首页 > 期刊论文知识库 > 量子物理论文范文

量子物理论文范文

发布时间:

量子物理论文范文

通信技术论文范文篇二 浅析量子通信技术 【摘要】量子通信作为既新鲜又古老的话题,它具有严格的信息传输特性,目前已经取得突破性进展,被通信领域和官方机构广泛关注。本文结合量子,对量子通信技术以及发展进行了简单的探讨。 【关键词】量子;通信;技术;发展 对量子信息进行研究是将量子力学作为研究基础,根据量子并行、纠缠以及不可克隆特性,探索量子编码、计算、传输的可能性,以新途径、思路、概念打破原有的芯片极限。从本质来说:量子信息是在量子物理观念上引发的效应。它的优势完全来源于量子并行,量子纠缠中的相干叠加为量子通讯提供了依据,量子密码更多的取决于波包塌缩。理论上,量子通信能够实现通信过程,最初是通过光纤实现的,由于光纤会受到自身与地理条件限制,不能实现远距离通信,所以不利于全球化。到1993年,隐形传输方式被提出,通过创建脱离实物的量子通信,用量子态进行信息传输,这就是原则上不能破译的技术。但是,我们应该看到,受环境噪声影响,量子纠缠会随着传输距离的拉长效果变差。 一、量子通信技术 (一)量子通信定义 到目前为止,量子通信依然没有准确的定义。从物力角度来看,它可以被理解为物力权限下,通过量子效应进行性能较高的通信;从信息学来看,量子通信是在量子力学原理以及量子隐形传输中的特有属性,或者利用量子测量完成信息传输的过程。 从量子基本理论来看,量子态是质子、中子、原子等粒子的具体状态,可以代表粒子旋转、能量、磁场和物理特性,它包含量子测不准原理和量子纠缠,同时也是现代物理学的重点。量子纠缠是来源一致的一对微观粒子在量子力学中的纠缠关系,同时这也是通过量子进行密码传递的基础。Heisenberg测不准原理作为力学基本原理,是同一时刻用相同精度对量子动量以及位置的测量,但是只能精确测定其中的一样结果。 (二)量子通信原理 量子通信素来具有速度快、容量大、保密性好等特征,它的过程就是量子力学原理的展现。从最典型的通信系统来说具体包含:量子态、量子测量容器与通道,拥有量子效应的有:原子、电子、光子等,它们都可以作为量子通信的信号。在这过程中,由于光信号拥有一定的传输性,所以常说的量子通信都是量子光通信。分发单光子作为实施量子通信空间的依据,利用空间技术能够实现空间量子的全球化通信,并且克服空间链路造成的距离局限。 利用纠缠量子中的隐形量子传输技术作为未来量子通信的核心,它的工作原理是:利用量子力学,由两个光子构成纠缠光子,不管它们在宇宙中距离多远,都不能分割状态。如果只是单独测量一个光子情况,可能会得到完全随机的测量结果;如果利用海森堡的测不准原理进行测量,只要测量一个光子状态,纵使它已经发生变化,另一个光子也会出现类似的变化,也就是塌缩。根据这一研究成果,Alice利用随机比特,随机转换已有的量子传输状态,在多次传输中,接受者利用量子信道接收;在对每个光子进行测量时,同时也随机改变了自己的基,一旦两人的基一样,一对互补随机数也就产生。如果此时窃听者窃听,就会破坏纠缠光子对,Alice与Bob也就发觉,所以运用这种方式进行通信是安全的。 (三)量子密码技术 从Heisenberg测不准原理我们可以知道,窃听不可能得到有效信息,与此同时,窃听量子信号也将会留下痕迹,让通信方察觉。密码技术通过这一原理判别是否存在有人窃取密码信息,保障密码安全。而密钥分配的基本原理则来源于偏振,在任意时刻,光子的偏振方向都拥有一定的随机性,所以需要在纠缠光子间分设偏振片。