首页 > 期刊论文知识库 > 汽车烤漆温度控制毕业论文

汽车烤漆温度控制毕业论文

发布时间:

汽车烤漆温度控制毕业论文

浅谈汽车电控发动机起动故障的诊断与排除摘要:试就汽车电控发动机无法起动的故障进行分析,指出了故障诊断与排除的方法。 关键词:电控发动机;故障;诊断;排除 0 引言 随着电控燃油喷射技术的发展和维修认识水平的不断提高,现代轿车中在对装有电控燃油喷射发动机的汽车进行维修时,使用故障诊断仪对发动机电控单元(ECU)进行检测,并根据ECU存储的故障代码进行检修,大多数都能判明故障可能发生的原因和部位,会给维修人员的工作带来很大的方便。 运用数据流进行电控发动机故障的诊断,首先要打好理论基础,有了这些理论基础,在查找故障时就会找出问题的主要根源进行分析;然后要了解各传感器数据的表现形式。结合实际维修工作中的维修实例,谈谈运用“数据流”进行电控系统故障诊断的体会。 1 利用“静态数据流”分析故障 静态数据流是指接通点火开关,不起动发动机时,利用故障诊断仪读取的发动机电控系统的数据。例如进气压力传感器的静态数据应接近标准大气压力(100-102kPa);冷却液温度传感器的静态数据凉车时应接近环境温度等。下面是利用“静态数据流”进行诊断的一个实例:故障现象:一辆捷达王轿车,在入冬后的一天早晨无法起动。检查与判断:首先进行问诊,车主反映:前几天早晨起动很困难,有时经很长时间也能起动起来,起动后再起动就一切正常。 一开始在别的修理厂修理过,发动机的燃油压力和气缸压力、喷油嘴、配气相位、点火正时以及火花塞的跳火情况都做了检查,也没有解决问题。通过对以上项目重新进行仔细检查,同样没发现问题,发动机有油、有火,就是不能起动,到底是什么原因呢? 后来发现,虽经多次起动,可火花塞却没有被“淹”的迹象,这说明故障原因是冷起动加浓不够。如果冷起动加浓不够,又是什么原因造成的呢?冷却液温度传感器是否正常呢? 用故障诊断仪检测发动机ECU,无故障码输出。通过读取该车发动机静态数据流发现,发动机ECU输出的冷却液温度为105℃,而此时发动机的实际温度只有2-3℃,很明显,发动机ECU所收到的水温信号是错误的,说明冷却液温度传感器出现了问题。为进一步确认,用万用表测量冷却液温度传感器与电脑之间线束,既没有断路,也没有短路,电脑给冷却液温度传感器的5V参考电压也正常, 于是将冷却液温度传感器更换,再起动正常,故障排除。 这起故障案例实际并不复杂,对于有经验的维修人员,可能会直接从冷却液温度传感器着手,找到问题的症结。但它说明一个问题,那就是电控燃油喷射发动机系统的ECU对于某些故障是不进行记忆存储的,比如该车的冷却液温度传感器,既没有断路,也没有短路,只是信号失真,ECU的自诊断功能就不会认为是故障。再比如氧传感器反馈信号失真,空气流量计电压信号漂移造成空气流量计所检测到的进气量与实际进气量出现差异等,都不能被ECU认可为故障。在这种情况下,阅读控制单元数据成为解决问题的关键。 2 利用“动态数据流”分析故障 动态数据流是指接通点火开关,起动发动机时,利用诊断仪读取的发动机电控系统的数据。这些数据随发动机工况的变化而不断变化,如进气压力传感器的动态数据随节气门开度的变化而变化;氧传感器的信号应在之间不断变化等。通过阅读控制单元动态数据,能够了解各传感器输送到ECU的信号值,通过与真实值的比较,能快速找出确切的故障部位。 有故障码时的方法 可重点针对与故障码相关的传感器的数据进行,分析是什么导致数据的变化,以找出故障原因所在。 故障现象:一辆桑塔纳轿车(出租车),百公里油耗增加1L。检查与判断:车主反映:前几天换了火花塞,调整了点火正时,油耗还是高,通过与车主交流确认不是油品的问题。于是连接故障诊断仪,进入“发动机系统”,读取故障码为“氧传感器信号超差”,是氧传感器坏了吗?进入“读测数据块”,读取16通道“氧传感器”的数据,显示为不变。 氧传感器长时间显示低于的数值,说明两点:一是说明混合气稀,二是说明氧传感器自身信号错误。是混合气稀吗?通过发动机的动力表现来看,不应是混合气稀,那就重点检查氧传感器,方法是人为给混合气加浓(连加几脚油),同时观察氧传感器的数据变化情况。通过观察,在连加几脚油的情况下,氧传感器的数据由“”微变为“”,也就是说几乎不变,进一步检查氧传感器的加热线电压正常,说明氧传感器损坏。更换氧传感器,再用诊断仪读其数据显示变化正常,至此维修过程结束。第二天,车主反映油耗恢复正常,故障排除。这是一起典型的由氧传感器损坏引起的油耗高的故障。 无故障码时的方法 通过对基本传感器信号数据的关联分析和定量对应分析来确定故障部位。 故障现象:一汽佳宝微面,加速无力、加速回火,有时急加速熄火。检查与判断:初步判定是混合气过稀,为了证明这一点,我用两个方法进行了验证。 一个方法是拆下空气滤清器,向进气道喷射化油器清洗剂,与此同时进行加速试验,明显感到加速有力,也不回火,故障现象消失,这可以证明混合气过稀的判断;另一个方法是连接诊断仪,读取故障码,显示无故障码;读取数据流,观察氧传感器的数据,显示在左右徘徊,加几脚油门,氧传感器数据立即越过上升到,然后其数据又回到左右徘徊,这说明氧传感器是好的,因为它在人为对混合气加浓后,数据反应及时,变化正常,同时也证明混合气确实是过稀。是什么原因造成混合气过稀呢?通过分析,主要考虑进气压力传感器和燃油系统油压。首先判断进气压力传感器,进入“读测数据流”,读取进气压力传感器的数据,显示:静态数据1010mbar,为大气压力,正常;怠速时为380mbar,基本正常;急加速时数据可迅速升至950mbar以上,这些数据及其变化都表明,进气压力传感器基本正常。接下来开始检测油压,但由于油压表坏了,无法测量燃油系统油压,只好直接更换油泵。更换油泵后试车,故障现象消失,故障排除。最后的结果说明故障是因为油泵的供油能力不足导致混合气过稀而造成的。 3 结束语 运用“数据流”进行故障分析,便于维修人员了解汽车的综合运行参数,可以定量分析电控发动机的故障,有目的地去检测更换有关元件,在实际维修工作中可以少走很多弯路,减少诊断时间,极大地提高工作效率。 参考文献: [1]新雷.电控汽油喷射式发动机排放检测诊断故障的实用性研究代[D].西安:长安大学,2005.

