来自1号碗的概率是多少? 好了,下面我就用套路来解决这个问题,到最后我会给出这个套路。 第1步,分解问题 1)要求解的问题:取出的巧克力,来自1号碗的概率是多少? 来自1号碗记为事件A1,来自2号碗记为事件A2 取出的是巧克力,记为事件B, 那么要求的问题就是P(A1|B),即取出的是巧克力,来自1号碗的概率 2)已知信息: 1号碗里有30个巧克力和10个水果糖 2号碗里有20个巧克力和20个水果糖 取出的是巧克力 第2步,应用贝叶斯定理 1)求先验概率 由于两个碗是一样的,所以在得到新信息(取出是巧克力之前),这两个碗被选中的概率相同,因此P(A1)=P(A2)=,(其中A1表示来自1号碗,A2表示来自2号碗) 这个概率就是'先验概率',即没有做实验之前,来自一号碗、二号碗的概率都是。 2)求可能性函数 P(B|A1)/P(B) 其中,P(B|A1)表示从一号碗中(A1)取出巧克力(B)的概率。 因为1号碗里有30个水果糖和10个巧克力,所以P(B|A1)=30/(30+10)=75% 现在只有求出P(B)就可以得到答案。根据全概率公式,可以求得P(B)如下图: 图中P(B|A1)是1号碗中巧克力的概率,我们根据前面的已知条件,很容易求出。 同样的,P(B|A2)是2号碗中巧克力的概率,也很容易求出(图中已给出)。 而P(A1)=P(A2)= 将这些数值带入公式中就是小学生也可以算出来的事情了。最后P(B)= 所以,可能性函数P(A1|B)/P(B)=75%/ 可能性函数>1.表示新信息B对事情A1的可能性增强了。 3)带入贝叶斯公式求后验概率 将上述计算结果,带入贝叶斯定理,即可算出P(A1|B)=60% 这个例子中我们需要关注的是约束条件:抓出的是巧克力。如果没有这个约束条件在,来自一号碗这件事的概率就是50%了,因为巧克力的分布不均把概率从50%提升到60%。 现在,我总结下刚才的贝叶斯定理应用的套路,你就更清楚了,会发现像小学生做应用题一样简单: 第1步. 分解问题 简单来说就像做应用题的感觉,先列出解决这个问题所需要的一些条件,然后记清楚哪些是已知的,哪些是未知的。 1)要求解的问题是什么? 识别出哪个是贝叶斯中的事件A(一般是想要知道的问题),哪个是事件B(一般是新的信息,或者实验结果) 2)已知条件是什么? 第2步.应用贝叶斯定理 第3步,求贝叶斯公式中的2个指标 1)求先验概率 2)求可能性函数 3)带入贝叶斯公式求后验概率

毕业论文基于贝叶斯分类

各位老师,上午好!我叫谢天香,是07计 2班的学生,我的论文题目是贝叶斯分类算法的设计与实现。论文是在导师的悉心指导下完成的,在这里我向我的导师表示深深的谢意,同时向各位老师参加我的论文答辩表示衷心的感谢。下面我将本论文设计的目的和主要内容向各位老师作一汇报,恳请各位老师批评指导。首先,我想谈谈这个毕业论文设计的目的及意义。……其次,我想谈谈这篇论文的结构和主要内容。本文分成4个部分.第1章,绪论。主要介绍了贝叶斯分类器研究的意义,国内外发展现状和本课题研究内容。第2章,贝叶斯分类算法概述。介绍了本系统采取的核心算法—贝叶斯算法的数学模型,贝叶斯分类器的工作原理与理论原型。第3章,贝叶斯分类算法的设计与实现。讨论了贝叶斯分类算法的设计模型,分析了该模型实验的各个步骤,以及具体实现。第4章,总结。对本论文进行了总结工作,并指出这些方法不足之处,为将来的实验研究作好了铺垫。最后,我想谈谈这篇论文和系统存在的不足。由于我把178个样本分成了130个训练样本和48个测试样本,训练样本与测试样本的比例不是很高,所以得到的TP没有达到理想的程度。这篇论文的写作以及修改的过程,也是我越来越认识到自己知识与经验缺乏的过程。虽然,我尽可能地收集材料,运用自己所学的知识进行论文写作,但论文还是存在许多不足之处,有待改进。请各位评委老师多批评指正,让我在今后的学习中学到更多,谢谢!这是我的开场白 希望对你有用