如果光子偏振片与偏振方向夹角较小时,通过滤光器偏振的几率很大,反之偏小。尤其是夹角为90度时,概率为0;夹角为45度时,概率是,夹角是0度时,概率就是1;然后利用公开渠道告诉对方旋转方式,将检测到的光子标记为1,没有检测到的填写0,而双方都能记录的二进制数列就是密码。对于半路监听的情况,在设置偏振片的同时,偏振方向的改变,这样就会让接受者与发送者数列出现差距。 (四)量子通信的安全性 从典型的数字通信来说:对信息逐比特,并且完全加密保护,这才是实质上的安全通信。但是它不能完全保障信息安全,在长度有限的密文理论中,经不住穷举法影响。同时,伪随机码的周期性,在重复使用密钥时,理论上能够被解码,只是周期越长,解码破译难度就会越大。如果将长度有限的随机码视为密钥,长期使用虽然也会具有周期特征,但是不能确保安全性。 从传统的通信保密系统来看,使用的是线路加密与终端加密整合的方式对其保护。电话保密网,是在话音终端上利用信息通信进行加密保护,而工作密钥则是伪随机码。 二、量子通信应用与发展 和传统通信相比,量子通信具有很多优势,它具有良好的抗干扰能力,并且不需要传统信道,量子密码安全性很高,一般不能被破译,线路时延接近0,所以具有很快的传输速度。目前,量子通信已经引起很多军方和国家政府的关注。因为它能建立起无法破译的系统,所以一直是日本、欧盟、美国科研机构发展与研究的内容。 在城域通信分发与生成系统中,通过互联量子路由器,不仅能为任意量子密码机构成量子密码,还能为成对通信保密机利用,它既能用于逐比特加密,也能非实时应用。在严格的专网安全通信中,通过以量子分发系统和密钥为支撑,在城域范畴,任何两个用户都能实现逐比特密钥量子加密通信,最后形成安全性有保障的通信系统。在广域高的通信网络中,受传输信道中的长度限制,它不可能直接创建出广域的通信网络。如果分段利用量子密钥进行实时加密,就能形成安全级别较高的广域通信。它的缺点是,不能全程端与端的加密,加密节点信息需要落地,所以存在安全隐患。目前,随着空间光信道量子通信的成熟,在天基平台建立好后,就能实施范围覆盖,从而拓展量子信道传输。在这过程中,一旦量子中继与存储取得突破,就能进一步拉长量子信道的输送距离,并且运用到更宽的领域。例如:在�潜安全系统中,深海潜艇与岸基指挥一直是公认的世界难题,只有运用甚长波进行系统通信,才能实现几百米水下通信,如果只是使用传统的加密方式,很难保障安全性,而利用量子隐形和存储将成为开辟潜通的新途径。 三、结束语 量子技术的应用与发展,作为现代科学与物理学的进步标志之一,它对人类发展以及科学建设都具有重要作用。因此,在实际工作中,必须充分利用通信技术,整合国内外发展经验,从各方面推进量子通信技术发展。 参考文献 [1]徐启建,金鑫,徐晓帆等.量子通信技术发展现状及应用前景分析[J].中国电子科学研究院学报,2009,4(5):491-497. [2]徐兵杰,刘文林,毛钧庆等.量子通信技术发展现状及面临的问题研究[J].通信技术,2014(5):463-468. [3]刘阳,缪蔚,殷浩等.通信保密技术的革命――量子保密通信技术综述[J].中国电子科学研究院学报,2012, 7(5):459-465. 看了“通信技术论文范文”的人还看: 1. 大学通信技术论文范文 2. 通信技术毕业论文范文 3. 通信技术论文范文 4. 关于通信工程论文范文 5. 大学通信技术论文范文(2)