你好,已经发送给你4封邮件,都是汽车专业相关的论文,由于你没有具体告诉我关于汽车的什么主题,我自己帮你找了三个主题,每个主题十来篇文章,你可以选择,请查收,希望对你有帮助!以后还需要检索论文的话可以再向我或者其他举手之劳队员提问哦,举手之劳助人为乐!——百度知道 举手之劳团队 队长:晓斌11蓝猫

基于MCS-51单片机温控系统设计的电阻炉论文字数:17255.页数:42 论文编号:JD471 摘 要近年来随着计算机在社会领域的渗透, 单片机的应用正在不断地走向深入,同时带动传统控制检测日新月益更新。在实时检测和自动控制的单片机应用系统中,单片机往往是作为一个核心部件来使用。 单片机是随着超大规模集成电路技术的发展而诞生的。由于它具有体积小、功能强、性价比高等特点。把单片机应用于温度控制中,采用单片机做主控单元,无触点控制,可完成对温度的采集和控制的要求。所以广泛应用于电子仪表、家用电器、节能装置、机器人、工业控制等诸多领域,使产品小型化、智能化,既提高了产品的功能和质量,又降低了成本,简化了设计。周期作业式的电阻炉,可供实验室、工矿企业、科研单位作元素分析测定和一般小型钢件淬火、退火、回火等热处理时加热用。原电阻炉需与温度控制器配套使用,由检测端的热电偶信号输送给温度指示调节仪,继而控制接触器对电阻炉供电,实现电阻炉温的测量、指示及自动控制。电阻炉温波动较大,控制精度低。本文主要介绍单片机在电阻炉温控中的应用,对温度控制模块的组成及主要所选器件进行了详细的介绍。并根据具体的要求本文编写了适合本设计的软件程序。关键词:单片机;电阻炉;炉温;控制系统 目 录摘要………………………………………………………………………………… ⅠAbstract…………………………………………………………………………Ⅱ第1章 绪论………………………………………………………………………… 课题背景…………………………………………………………………… MCS-51系列单片机………………………………………………………2第2章 总体设计电路图及工作原理…………………………………………… 总体方案设计……………………………………………………………… 电阻炉的单片机温控原理…………………………………………………7第3章 系统硬件设计…………………………………………………………… 系统硬件电路设计……………………………………………………… 硬件设计电路原理图…………………………………………………… 各元件说明……………………………………………………………… 19第4章 系统软件设计…………………………………………………………… 编程思路………………………………………………………………… 编程流程图……………………………………………………………… 23第5章 MCS-51单片机温控电阻炉技术特性…………………………………… 25总结………………………………………………………………………………… 26致谢………………………………………………………………………………… 27参考文献…………………………………………………………………………… 28附录…………………………………………………………………………………29附录1 硬件设计的电路…………………………………………………… 29附录2 程序………………………………………………………………… 30附录3 外文翻译…………………………………………………………… 38以上回答来自:

现代的轿车发动机大多是电子控制燃油喷射型的汽油发动机,自动熄火的原因很多,首先要分析自动熄火的症状。汽车发动机经过长期的使用后或者人为的原因导致发动机自动熄火,那是什么原因导致发动机自动熄火呢?那就要我们带着问题来探研问题的所在,从中认我们知道发动机为什么自动熄火,这样我们才可以以后避免发动机自动熄火后带给我们的麻烦,防范于未然。关键词: 发动机 自动熄火 诊断分析 检测 维修 熄火故障原因绪论在汽车技术日新月异的今天,电脑控制技术已经应用到汽车的各个系统,各种新结构、新技术的不断涌现,使汽车维修人员面临着更加大的挑战。现代汽车维修技术的特征表现为“七分诊断,三分修理” ,发动机常见故障现象、故障原因、诊断方法和思路、诊断与排除等发生了很大的改观,因此,我通过长时间的在校学习,并参考了大量的维修资料写下了该文。一 发动机的概述发动机的简介发动机机体是构成发动机的骨架,是发动机各机构和各系统的安装基础,其内、外安装着发动机的所有主要零件和附件,承受各种载荷。因此,机体必须要有足够的强度和刚度。机体组主要由气缸体、曲轴箱、气缸盖和气缸垫等零件组成。发动机的工作原理(配图)发动机是一种能量转换机构,它将燃料燃烧产生的热能转变成机械能。要完成这个能转换必须经过进气,把可燃混合气(或新鲜空气)引入气缸;然后将进入气缸的可燃混合气(或新鲜空气)压缩,压缩接近终点时点燃可燃混合气(或将柴油高压喷入气缸内形成可燃混合气并引燃);可燃混合气着火燃烧,膨胀推动活塞下行实现对外作功;最后排出燃烧后的废气。即进气、压缩、作功、排气四个过程。把这四个过程叫做发动机的一个工作循环,工作循环不断地重复,就实现了能量转换,使发动机能够连续运转。把完成一个工作循环,曲轴转两圈(720°),活塞上下往复运动四次,称为四行程发动机。而把完成一个工作循环,曲轴转一圈(360°),活塞上下往复运动两次,称为二行程发动机。常见发动机的结构(图)发动机的结构主要由以下的两大机构和五大系统组成。曲柄连杆机构:包括活塞、连杆、曲轴、飞轮、活塞环及活塞销等;配气机构: 包括凸轮轴、进排气门、正时齿轮、气门弹簧及气门座等部份;燃油供给系:包括汽油箱、汽油泵、汽油滤清器、燃油喷射系统、空气滤清器、进排气管及消声器等部份;冷却系:包括水泵、散热器、风扇、节温器及水管等部份;润滑系:包括机油泵、机油滤清器、机油集滤器及油道等部份;点火系:包括蓄电池、发电机、点火线圈、火花塞及高压线等部份;起动系:包括起动机及其附属装置。其中气缸盖、气缸体、进气歧管由铝合金制成,而气缸套及凸轮轴则由铸铁制成;并采用平衡轴的方式平平衡因曲柄连杆机构产生的旋转惯性力和往复惯性力,以降低发动机的振动。二 发动机的检修发动机的拆卸(步骤)拆下蓄电池的负极接线,把发动机室机盖提起到垂直位置,再卸下空气滤清器。放掉冷却液,然后拆下散热器。对装有空调的发动机,卸下空调压缩机的动皮带,然后拆下压缩机,并在不拆软管的情况下把它移到一边。松开动力泵储液罐的注液盖,然后用注射器抽净罐中的液压油,再拧上储液罐盖。拆下油门拉线,拆下液压制动助力器的固定螺栓或在进气歧管上的固定螺母,撒下安装接头用的两个密封垫圈。从缸盖后面的支架上松开真空助力器软管。拆下水泵上的散热器上软管和节温器壳上的储液罐软管。拆下水泵出水口右侧的暖风水箱软管和缸盖后面的左侧的软管。对装有液压气动悬架的车辆,从缸盖的右侧卸开液压泵。拆下燃油分配器和燃油压力调节器上的软管,然后用干净的抹布在装配螺栓处堵住油管以防燃油外泄。拆除全部影响发动机拆卸的导线和软管以及与此有关的例如冷启动阀、电磁压力调节器、空气流量传感器、节气门壳、辅助空气装置、冷却液温度传感器和缸盖温度开关、油底壳油位传感器、交流发电机、起动机和点火线圈等零部件、元器件和总成。拆下点火系统电子开关装置的两个电气连接器。然后拆下诊断插座与翼子板的固定螺栓,从插座的后面拆下电气导线连接器。拆下进气歧管上的机油滤清器导线护罩支撑与安装支架的固定螺栓。从各个连接件和电缆夹上松开导线和电缆并把拆下的导线和电缆与发动机分离开来。提升车辆并把它可靠地支承在支撑台架上。对装有发动机下托架的车辆,卸下前支撑、螺栓、后凸缘螺母和螺栓,然后拆下下托架。对于早期的车辆,松开座架并拆下发动机前减震垫。拆下凸缘螺母或螺栓,然后把排气管与歧管分离开来。松开软管夹,拆下螺母以松开发动机右侧连接件上的动力转向软管,并用干净抹布堵住软管和金属管。拆下发动机搭铁线的固定螺栓和螺母,然后取下搭铁线。拆卸下传动轴,拆下发动机支架与托架的固定螺栓。用提升装置把发动机连同变速器一起从发动机室中提。发动机的安装发动机组装程序与要求如下:(步骤)在组装发动机时要全部使用新垫和新油封,并且保证全部零件都涂有适量的机油以及在缸筒中和曲轴箱内不残留金属多余物。在安装活塞与连杆组件时,要翻转缸体使之右侧面朝上,然后把连杆伸进缸筒中,再用活塞环夹紧器夹紧活塞环并把活塞引进到缸筒中,再用木锤把或类似的硬木棒把活塞与连杆组件顶到位。用规定的力矩拧紧连杆轴承盖螺母和主轴承盖螺栓,然后用手转动曲轴以确定其转动阻力适度。对于拉伸螺栓的连杆,不要使用扭力扳手拧紧,而要用转角器拧紧,而且要确保拉伸段的直径大于、被连杆轴承盖挡住部分的直径应不小于。出于标准化上的原因,对于全部连接用螺栓相对于转角器的拧紧转角为90°+10°,也就是在以··m的扭矩拧紧后再拧转90°;请注意对于190E款型,在第三个主轴承盖处装有曲轴止推垫。此止推垫的两个凸耳放在主轴盖的凹槽中以防止其转动,在安装时应使止推垫带有槽的一面面向曲轴的止推面。分解机油泵并检查齿轮的齿隙,然后检查泵盖安装面的翘曲量,若超过规定,则用机械加工的方式使其平整,若泵盖的内表面磨损严重,则予以更换。安装上机油泵。