老师们同学们,大家上午好,我是某专业某班的某某,我的毕业设计题目是***,这个题目是我在(什么样的背景下,什么什么样的契机)选的,通过什么样的方法进行的研究,想达到一种什么样的效果。然后把大纲念一遍,加点连接语更好。(期间礼节性用语还是说点)答辩这个事,每个学校会不一样。我给我答辩的过程敲下来,作为一个参考嘛,并不一定要选为最佳答案。分享一下而已。我是国际商务专业,专业课程跟楼主的还是有一定关联。答辩小组的老师都是我们院的老师,不会太为难你的。答辩注意的问题:细节。也就是论文格式问题,一定要过关,可以找个模板,一个一个弄好,然后多找几个朋友互相交换纠正一下。我们是分成小组上去答辩的,团支书在旁边记录答辩过程。首先老师会叫你简单描述一下你写的论文,其实也就是提纲。我是把论文打印了一下,然后用笔把提纲在背面写了一遍,拿着上去念的。这个过程只要装着不紧张,说话流利就行,一般老师都没听这个内容,他们这个时候正在考虑怎么问你(当让问题是他们提前看论文后想好的),和看你在台上的表达状况。流利是王道。回答问题阶段,这个很关键啊,这个考的是临场反应,和基础知识的掌握程度。当然这些都是围绕你的论文来的,你肯定得把你论文吃透撒。关于问题的难度,如果你的论文写的很好,老师会问一些深一点的问题,写得一般,也就随便问问吧。他们的原则是,不为难。回答问题一定要有层次性,逻辑性。不能咿呀呜呜的,要口齿清楚。如果紧张,那么放缓语速吧。然后然后,你论文写得很好的话,会被选派到院里,系里进行答辩,我们这个有录像的,面子工程吗?不晓得其他学校是不是也有这个传统。总之:只要你答了,论文写了,格式对了,成绩70+毫无疑问。如果85+,得稍微努点力。

各位老师,下午好!我叫***,是**级**班的学生,我的论文题目是--------------------,论文是在**导师的悉心指点下完成的,在这里我向我的导师表示深深的谢意,向各位老师不辞辛苦参加我的论文答辩表示衷心的感谢,并对三年来我有机会聆听教诲的各位老师表示由衷的敬意。下面我将本论文设计的目的和主要内容向各位老师作一汇报,恳请各位老师批评指导。首先,我想谈谈这个毕业论文设计的目的及意义。作为计算机应用的一部分,图书销售管理系统对图书销售进行管理,具有着手工管理所无法比拟的优点,极大地提高图书销售管理效率及在同行业中的竞争力.因此,图书销售管理系统有着广泛的市场前景和实际的应用价值.其次,我想谈谈这篇论文的结构和主要内容。本文分成五个部分.第1部。。第2部。。第3部~第5部这篇论文的写作以及系统开发的过程,也是我越来越认识到自己知识与经验缺乏的过程。虽然,我尽可能地收集材料,竭尽所能运用自己所学的知识进行论文写作和系统开发,但论文还是存在许多不足之处,系统功能并不完备,有待改进.请各位评委老师多批评指正,让我在今后的学习中学到更多。谢谢!开场白就这个样子了至于提问么,这要看老师了,但问题都出自你的论文,你必须的熟悉你写的内容。顺便看熟自己的参考文献,别老师问了打不出。的明确自己为什么要写这篇论文,用意何在,所论内容问题何在,你的解决方法是什么。至于具体问题我就说不出来了。

我也是法学专业的,前天刚答辩完,只不过我是刑法第一个出场,论文又涉及极具争议的邓玉娇案,所以答辩居然花了50分钟。根据我的答辩过程,说说我的感受吧,希望对你有用。自述方面,先向老师说问候语,然后介绍自己是某级某班的某某,自己论文的题目,论文主体研究的目的,意义。接着介绍论文的结构,分几个部分,每个部分写的是什么,以及自己的研究成果。最后结束语要感谢自己的导师,希望各位答辩老师指正。自述要尽量简练,让答辩老师熟悉论文的大概,尽量在5分钟内完成。你也可以上网搜一些答辩自述的范文来修改,然后背下来也行。接下来就是老师问问题了。问题只要根据你论文的内容来定,比如对于小产权房的一些法律问题发表你的观点,也会对你论文中的案例进行提问,也会问一些理论方面的问题等。每个老师的注重都不一样,根据你刚写的论文目录,我觉得你论文的每一个部分都可能被问,特别是法律界定、法律风险和小产权房问题的解决对策。所以一定要多看自己的论文,最好滚瓜烂熟,因为好多问题都是论文中会涉及到的,老师也想看看你对你论文研究的熟悉程度。一般来说,答辩需要15分钟左右(包括自述5分钟),老师会至少提2到3个问题,由易到难。我因为邓玉娇案子就杯具了,被问了十多个问题。最后,还有杀手锏,如果碰到一些很难的问题不会答,你就直接说:“老师,我水平有限,这个问题我还没有深入研究,请您指教。”这招屡试不爽,这样老师也不会为难你了。最后还是那句话,要熟悉自己的论文,答辩的时候要随即应变,不要跟老师降嘴,这样对你没好处。答辩时候没必要紧张,一般都会过的,除非你真的是答非所问,一问三不知。以上就是我的经验,祝你好运。

  • 索引序列
  • 贝叶斯公式的论文题目
  • 贝叶斯公式的论文答辩问题
  • 贝斯论文题目
  • 关于贝叶斯研究的相关论文
  • 毕业论文基于贝叶斯分类
  • 返回顶部