基于金刚石的量子物理研究论文

金刚石中的一些自旋揭示了物理学中最持久的谜团之一——经典物理学的客观现实是如何从朦胧的概率量子世界中浮现出来的?德国和美国的物理学家利用钻石上的氮空位(NV)中心来证明“量子达尔文主义”,即系统的“最适合”状态在量子世界和经典世界之间的过渡中存活和扩散。 在过去,物理学家倾向于认为经典和量子世界被突然的屏障所分割,这道屏障在我们熟悉的宏观(经典)领域和我们不熟悉的微观(量子)领域之间做出了根本的区分。但近几十年来,这种观点发生了变化。此案在许多专家认为这种转变是渐进的,我们所测量的确定的经典态来自于概率量子态,随着它们与周围环境的纠缠越来越多,它们逐渐失去了相干性(尽管速度非常快)。新墨西哥州洛斯阿拉莫斯国家实验室(Los Alamos National Laboratory)的沃伊切赫•祖雷克(Wojciech Zurek)提出的量子达尔文主义(Quantum darwin)认为,我们所感知的经典状态是强大的量子状态,能够在退相干过程中经受住纠缠。他的理论框架假定,关于这些状态的信息将被重复许多次,并在整个环境中传播。正如自然选择告诉我们,一个物种中最适的个体必须生存下来以大量繁殖,从而形成进化,最适合的量子态将被复制,并呈现经典状态。这种冗余意味着许多个体观察者会将任何给定状态度量为具有相同的值,从而确保客观现实。孤立的自旋 为了从实验上观察冗余现象,德国乌尔姆大学的Fedor Jelezko和其他实验人员与Zurek和一些理论家同事进行了合作。研究小组专注于NV中心,当金刚石晶格中的相邻两个碳原子被一个氮原子和一个空晶格取代时,就会产生NV中心。氮原子有一个未配对的电子。这表现为一个孤立的自旋-它可以是向上,向下或两者的叠加。自旋态可以在一个完善的过程中进行探测,该过程包括用激光照射金刚石并记录其发出的荧光。 研究人员开始监测NV自旋如何与邻近几个碳原子的自旋相互作用。金刚石中的大多数碳是碳-12,其自旋为零。然而,大约1%的原子是碳-13,它具有核自旋。他们的实验涉及到 探索 NV自旋与大约1纳米远的4个碳13原子之间的相互作用。作为环境的碳-13自旋太弱而不能相互作用,但却在NV自旋中引起退相干。这个过程包括碳-13自旋转变为依赖于NV自旋状态的新量子态。该实验是通过将绿色激光照射到毫米级钻石样品内的NV旋转上并测量随微波和射频场打开和关闭时发射的光子来完成的。因为他们无法直接观察碳13旋转,所以团队将这些自旋状态转移到NV自旋并再次利用荧光测量。Jelezko说,这种反直觉的方法是可行的,因为实验中的三个步骤 - 准备自旋状态,退相干和测量 - 在时间上完全分开。 自然环境 通过这样做,研究人员发现了预期的冗余。通过测量一个碳-13原子核的自旋,并多次重复实验,他们发现他们可以在大多数情况下正确地推断出大多数NV自旋特性。但是对额外的核自旋的测量几乎没有增加这方面的知识。他们在《物理评论快报》(Physical Review Letters)上发表的一篇论文中写道,这些结果“首次在实验室证明了量子达尔文主义在自然环境中的作用”。Jelezko说,“自然”一词指的是,固体中的自旋退相干通常是由于磁性与核自旋相互作用的结果。他补充说,这个过程使得利用固体中的自旋来构建量子计算机变得困难。该小组的下一步是扩大实验规模,尽管Jelezko承认,接近宏观物体(甚至是尘埃颗粒)的大小很可能是不可能的。他说:“我不认为我们将能制造出十亿个原子,但20个就已经产生了巨大的影响。”

近日,南方 科技 大学物理系/量子科学与工程研究院助理教授吴健生课题组与北京大学教授刘雄军课题组、中国科学技术大学教授王亚课题组合作首次提出了高阶能带翻转面的概念,基于这一概念进一步提出了动力学表征拓扑属性的实验方案,并利用量子模拟器对这一实验方案的优势进行了认证,相关研究结果以“Quantum dynamical characterization and simulation of topological phases with high-order band inversion surfaces”为题发表在 PRX Quantum 。 在拓扑量子体系中,体边对应是一个重要的物理机制,比如在量子霍尔效应、拓扑绝缘体和拓扑超导体中,体系的拓扑数和边界态的数目是相互关联的,因此体边对应机制可以用于验证体系的拓扑量子态和测量拓扑不变量。在实空间中,这一机制可以被很好地定义,却无法扩展到动量空间,因为后者是完全封闭的,不存在边界。最近一种定义在动量空间中的拓扑分类方法被提出,它指出一个d维体系的拓扑数可以用d-1维动量子空间中的自旋纹理进行表征,这个子空间被称之为能带翻转面。实验研究显示,这一方法在拓扑表征上具有两个明显优势:一是能够利用动力学方法进行表征;二是可以进行高精度的实验测量。在当前工作中,研究团队从拓扑体系的动力学表征出发,进一步提出了高阶能带翻转面的概念。基于“降低维度”的方法,展示了通过量子淬灭技术,体系的拓扑属性可以在高阶能带翻转面上表征出来,并在实验中验证了在高阶能带翻转面上进行拓扑表征的巨大优势。 图1:三维手征拓扑绝缘体的一/二/三阶能带翻转面和相应的自旋纹理。 该研究首先在理论上对一个三维手征拓扑绝缘体进行了动力学表征,这个系统的不同阶的能带翻转面体现为动量空间中不同维度的曲面[图1(a-1)的曲面],曲线[图1(b-1)的曲线]和点[图1(c-1)上的点]。通过淬灭和测量自旋方向,可以确定这些曲面,曲线和点上面相应的自旋纹理[图1(a,b,c-2)上的箭头];通过这些自旋纹理都可以同样得到系统的完全相同的拓扑信息。优点是随着能带翻转面的维度降低,测量的范围明显缩小,特别是在最高阶情况中,能带翻转面是零维的,只有两个点,这使得实验上的测量步骤大大简化,相对于一阶和二阶情况具有明显的优势。这套能带反转面及其降维的方案适用于一般的拓扑能带理论,可以用非常简化的实验来测量体系的拓扑性质。 图2: (a,b)基于金刚石NV色心固态自旋建立的量子模拟器。(c-f) 三维手征拓扑绝缘体动力学表征的量子模拟。 该研究对这一表征方案及其优势进行了实验上的认证。图2展示了基于金刚石NV色心固态自旋建立的量子模拟器,通过对能带翻转面的降维,最终得到零维的三阶能带翻转面,即动量空间中的两个点,在测量其周围的时间平均极化率后,可以得到自旋纹理,从而确定体系的拓扑非平庸属性,同时也演示了用高阶能带翻转面进行拓扑表征的巨大优势。 论文的第一单位为南方 科技 大学,共同第一作者是量子科学与工程研究院研究助理教授虞祥龙、中国科学技术大学博士后季文韬和北京大学博士生张林,通讯作者是王亚、吴健生、刘雄军。该成果得到了国家自然科学基金、广东省创新创业团队、广东省重点实验室以及深圳市科创委基础研究面上项目的大力支持。 文章链接:

粒子物理与原子核物理研究生论文

理论和实验没有分那么清楚,理论指导实验,实验验证理论,互为支持,互为补充。粒子物理与原子核物理可以去天文或者核能研究院所,实验理论的都要

都是要做试验的。理论物理要难一些,但是在中国好像博士生阶段都是偏向理论研究的多一点吧?西南物理研究中心,就是那个585所,在成都,好像有招博士哦。但是可能经济收入不怎么多。 做试验的中国其实很少,都是从理论过度到试验,或者试验总结理论之类的。 如果是偏向应用一些的,一般研究生阶段就可以找工作了,核一院可以去。 个人觉得拿钱最多的还是本科生阶段,进核电站。

看你怎么定义前途,如果把挣钱多,文章数量多,影响因子高定为前途,那多半没前途。如果真的发自内心喜欢,并且愿意耐得住寂寞就去做,前途也许渺茫也许无量,不过不管什么时候都需要逆行者不是?国家和世界永远在期待一个给予新物理学界光明的人。

如果真的喜欢,这些也没必要考虑。因为其实哪个学科都有优势都有劣势,没有百分百的好也没有百分百的坏。

粒子物理与原子核物理是以国内外的大型高能物理实验为依托,从理论和实验上研究物质最基本的构成、性质及其相互作用的规律。其中也包括粒子物理探测新技术和新型探测器的研究;粒子物理理论研究中的计算物理新方法的开发和研究。

这些研究将深化我们对物质世界更深层次基本规律的认识。在21 世纪,以兴建若干大科学工程为标志,国际上粒子物理与核物理学科正在继续蓬勃发展并面临着重大的突破,必将继续对各国的国防、能源、交叉学科等的发展起重要的推动作用。

粒子物理与原子核物理专业培养目标

本专业培养研究生具有量子场论、粒子物理、核物理和近代数学的坚实的理论基础和专门知识,掌握射线探测技术及利用计算机在线获取数据和分析数据的方法,或能使用计算机进行理论研究。

了解该学科发展动态和前沿进展,能够适应我国经济、科技、教育发展需要,并具有独立从事该学科前沿研究和专业教学的能力。还应较为熟练地掌握一门外国语,能阅读本专业的外文资料,具有开拓进取严谨求实的科学态度和作风。

粒子物理与原子核物理专业就业前景分析

本专业毕业生主要在高等院校,科研机构及其它相关单位从事粒子物理和核物理、计算机应用、网络技术等方面的科学研究、专业教学、技术开发和管理工作,也可继续深造攻读博士学位。

物理一级学科下就有8个二级学科,070201 理论物理 070202 粒子物理与原子核物理070203 原子与分子物理 070204 等离子体物理070205 凝聚态物理 070206 声学070207 光学 070208 无线电学 如果想小跨一下专业,那就多了,如: 电子类,半导体,核物理等。