再安装上油底壳、下曲轴箱,并按规定的力矩拧紧固定螺栓,然后把缸体的上表面转动向上,装上缸垫和缸盖,按规定顺序和力矩拧紧缸盖固定螺栓。安装上气门室盖,并按规定的力矩拧紧固定螺栓,最后把余下的全部零部件安装到发动机上。利用吊装设备把发动机装入发动机室中。2.3发动机的磨合发动机总成装配后,一般要求经过冷磨合与热试后才能投入使用,通过冷磨与热试对提高零件配合质量,保证正确的间隙(如气门间隙和准确的正时),从而提高发动机的动力性,经济性,工作可靠性和使用寿命. 发动机的冷磨合发动机的冷磨合是指以发动机或其他动力带动发动机运转磨合的过程.其功用是使相对配合的零件之间进行自然磨合.由于冷磨合后,还必须对发动机进行拆检与清洗,所以冷磨时可不安装燃油供给系统和点火系统各附件,如果已安装上,则应拆下汽油机活塞,以减小冷磨合汽缸内的压力,减小发动机零件的机械负荷. 发动机的热试将装配好的发动机,以其本身产生的动力进行运转试验的过程,热试可将发动机安装到车上后进行.热试时,发动机工作温度达到正常后,应使发动机在不同的转速下运转.此外,还应该检查有无漏水,气及油现象,检查调整气门间隙,点火正时,怠速转速等,观察电流表,冷却液温度表,机油压力表指示灯是否正常,听该发动机工作是否有异响,检查发动机汽缸是否符合规定标准,热试的时间为小时。三 发动机自动熄火的故障维修故障现象故障现象 发动机运转或汽车行驶过程中自动熄火,而再起动并没有多大困难的现象。常见故障原因进气管路真空泄漏;怠速调整不当、节气们体过脏、怠速系统控制不良等造成的怠速不稳;燃油压力不稳定,例如电动燃油泵电刷过度磨损或接触不良,或燃油泵滤网堵塞等;废气再循环阀门阻塞或底部泄漏;燃油泵电路、喷油器驱动电路等电路有接触不良等故障;燃油泵继电器、EFI继电器、点火继电器不良等;点火系工作不良。例如高压火弱,火花塞使用时间过久,点火正时不对,点火线圈接触不良或热态时存在匝路导致没有高压火花或高压火花弱,低压线路接触不良,绝缘胶损坏间歇搭铁等;节气门位置传感器不良;空气流量计或进气压力传感器有故障;冷却液温度传感器、氧传感器有故障;曲轴位置传感器有故障,如无转速信号(插头末插好、曲轴位置传感器信号线断、传感器定位螺钉松动、间隙失调、传感器损坏等);曲轴位置传感器信号齿圈断齿,会引起加速时熄火,曲轴位置传感器内电子元件温度稳定性能差,会导致信号不正常,会引发间歇性熄火故障;ECU有故障。故障诊断的一般步骤(步骤次序)先进行故障自诊断,检查有无故障码出现。如有,则按所显示的故障码查找故障原因。要特别注意会影响点火、喷油、怠速、配气相位变化的传感器和执行器(如发动机转速及曲轴位置传感器、凸轮轴位置传感器、冷却液温度传感器、节气门位置传感器、怠速控制阀等)有无故障。如发动机自动熄火发生在怠速工况,且熄火后可立即起动可按怠速不稳易熄火进行检查。采用故障模拟征兆法振动熔丝盒,各线束接头,看故障能否出现。然后进一步检查各线事业接头有无接触不良,各搭铁线有无搭救铁不良,目视检查线事业绝缘层有无损坏和间歇搭铁现象。采用故障模拟征兆法改变ECU、点火器等工作环境温度,重现故障,进而诊断故障原因。试更换点火线圈、火花塞等。在不断试车过程中,有多通道示波器同时监测发动机转速及曲轴位置传感器、空气流量计、电脑的5V参考电压等信号。如果在熄火前有喘振、加速不良的现象再慢慢熄火的话,故障可能发生在供油不畅上。可接上燃油压力表,最好能将压力表用透明胶固定于前挡风玻璃上,再试车确定。如存在熄火时油压力过低的现象,则应检查油箱、电动燃油泵、燃油滤清器、油压调节器及燃油泵控制电路。试车时接上专用诊断仪,读取故障出现前后的数据,进行对比分析,从而找出故障。按故障逐个检查排除。故障诊断的相关要点(分点讲出来)在对电控系统引出的故障诊断时,千万不要忘记先进行基本检查。例如:在试图诊断电控单元控制的燃油喷射系统故障之前,一定要确保进气管路无泄漏,配气正时、点火正时。如果存在这些不良现象,发动机的抗负荷交变能力就差,在工作状况突变的情况下可能熄火,如加速熄火、制动熄火、开空调熄火、挂档熄火等。有些汽车的间歇性故障是难于诊断的,除非是检查汽车时正好显示故障。因此,当进行诊断测试时,故障症状不出现,故障就难以诊断。解决方法是放车到维修站,由技师驾车在可能出现出问题的状态下行驶,直到故障出现。这种方法就不凑巧了,因为这样故障短时间不出现,就得无休止地驾车。还在一种方法就是故障出现就打电话给维修站,这一方法对长时间熄火无法起动很受用。一般就来这种现象只会越来越严重,如一时无法确诊,也可待故障明显后再作检查。检查不定时的怠速熄火故障时,有时换火花塞是必要的。当怀疑空气流量计不良(如空气流量计热线过脏;内部电路连接焊点脱落、接触不良等)时,可用示波器检查空气流量计信号电压波形。当怀疑进气压力传感器不良时,应先检查传感器真空胶管,看是否破裂,弯折,是否有时漏气,有时不漏气,使进气压力传感器信号时而正常,时而不正常,造成发动机收加速踏板时熄火。还应检查对喷油量影响较大的传感器。冷却液温度传感器不仅对喷油量有影响,也对修正点火提前角的信号之一,应要重视。有时某些车型的氧传感器信号电压无变化,容易造成发动机加速时熄火。如果在较高速行驶中先出现加速不良而造成的熄火,要重点检查油路;如果较高速过程中突然熄火则重点检查电路方面,高压火花是否过弱是必要检查项目之一。突然熄火、间歇熄火还应该对控制点火的主要传感器发动机转速用曲轴位置传感器进行检查。故障模拟试验方法。在故障诊断中最困难的情形是有故障,但没有明显的故障征兆。在这种情况下必须进行彻底的故障分析,然后模拟与用户车辆出现故障时相同的条件和环境,进行就车诊断。这样有助于故障处理。四 故障实例道奇车自动熄火故障故障现象一辆三星道奇乘用车,在行使了一段路程后其发动机突然自动熄火,再起动时发动机不能着火,但过了大约15min后起到发动机时又能正常起到,且怠速平稳,加速性能良好。