物理论文初中质量

大哥,论文自己写呀

牛顿第一定律的教学研究,在中学物理教学研究中早已不是一个新问题了.许多物理教育工作者对于这一定律的教学发表了自己颇有见地的教学见解,并且得到了满意的教学效果. 当我们在教学实践中运用这些教学策略时,我们发现,确实可以取得如同一些文献中所述的预期效果.然而,当我们设计一些新的情境让学生运用牛顿第一定律去解决问题时,令我们十分吃惊的是:学生对于牛顿第一定律的掌握程度却又非常之差.这使得我们困惑不解.为何对同一教学策略教学的结果的评价出现如此之大的偏差?是教师教的原因,还是学生学的原因,抑或两者兼而有之.这促使我们对牛顿第一定律的教学进行深层次的理性思考,进一步,我们从学生的认知心理上,对这一规律的教学进行了深入的研究. 1 通常牛顿第一定律的教学,一般是按教材编排顺序,先进行演示实验引出课题,然后通过讲解伽利略与亚里士多德的争论,消除“力是维持物体运动原因”的错误观念,进一步通过做斜面小车实验证明牛顿第一定律的正确性,最后让学生运用牛顿第一定律去解释日常生活中的现象,从而完成整个教学过程. 为了检验学生学习和掌握牛顿第一定律的情况,我们曾用这样一道题目来检测学生.题目如下.你坐在向前匀速直线运动的汽车里,将手中的钥匙竖直上抛,问当钥匙落下来时是落在手里,还是落在手后面.全班56名同学在试卷上皆答:落在手后面.问其原因,皆曰:汽车在走,而钥匙抛出后不再向前走了. 2 怎样更好地改进牛顿第一定律的教学效果,使牛顿第一定律的教学效果真正是实实在在意义上的令人满足.我们认为,囿于一般形式上的教学方法的改进已是隔靴搔痒,而必须深入到学生的认知结构中去考察学生产生错误认识的根源. 认知心理学的理论告诉我们,学生学习物理概念、规律时所形成的错误,常常是由于其头脑中的前科学概念的影响. 所谓前科学概念,是指儿童在学习物理课程以前的生活实际中,对各种物理现象和过程在头脑中反复建构所形成的系统的但并非科学的观念.比如牛顿第一定律就是如此.在物理教学中,那种认为只需要“正面”传授知识,学生就能接受,如果他们仍不理解,可以多讲几遍就能达到目的的想法,实践证明是过于天真了.因为在有些学生的经验中,早已有了与亚里士多德“力是维持物体运动原因“的理论类似的观念.这样,当他们学习了牛顿第一定律之后,就可能把定律纳入到自己原有的认知结构中,牛顿第一定律实际上成了“力是维持物体运动原因”的代名词.让他们解释用手推车、用脚踢球等一些不易暴露错误观念的生活实例时,他们也能解释得头头是道.但当解释用手抛钥匙、飞机扔炸弹的例子时,他们却又运用亚里士多德的理论去解释,其错误观念暴露无遗.这正是牛顿第一定律教学效果不佳的症结之所在. 3 研究和改进牛顿第一定律的教学,应当了解学生头脑中前科学概念的特点. 第一,学生头脑中的前科学概念是自发形成的. 过去,我们在教学中,常常误认为学生在学习物理之前其头脑如同一张“白纸”,教师可以在上面任意涂画,事实并非如此.学生在长期的生活实践当中,逐渐形成了自己对客观世界物质运动规律的看法.他们几乎每天都会看到物体在力的作用下运动,而在力停止作用时物体静止,于是主观地断言:有力,则物体运动;无力,则物体静止.这正是亚里士多德“力是维持物体运动原因”的理论. 第二,学生头脑中的前科学概念具有隐蔽性. 由于学生头脑中前科学概念都在潜移默化中形成的,所以它以潜在的形式存在.这包含两方面的意义.其一是学生自己并没有意识到它的存在,因为学生并没有有意识地思考并形成“力是维持物体运动原因”的概念.其二是前科学概念平时并不表现出来,但往往在学生运用物理概念解决问题时表现出来.比如前述测验表明,许多有10多年教龄的初中物理教师头脑中也存在着牛顿第一定律的前科学概念,然而他们自己却并不知道. 第三,学生头脑中的前科学概念具有顽固性. 由于前科学概念是儿童头脑中业已形成的概念,且长期的日常生活经验与观察又加强了这些概念.因此,学生头脑中的前科学慨念是非常顽固的. 国内外物理教育界近年来的一些研究表明:一旦学生对某些物理现象形成了前科学概念,要想加以转变是极其困难的.尤其那些在人类科学认识史上经历了曲折历程的前科学概念,更是如此. 按照皮亚杰的理论,学生认识什么和如何行动,主要决定于他们所具有的认知图式(思维模式),而不完全取决于教师所讲述的内容.他们按照自己已有的图式吸收和排斥信息.在有错误认识存在的情形下,就会在头脑中形成和正确信息极不相同的东西.