故障分析在冷机状态下测量燃油系统压力,压力正常;在发动机自动熄火后测量燃油系统压力,该系统的压力明显低于正常值;进一步检查时发现在冷机时燃油泵输出的燃油压力正常,在热机时燃油泵输出的燃油压力偏低,因此燃油泵本身油问题。排除方法更换该燃油泵。康明斯发动机自动熄火故障Cummins康明斯发动机-自动熄火-的故障原因分析与处理方法1:燃油用完或燃油关断阀切断油路处理:检查燃油关断阀,看它是否开启。如系关闭,应予打开。检查油箱中有否燃油。如果油箱无油,则加油原因。2:燃油质量低劣处理:检查更换燃油原因。3:燃油输油管道漏气处理:检查连接件有无松动,管道有无破裂,滤清器是否未上紧等,并一一校正原因。4:内输油路或外输油路漏油处理:对所有滤清器、密封垫、管道和连接件作外油路漏油检查。用加压办法作内油路漏油检查。修理或更换原因。5:燃油泵驱动轴断裂处理:检查齿轮泵驱动轴是否断裂。重新调校或更换原因。6:节气门传动杆调整不当或磨损处理:检查磨损情况,更换并调整传动杆原因。7:怠速弹簧装配不对处理:重新装配调整原因。8:限速器离心锤装配不当处理:重新调校原因。9:燃油中有水分或蜡质处理:更换燃油,更换所有滤清器,装设燃油加热器原因。10:燃油泵校准不正确处理:重新调校燃油泵原因。11:密封垫漏气处理:进行压力检查,找出漏气的气缸,更换并修理。奔驰轿车自动熄火故障故障现象一款1996年产奔驰豪华型W140 S320轿车。该车在行驶中突然熄火,再次着车,ABS、ASR、驻车制动报警灯和制动蹄片报警灯都同时点亮,并且着车几分钟后,车辆再次熄火。故障原因及分析接车后,打开发动机舱盖,发动机及线束一切都十分整齐,看来此车保养得非常好,车主说此车从来没出现过大毛病,所以不必考虑发动机有什么问题。打开点火开关,仪表灯微亮,将点火开关旋至起动挡,起动机“哒哒”作响不运转,好像蓄电池严重亏电。用万用表测起动时电压,只有9V,利用强起动蓄电池着车后,ABS、ASR、驻车制动灯及制动蹄片报警灯都常亮不灭,取下起动蓄电池,不一会儿发动机又熄火。再次强起动,测发电机的电压为蓄电池电压,说明发电机不发电。测量发电机D+端子,有+14V电压输出,证明发电机良好。为什么发电机良好却不发电,而且发电机充电指示灯也不亮。于是拆下组合仪表,取出充电指示灯灯泡,没有烧坏,线路也没有问题。无奈之下,只有人为强行让发电机发电。这样做有一定的危险,但为了进一步验证发电机是否真是好的,只好采取此办法。方法是:取一个点火开关处火线,接在一个二极管的正极上,二极管负极接在发电机D+端子上,人为给一个激励信号;利用这种办法着车,测发电机电压果然能达到—,加油时也正常,说明发电机是好的。虽然发电机电压正常了,但4个故障灯仍然常亮不灭,利用奔驰专用电脑STAR2000专用诊断仪准备进入ABS系统,发现通信错误,根本无法进入。取下ABS电脑盒,按资料电路图,找到电脑端子的火线和地线,发现ABS电脑缺少一个常电源。从蓄电池上取一常电源接入后,ABS、ASR灯熄灭,诊断仪也能进入且无故障,但驻车制动及制动蹄片报警灯仍然亮。逐个进行检查,驻车制动制动开关正常,制动蹄片及制动油液位都正常,再次从ABS电脑端子常火入手查看电路图。此常火是从基本电脑内部输出供给,检查基本电脑上的4个10A熔丝,结果3号10A熔丝烧断,取一个10A熔丝插上后又被烧断。仔细检查,发现3号熔丝上被人接了一根线,顺线找到一个防盗报警喇叭。此喇叭是后加装的,取下此线,再接一个10A熔丝,没有再烧断,原来防盗喇叭负载电流过大,只要一工作就会烧断10A熔丝。再测ABS电脑端子电源线,恢复正常,着车观察,驻车制动报警灯及制动蹄片报警灯也不亮了,一切正常。难道不发电也是此熔丝造成的吗?于是把发电机线恢复成原车线,测量发电机发电机电压正常,至此故障全部排除。一个小小的熔丝竟然惹出这么大的麻烦,使维修走了不少弯路。基本电脑是给其他电脑模块及仪表供电的一个中转站,所有模块的电源供给都从基本电脑输出,所以基本电脑上的4个熔丝十分重要。在此提醒维修界人士,千万不要胡乱改动原车线路,给维修带来困难,此例故障就是因加装防盗器的那个修理工,没有找到常电源,(奔驰车蓄电池在行李舱)就从电脑处取一个电源,但此10A熔丝无法带动防盗器喇叭,故防盗器喇叭一工作就把10A熔丝烧了,所以提醒朋友们检修车辆一定要找到根源,才能根治故障。阳光车发动机自动熄火故障现象一辆东风日产阳光乘用车,在行驶万km时到专营店进行正常维护,但两天后出现怠速转速较低,当车速达到100km/h—120km/h的条件下紧急制动时发动机会自然熄火,而且该现象出现的频率越来越高,每天达到五次以上,根据以上故障现象得出下列分析。故障原因分析利用CONSULT-Ⅱ故障检测仪进行故障检测,检测到“CMP SEN/ CIR-B1[P0340]”,即曲轴位置传感器及其故障线路故障。清除线路代码后,重新调取故障代码,该故障代码不再出现,但仍有紧急制动时熄火的现象。检查曲轴位置传感器(位于分电器内)及其线路,未见异常。利用替换法更换了分电器总成,故障未能排除。后经进一步检查发现,该车没有冷机提速功能,在发动机温度为37℃时,其怠速转速只有450r/min,但发动机运转平稳;当发动机达到正常工作温度后,在接通前照灯、空调等负荷的情况下行驶紧急制动,才会出现熄火现象,在熄火前发动机转速先将到400r/min以下,然后再慢慢熄火,不是立即熄火。熄火后发动机可立即起动。根据以上故障特征,判断故障发生在发动机的燃油系统或进气系统上,因为如果点火系统出现了故障,导致发动机熄火,其熄火具有突然性,并且熄火后发动机不易重新起动。为找到故障的原因,又做了以下检测:1、测量燃油系统压力。