物理小论文生活中有很多的物理现象,许多简单的现象可以用所学知识去解答。现象一:飞快的火车有一个安全距离,当我们在公路上步行时,不宜靠中太近,除了害怕离线的车会撞到之外。还有一个意料之外的原因,对此本文将作出解答。现象二:取两片很薄的纸,将他们贴近,用力的吹,我们并不能将纸吹开,反而出现被“吹拢”的情况。现象三:,对于相同流量的水而言,口径大的水龙头,水的流速很慢,但是对于口径小的水龙头,可以明显的看到流速加快了。这是什么原因呢?总结来看,空气和水都是流体,在两者之间有着一定的共同点,都遵循流体的基本性质,在流体的学习中有两个很重要的方程叫:伯努利方程和连续性方程。用它们就可以很简单的解释上面三个现象。首先,伯努里方程的基本表达式为:P+1/2pv+pgh=恒量。P指流体周围的压强大小,p指流体本身的密度,v指流体的速度。在上述但现象中,可把水和空气近似的看作理想流体,且它们作常流动。在以上前两种情况中,都可以将pgh看作是不变的,所以我们很容易的就得到P+1/2pv=恒量。容易得出压强和速度成反相关。下面将对三个现象作出具体的解释。解释现象一:其中提到一个意外的原因就是很有可能身边的空气将我们“推”向汽车而发生意外。为什么这么说?当车飞快的从我们身边开过的时候,对周围的空气造成了影响:使它们的速度加快,在这样的情况下,根据上面的推倒易知:速度过快造成周围空气的压强减小,在汽车周围形成一个压强差,在车周围的事物就容易被“压”到车下。这是相当危险的,所以步行要尽量的靠边走。解释现象二:当两片薄纸靠近,我们将它们看成和外面的空气分开,当我们吹气时,使得两纸间少量的空气流速加大,压强减小,外围的空气使得纸片贴在一起。解释现象三:同流量即体积相同,所以易知SV=S V。这就是理想流体的连续性方程。它表示理想流体作定常流动时,流体的速率与流管截面积的乘积是一个恒量。由此可知,当我们将口径边小时,必然导致流速加快。根据个原理在科技上也有很大的运用,比如切割水枪,对于一样的出水量,这种水枪的口径很微小,使得出水的速度极快,所含动能极大,在生产上有很大的运用。最后,要介绍一个很实用的方法:取水。在家中,看到大人用一根管子插到水里,用嘴在管口吸气,水就会自己流出来,我也试过,但没有成功,现在我目标了原因:必须保证吸气的一端低于出水的一端,为什么呢?这是利用了大气压的原理。当吸气后管子里成为真空,水就被外界大气压压倒了出水端。物理在我们的生活中有很大的作用,我们可以借着生活来学习物理,再利用物理来服务生活。

量子理论的研究论文

路易·德布罗意于1892年8月15日出生。他的家族是一个大家族,与法国王室关系很密切。这个家族在17世纪中叶,被法国国王路易十四封为公爵,并且爵位世袭。

德布罗意本来在大学学习历史,后来在他的兄长莫利斯影响下,开始研究放射线的波动性与粒子性。莫利斯是一位著名的X射线物理学家。

可能是因为学历史出身吧,他更善于历史总结。他把各种已经确认的现象加以联系思考,终于认识到粒子与波的协调性。

1922年,在一篇研究气体辐射的论文中,德布罗意运用热力学、分子运动论、光量子假设导出了维思辐射定量。在此,他已经认识到光是微粒,把它们称为“光原子”。

1923年,在爱因斯坦光量子理论的影响下,德布罗意认识到,应该推广理论,把这种波粒二象的思想扩展到一切物质粒子,电子更应该是这样。

1923年9月至10月,德布罗意连续发表了三篇论文,明确提出电子也是一种波。他还作出预言,电子束穿过小孔时也会发生衍射现象。1924年,德布罗意完成了博士论文《关于量子理论的研究》,系统地阐述了物质波理论。