在发动机熄火时,燃油系统的油压始终保持在250kpa,说明燃油系统正常;2、检测发动机的基本怠速状况。热机后拔掉节气门位置传感器(TPS)线束侧连接器,发动机怠速在788r/min左右,说明发动机基本怠速正常;3、利用检测仪测试发动机加速后迅速松开加速踏板时的转速特性曲线,发现该车发动机在怠速补偿方面不良,就重点检查怠速控制系统。利用检测仪读取乘用车的数据流,并与其正常值进行比较。通过比较发现,该车在37℃时发动机转速只有450r/min,但发动机ECU向怠速电动机却已经下达了转动54步的指令;而在正常情况下,怠速电动机只要转动15步,发动机转速就能达到513r/min。由此断定怠速电动机或其控制线路可能存在故障。利用检测仪对怠速电动机进行执行测试。正常情况下,热机后当怠速电动机达到100步时,发动机转速可达到2000r/min左右,但该车在改变怠速电动机转动的步数时,发动机转速没有改变。从而进一步确认怠速电动机或其控制线路存在故障。更换怠速电动机,该故障无法排除。拔下怠速电动机线束侧连接器,接通点火开关,检查怠速电动机线束侧连接器的电源端子,其电压正常。(注意:必须用测试灯进行测量,这样可以排除电源线路接触不良或虚接电阻过大的现象,如果用万用表检测,容易忽视这方面的故障。)经测量发现怠速电动机线束侧连接器上各端子与ECU线束侧连接器上相应端子的导通性良好,怠速电动机控制线路中没有塔铁现象;进一步检查发现,在ECU线束侧连接器上有一个端子脱出,将其重新装复到原位,用检测仪测试乘用车在加速后迅速松开加速踏板时特性曲线,发现该曲线恢复正常,对怠速电动机进行执行测试,也正常,路试过程中没有出现发动机自动熄火的现象。该故障排除。捷达王突然熄火故障原因故障原因行驶中突然慢慢熄火,再启动后发动机工作不稳,接着很快又熄火。诊断与排除发动机慢慢熄火与燃油系统有关,但经检查燃油系统工作正常。拔下中央高压线做跳火试验,发现火花很强,说明点火系统正常。再检查点火正时,发现分电器固定螺栓松动,上下活动分电器,分电器可上下窜动。将分电器固定好后,发动机能顺利启动。但发动机工作不稳定,加速时排气管放炮。从新出现的故障现象分析,该车可能是点火错乱。检查分电器盖、分火头,均无故障。检查正时皮带,松紧合适,不可能发生跳齿现象。这时想起分电器固定螺栓曾松动过,会不会发生分电器齿轮折断现象呢?由于分电器固定螺栓松动,造成分电器向上窜动,齿轮不规则折断,同时螺栓松动使分电器左右转动,造成发动机熄火。重新启动发动机时,由于分电器齿轮断齿,使点火正时错乱,发动机工作不稳,加速不良。这时,再怎么调分电器,也调不出正确的点火正时。折下分电器,结果发现分电器齿轮有不规则断齿现象。更换分电器后,故障排除。时代超人发动机自动熄火故障的诊断与排除故障现象一辆桑塔纳2000时代超人,发动后不能正常运行,运转几分钟后就自行熄火,并且熄火后短时间内无法再启动着车;停放十几分钟后又能正常启动了,但过几分钟后又自动熄火。故障如此反复,无法正常使用。故障诊断与排除接修此车后,首先试启动发动机,发动机启动成功,运转较为平稳;原地加速试验,感到发动机很闷,响应不够灵敏,加速性能较差;运转大约3min左右,发动机怠速出现不稳且抖动了几次就自行熄火了;立刻再次启动发动机,没有任何着车的迹象。接上VAG1552诊断仪,读取发动机故障码,没有故障代码。随后又对汽油压力、高压线、火花塞进行了检查,未发现异常。检查配气正时的情况,也未发现问题。经过以上几项检查,时间大约已用了十几分钟,而后再次试启动发动机,发动机居然又能正常启动运转了。趁着发动机尚能运转的时机,立刻读取了该车的数据流,也未发现明显的异常。大约3min后,发动机再次自行熄火,仍旧是当时无法立即启动着车。这个故障确实很奇怪!各项检查和数据都显示该车没有任何能造成发动机不着车的问题,那么问题究竟出在哪里呢?仔细回想一下之前的一系列检查过程,再结合加速性能较差的现象,最后把问题的焦点集中在了排气系统上。笔者让一名员工启动发动机,自己到车尾观察消声器的排气情况,发现在启动过程中,消声器处竟然一丝的尾气也未排出,由此可以断定问题的确出在排气系统上。将车辆架起,断开排气管与三元催化器的接口,再启动发动机,发动机顺利着车,怠速运转较长时间,也未出现自行熄火的现象。拆下三元催化器检查,发现三元催化器的内芯已经被严重堵塞。由此断定,这个怪病的根源就在这个堵死的三元催化器上。更换新的三元催化器后,试车,运转平稳,加速有力,故障彻底排除。当三元催化器完全堵死后,发动机运转时的废气无法正常排出;当排气侧的废气压力增大到和作功压力相近的时候,发动机就自动熄火;熄火后排气管内的压力无法马上消除,所以在熄火后立刻启动时,无法再次着车。当排气管内的废气通过三元催化器内芯上残存的微小缝隙逐渐缓慢的卸压后,又能再次启动着车,这就出现熄火后等待十几分钟又能启动的现象。通过这个故障让我们认识到,对于一个故障的诊断,要全方位地去分析和思考,不能只局限于依靠仪器诊断的数据来判断。结论: 发动机是汽车的动力装置,其作用是将燃烧产生的热能转变为机械能来驱使汽车行驶的.它是汽车的唯一动力输出源,发动机自动熄火的诊断分析是对汽车发动机维修的一种技术要求,由于发动机维修复杂、涉及面广,对我们的诊断与维修造成一定困难。因此对汽车维修人员需要更高的要求。但在我们许多的维修人员中,对发动机的理论知识、各系统的工作原理不够了解,在分析问题时考虑不全面,同时在自动熄火的诊断分析问题的过程中条理不清晰,不能对症下药,常带一种漫无目的碰运气的心理进行维修,往往花了大钱、更换了许多零件却仍不能解决问题。本文对发动机自动熄火诊断分析进行了全面的分析,优化了维修工艺的程序。更进一步提高了维修人员的维修技能。