德布罗意的论文公开发表之后,法国科学家朗之万建议爱因斯坦发表意见,爱因斯坦看了之后,赞叹说“揭开了巨大帷幕的一角”。

《关于量子理论的研究》认为:

“整个世纪以来,在光学上重视了波动研究方程,而过于忽视了粒子的研究方法,在物质粒子的理论上,同样也是忽略了波的研究。”

二象性是光作为实物粒子的本性,所以爱因斯坦的公式E=hv,适用于光及电子等一切粒子。电子的波长也可以求出。德布罗意提出了波长公式,被称为德布罗意关系式。

正是德布罗意第一次完善了玻尔理论并且促使薛定谔方程的诞生。

人们开始用实验检验德布罗意的理论。1927年,在美国贝尔实验室,戴维逊、革末和英国的汤姆逊(发现电子的汤姆逊之子)对晶体的电子衍射完成了实验,证实了德布罗意的理论。

德布罗意因为博士论文而直接获得了诺贝尔奖,成为世界上第一位获此奖的物理学家。1929年,德布罗意获奖。1937年,三名证实理论的实验者也获得了诺贝尔奖金。

第五次索尔维会议结束以后,爱因斯坦并没有放弃对世界的经典描述,他仍然认为量子力学对世界本质的解释并不完备。 比如说,波恩的概率解释,爱因斯坦认为这只能算得上是对一个系统的概率描述,并不符合单个量子客体,因为爱因斯坦认为单个量子客体具有确定的物理量,只是我们现在还无法把握而已,所以只能退而求其次,给出概率解释。 同样的,他也对测不准原理很不满意,他决定这次从测不准原理入手,证明量子力学的逻辑不一致,从而证明量子力学现在还算不上是一个完备的理论。 1930年的10月,爱因斯斯坦在第六次索尔维会议上,提出了一个思想实验,这就是我们熟知的“爱因斯坦光盒”。 爱因斯坦说,现在有一个不透明的箱子,在箱子上开有一个小孔,里面装着一些光子,还有一个钟表,这个钟表作为计时装置链接这一个快门,可以控制小孔的开合。 整个装置用弹簧挂在支架上,下面有一个配重G,现在我们把箱子里的钟表和外面的钟表对好钟,也就是两个钟表的时间是同步的。 现在箱子上小孔处的快门瞬间打开,然后闭合,在这个过程中只允许一个光子逃逸,快门打开到闭合,这个极短的时间Δt可以根据外面的钟表测出来,因为里面的钟表和外面的钟表是同步的。 所以我们现在就测量出了时间,这个物理量,由于光子飞出去以后,整个箱子的质量会减小,质量变化的量Δm可以根据箱子上的指针测量出来; 然后根据,质能方程我们就能够知道能量的变化量ΔE,这样我们就同时准确地测量出了时间和能量这两个物理量。 那么你哥本哈根说的测不准关系就不成立。玻尔听了这个思想实验以后,瞬间就懵了,感觉这次像是被爱因斯坦击中了要害。 他一时间想不出这个思想实验那里有问题,玻尔整天都是面如死灰,闷闷不乐,海森堡和泡利还安慰玻尔说,没事没事,爱因斯坦的光盒肯定哪里有问题。 在当天会议结束以后,他们返回住处的的时候,就有了这张照片。 爱因斯坦笑了,笑得像一个刚考了满分的孩子。而玻尔的表情就显得比较凝重,他在后面追着爱因斯坦,不知道说着什么。 当天晚上,玻尔在房间里一直转圈,他思考问题的时候经常这样,据海森堡的回忆,当天晚上玻尔睡得很晚,第二天早晨,当他们再次见到玻尔的时候,玻尔的脸上已经乐开了花。 因为他想到了爱因斯坦错在了哪里?而且爱因斯坦要是知道了他所犯的错误,估计会被气得说不出话来。 玻尔说,光子逃逸以后确实能测量出能量的变化,但是当光子逃逸以后,整个箱子会在重力场中的位置发生变化,由于广义相对论的红移效应,这就导致了箱子内的钟表的时间发生改变,当箱子内的钟表不再和外面的钟表同步的时候,我们就无法精确的测量时间了。 你看看,爱因斯坦为了攻击量子力学,竟然把自己的相对论给忘了。爱因斯坦只能接受玻尔的反驳。 在与玻尔两次的交锋当中,爱因斯坦都败下阵来,其实他也承认量子力学肯定是包含了某种最高的真理,但是在他的内心深处总是觉得量子力学还不完备。 所以从以后,爱因斯坦也不再说量子力学的逻辑不一致,他将攻击方向转向了证明量子力学还不是一个完善的理论,也就是存在隐变量。 隐变量就是隐藏着的变量,还没有被我们发现的现实性的物理量,爱因斯坦认为,正是因为量子力学没有考虑到这个变量,所以才有了几率解释,才有了测不准关系。 比如说,以前我们没有发现原子的时候,我们就无法对气体表现出来的温度和压力做出描述,那么原子就是一个隐变量,当我们确认了有原子存在的时候,只要算出他们的平均动能,那气体的温度和压力就得到了解释。 在第六届索尔维会议结束以后,爱因斯坦就和玻尔很少有接触了,1934年因为德国 社会 的问题,爱因斯坦来到了美国,他选择在普林斯顿度过他的后半生。 在普林斯顿大学,爱因斯坦只有两件事,他关于统一场论的梦想,就像麦克斯韦当年统一电磁和光学一样,他希望将电磁理论和引力统一起来。 这个方向和逻辑没有问题,现在的物理学的终极任务就是寻找可以描述万物的统一理论,只需要一个方程就可以解释四种基本自然力。 爱因斯坦是第一个尝试和上帝对话的人,虽然他失败了,但他的理想值得我们每一个人的尊重,而且爱因斯坦还觉得,只要有了统一场论,就能证明量子力学是不是完备。 因为量子力学应该是统一场论的副产品。这个逻辑也没有问题,毕竟统一场论是万物至理。 不过就在爱因斯坦还抓着量子力学的尾巴不放的时候,量子力学已经在各个方面展现出了他的魔力,年轻的物理学家不再讨论量子力学是否完备,也不在乎量子力学对世界的解释是否违反直觉。 他们利用量子力学解决了很多的问题,也做出了很多新的发现,比如在1930年,剑桥的查德威克就发现了中子,费米和他的团队发现了中子可以诱发重核裂变,开创了核物理。 1932年,卢瑟福的实验室制造出了第一台粒子加速器,开启了高能物理的时代。与此同时,人们还发现了中微子的迹象,等等。 所以在当时的年轻人眼里,爱因斯坦就是一个无法接受量子力学的“老白痴”,说爱因斯坦是过去的 历史 遗迹,爱因斯坦也承认在普林斯顿就有一些年轻人这样说他。 因此,就很少有研究生去找爱因斯坦,毕竟爱因斯坦的研究方向也很难出啥成果。不过,毕竟爱因斯坦是可以比肩牛顿的人,总会有一些小迷弟,比如罗森,25岁,1934年从麻省理工过来给爱因斯坦当助手,他俩还合作发表过一篇论文,也就是我们现在熟知的爱因斯坦-罗森桥,说的是可以穿越时间和空间的虫洞。 还有一位小迷弟叫波多尔斯基,39岁,俄罗斯人,1935年初,爱因斯坦告诉他俩,自己已经有了可以证明量子力学不完备的想法了,并且口述了自己的观点。 罗森负责计算,波多尔斯基负责写文章,3月底他们就完成了这篇只有4页纸的论文,史称爱因斯坦-波多尔斯基-罗森论文,也就是众所周知的EPR论文。 论文题目为:可以认为量子力学所描述的物理现实是完备的吗?当然论文中给出了否定的答案。 由于时间的关系,我们下节课在聊,EPR论文都说了啥。

根据量子力学原理建立的场的理论,是微观现象的物理学基本理论。场是物质存在的一种基本形式。这种形式的主要特征在于场是弥散于全空间的。场的物理性质可以用一些定义在全空间的量描述〔例如电磁场的性质可以用电场强度和磁场强度或用一个三维矢量势A(X,t)和一个标量势嗘(X,t)描述〕。这些场量是空间坐标和时间的函数,它们随时间的变化描述场的运动。空间不同点的场量可以看作是互相独立的动力学变量,因此场是具有连续无穷维自由度的系统。场论是关于场的性质、相互作用和运动规律的理论。量子场论则是在量子物理学基础上建立和发展的场论,即把量子力学原理应用于场,把场看作无穷维自由度的力学系统实现其量子化而建立的理论。量子场论是粒子物理学的基础理论并被广泛地应用于统计物理、核理论和凝聚态理论等近代物理学的许多分支。

  • 索引序列
  • 量子物理论文范文
  • 基于金刚石的量子物理研究论文
  • 粒子物理与原子核物理研究生论文
  • 物理论文初中质量
  • 量子理论的研究论文
  • 返回顶部