汽车烤铆喷漆毕业论文

汽车维修技术论文篇二 汽车绿色维修技术的探讨 摘 要:本文分析了汽车维修过程对环境和人员所带来的负面影响,在可持续发展战略背景下提出了绿色汽修概念,阐述了其重要意义,分别就维修前、维修中、维修后的技术方案提出自己的看法。 关键词:可持续发展 绿色汽修 技术方案 中图分类号:U472、4 文献标识码:A 汽车的生命周期主要包括设计制造、使用与维护和最终报废几个阶段,在这些环节当中使用与维护的时间最长、耗能最大、造成的污染也可能是最多的。随着目前我国汽车使用的逐步普及, 如何使汽车在维修时对环境的影响小、资源利用率高以及最大程度地保护维修人员的安全, 已经成了人们普遍关心的问题。鉴于此, 有必要提出汽车绿色维修(以下简称绿色汽修)战略, 在汽车维修业中推行绿色维修模式。 一、绿色汽修的概念 传统的汽车维修是指为使汽车保持、恢复或改善其规定技术状态所进行的全部活动。其基本任务是充分发挥各种维修资源的作用,保持和恢复汽车的性能。在传统维修过程中的一些维修环节, 所使用的维修设备、维修场所, 都可能成为污染源,。主要是在维修过程( 如清洗、焊接、粘接、喷涂、刷镀以及机加工等) 中所产生的污染物以废气、废水、废渣等形式污染着大气、水体及土壤, 同时还可能产生噪声、振动、电磁辐射、放射性和光辐射等污染, 危害周围的环境, 最终是浪费资源、污染环境、伤害人体。 绿色汽修就是从科学发展观和社会可持续发展的观点出发,最大化控制维修能源资源消耗,完成修复、保持、改善汽车的功能,同时减小废弃物排放,保护生态环境,达到可持续发展的目标。 二、绿色汽修的意义 绿色汽修是在坚持可持续发展的前提下,综合考虑资源利用率与生态环境等因素,以最少的维修资源的消耗 ,保持、恢复、改善、延长汽车的功能,减少废物产生,避免环境污染的现代维修模式。与传统汽修造成大量的资源、能源浪费和环境污染,甚至是人身伤害相比 ,绿色汽修主要体现在一、资源利用合理性;二、.污染控制有效性;三、劳动保护友好性;四、维修技术先进性;五、综合效益最佳性。因此,绿色汽修不仅是一种技术,更是一种思想,一种更合理、更环保、更人性化的汽修思想。 三、绿色汽修的技术方案与方法 1、绿色汽修前的方案设计 绿色汽修前要对国家环保政策、法规及有关技术标准、减废技术,新能源、新材料、新工艺等技术资料有所了解,全面考察维修对象的相关信息,包括故障、里程、能源消耗等数据,以便综合考虑绿色维修性要求,制定出合理的备选方案,方案中详细说明本次维修过程中使用了那些材料,哪些是有害有污染的,会不会有废弃物,主要是什么,报废零部件回收性如何,可能产生什么污染,资源利用率如何等问题,然后综合汽车性能、维修费用、污染指标等各方面指标,选取适合的维修方案。 2、绿色汽修过程中的工艺选择 (1)绿色诊断技术 绿色诊断技术主要体现在诊断方式和诊断设备两个方面。在诊断过程中,要采取有效的防护措施,以免污染环境和危害维修人员,在现场污染严重的情况下,尽量采用远程诊断方式。要采用低耗能、少污染、可靠性高、易拆卸回收利用的绿色诊断设备,采取绿色制造手段,使用绿色包装材料制造的设备,尽量减少放射性和电磁辐射等污染。应用绿色诊断技术不仅可以避免因拆卸造成人力、物力和时间的浪费,还可以避免因拆卸造成汽车机器零件的损伤,降低故障的发生率,降低维修成本,保证安全生产,节约能源,利于环保。 (2)快速维修技术 快速维修技术就是以最少的时间和最快的速度完成维修任务,并使维修作业规模最小化,是绿色维修中较为有效的维修方式。对于要求在短时间内完成修理和一些要求在高温、重负载或强辐射等恶劣条件下完成的维修,这种维修技术与方式十分有效。快速维修技术主要有两个方面: 一是采用耐磨、防腐的快速粘结剂或者工业修补剂进行维修作业;二是对突发损伤的设备进行冷焊、扣合、堵漏等进行抢修作业。这样就能以最少的维修资源(人力、物力)消耗,来获得较大的维修度,有利于环境的保护、人员的安全和对其他设备的干涉。 (3)热喷涂技术 在汽车维修过程中,有些部件需要进行喷漆处理。传统的手工喷漆易产生漆雾,并且漆中含有苯等有害物质,会危害维修作业人员的身体健康。为消除其负面影响,可改使用机器作业,采用热喷涂技术。所谓热喷涂技术,就是指将喷涂材料用热源加热方式处理到溶化或者半溶化状态后,用相应速率将其喷射沉积到已经预处理的基体表面上,从而形成薄的涂层的一种方法。这种技术具有抗高温、抗氧化、减摩、耐磨、绝缘、隔热、导电、防腐、防微波�~射等功能,达到节约能源、资源的目的,通常把把制造涂层的工作方法叫做热喷涂。目前的热喷涂技术主要包括高速电弧喷涂技术和高产能超音速等离子喷涂技术,可应用于汽车表面耐磨涂层、防腐涂层、零件的尺寸恢复、防滑涂层的制备。 (4)绿色清洗技术 在传统的维修过程中,汽油、煤油、柴油等多作为清洗汽车零部件的清洗液。这不仅浪费能源、成本高、污染环境,甚至存在着安全隐患,造成火灾。绿色清洗技术则以水代油,用水基清洗替代汽油、煤油、柴油来清洗零部件,并且采用无水清洁洗车法,减少洗车的用水量,避免大量污水的产生。使整个操作过程更安全、成本更低、污染更少,更适合于汽车维修清洗作业。 (5)节约资源的工艺技术 在修理生产过程中简化工艺系统组成、节省原材料消耗的工艺技术即所谓的节约资源的工艺技术。如优化毛坯,减小加工余量,降低原材料消耗;提高刀具寿命,选用新型刀具材料,降低刀具组成材料的消耗;减小或取消切削液的使用;简化工艺系统的组成要素等。 3、绿色汽修后废弃物的回收 维修过程中产生的废弃物国家除对废油、轮胎、电瓶、弹簧钢板有明确回收规定外,其他尚没有明确回收规定。这其中甚至包括一些具有化学方应、腐蚀性、毒性、可燃性、放射性的危险废弃物,若不正确处理,定会对环境和人造成严重伤害。而一些新的种类的废弃物也会随着汽车新材料和新技术的运用而衍生。因此,必须不断研究和规范汽车维修行业处理废弃物的措施,加强报废市场废弃物的管理,让相关作业人员明确危险废弃物的正确处理方法,减少汽车产业给环境带来的不良影响。 四、总论 汽车维修过程中采用绿色维修方式可以实现资源的可持续利用,在维修过程中可以控制大部分污染,减少污染来源,具有很高的环境效益,同时绿色维修可以在技术改造和结构调整方面大有作为,能够创造显著的经济效益,所以无论从经济角度,还是从环境和社会角度来看均是符合可持续发展战略的。绿色汽修是可持续发展和清洁生产在维修行业中的具体体现,是现代维修业的可持续发展模式。 参考文献 [1]陆晓平,试述国内外汽车维修行业及特点 [J].电子世界,2013,35(05):136-137 [2]孙涛,汽车维修行业发展现状"问题及对策 [J]. 长江大学学报(社会科学版),(05):86-87 [3]黄志,绿色维修――汽车维修技术新途径[J].科技传播.2010,12: 120 看了“汽车维修技术论文两篇”的人还看: 1. 汽车维修技术论文范文 2. 汽车维修论文范文 3. 有关汽车维修毕业论文范文 4. 汽车维修专业毕业论文范文 5. 浅谈汽车维修研究论文范文

21世纪被称为面向环境的新世纪,减少涂装公害、降低涂装成本、提高涂装质量一直是涂装技术 发展 的主题。下面是我整理的关于汽车涂装技术论文,希望你能从中得到感悟!

现代汽车涂装技术探讨

摘 要:21世纪被称为面向 环境的新世纪,减少涂装公害、降低涂装成本、提高涂装质量一直是涂装技术 发展 的主题。阐述了有关汽车涂装技术的常识,探讨了汽车油漆标准工艺流程,并提出了汽车涂装过程中注意事项。

关键词:汽车;涂装;原则;工艺;原子灰

1 有关汽车涂装技术

汽车涂装作用

(1)保护作用。由于汽车特殊的生存环境:风吹日晒、雨淋石击,要求汽车有一定的防腐性能和使用寿命。(2)它的涂饰作用由于汽车不停地穿梭在公路、在城乡,人们希望它能给生活带来色彩斑澜,希望汽车美观舒适、色泽诱人。为此汽车涂装就要进行 现代 化大规模集约化生产,就需要投入大量人力物力建造并 管理好现代化大规模涂装生产线。

汽车涂装常用涂料

(1)按涂装对象的不同,汽车漆可分为:①新车原装涂料;②汽车修补漆(2)按在汽车上的涂层由下至上分类:;①汽车用底漆,多为电泳漆;②汽车用中间层涂料;③汽车用底色漆(包括实色底漆和金属闪光底漆);④汽车用面漆,一般指实色面漆,不需要罩光;⑤汽车用罩光清漆;⑥汽车修补漆;(3)按涂装方式分类:①汽车用电泳漆;②汽车用液体喷漆;③汽车用粉末涂料;④汽车用特种涂料如PVC密封涂料;⑤涂装后处理材料(防锈蜡、保护蜡等);(4)按在汽车上的使用部位分类:①汽车车身用涂料;②货厢用涂料;③车轮、车架等部件用的耐腐蚀涂料;④发动机部件用涂料;⑤底盘用涂料;⑥车内装饰用涂料。

汽车涂装油漆喷涂的基本原则

(1)喷漆前先检查工具与 工作环境。空气压缩机内的水份、油质必先释出。彻底清洁、检查喷漆房、通风滤网。清洁喷漆房地面。

(2)表面干净。施喷表面一定要用水洗干净,有油质,蜡质要用出有剂出油,新焊接或除铁锈后的金属表面要用——环氧树脂防锈底漆处理以防生锈。

(3)正确的砂磨 方法 。使用砂纸不要太用力,尽可能用细一点的砂纸。

(4)用高品质稀释剂。对稀释剂不要打 经济 算盘,使用配套的稀释剂,油漆可发挥最高质量,使用廉价的稀释剂可节省数元,但将付出更多时间与精力;使用高品质稀释剂,工作将会更顺手。

(5)硬化剂及稀释剂。要正确硬化剂及稀释剂比例,不正确将影响漆的效果。

2 汽车油漆标准工艺流程

(1)车体作防锈及内部喷涂:视车身情况由钣金工完成。(2)打磨及修饰斜边:使用P60~180#砂纸打磨车身上经过钣金修补及需要原子灰的地方。(3)除尘、清洁:使用压力枪及除硅清洁剂清除车身上的微尘及污渍。(4)贴护:使用反贴技巧贴上遮蔽纸。(5)涂装底漆:混合4:1红底漆及施喷1~2层打磨后露出金属的位置上,然后烤干。(6)填补原子灰:混合多功能原子灰填补于车身上凹陷位置,置于摄氏20度环境30分钟。(7)打磨原子灰:使用P60~240#砂纸打磨,用手感或打磨指示层检查平整度,针孔和印痕。(8)特幼原子灰:有需要时选用,填补针孔、砂纸痕等。(9)打磨:使用P280#砂纸彻底打磨车身上需喷涂中间漆的旧漆。(10)除尘、清洁:使用压力枪及除硅清洁剂清除车身上的灰尘及污渍。(11)贴护:贴上遮蔽纸。(12)喷涂中间漆:混合多功能中间漆2~3层,每层隔5~10分钟,然后烤干摄氏60度30分钟,再喷上打磨指示层。(13)打磨中间漆:使用P320~400#砂纸打磨干燥后的中间漆。(14)检查:检查打磨效果,可做微填。(15)除尘、清洁:清除车身上的灰尘和污渍。(16)贴护:对车身做贴护遮蔽。(17)除尘、清洁:先用压力枪吹出车身上的尘点,用除硅清洁剂清除车身污渍,用压力枪吹出车身缝隙的灰尘,最后以粘尘布粘除车身上的微尘。(18)面漆喷涂素色漆:喷涂2~3层,每层相隔5~10分钟,配合温度添加固化剂和稀释剂。(19)喷涂底色漆:喷涂2~3层素色漆、银粉漆或珍珠漆,每层间隔5~10分钟。(20)清漆喷涂:混合及施喷两层清漆,每层间隔5~10分钟,配合温度添加固化剂和稀释剂。(21)烤干:静置5~10分钟,摄氏60度干燥30分钟。(22)打蜡抛光。(23)遮盖汽车。遮盖汽车的目的是防止喷雾喷到不该喷到的地方,常规的基本遮盖材料是遮盖纸和遮盖带。汽车遮盖纸的宽度从7cm~91cm不等,是耐热的,一般可在烘房内安全使用,其湿强度好,可防止溶剂渗透(注意:不能用报纸遮盖,报纸耐热性不强,且含有印刷油墨,油墨会溶于油漆溶剂中,渗入下面的面漆,造成污染)。3 汽车涂装过程中注意事项

(1)漆前修补。对于车身部件上存在的诸如局部锈蚀、轻度硬损伤等缺陷,如果一概挖补、敲平反而有些得不偿失。若不加修补而直接以腻子填充,其强度和耐腐蚀性能均较差。漆前修补旨在卓有成效的弥补这类缺陷。常用的修补方法有:软金属填补,软金属填补(俗称挂锡)修补部件表面缺陷,具有附着力好、工艺简单和抗冲击能力强等优点。铝箔树脂板填补,铝箔上预涂合成树脂中有含一定比例的金属粉以提高其强度,具有方便、快捷的特点。

(2)砂纸打磨。手工打磨平面应将砂纸垫在手模板上进行,对较大面积的修磨则应换成大一些的打磨板,这样不仅修磨省力而且砂磨的打磨质量也好。打磨较窄的棱角部位时,宜用较小的打磨块,打磨型线或圆弧时,则 应用与其形状相似的仿形打磨块。在没有打磨块只用砂纸的情况下,一般漆工是将砂纸夹在拇指和手掌之间手平放在表面。手工打磨动作应均匀,并不得为急于求成而用力过猛,手工打磨时的运作方向也应交替进行。否则,容易磨出凹陷,以致前功尽弃。

(3)第二次除油。汽车车身表面虽然经过清洗、除漆、除锈、修补等工序,但钣金修复后留存的污垢,工具上的油污以及原旧漆未去除部分的油污若在涂底漆前不清除干净,必将影响的气的附着力,甚至在面漆喷涂后,还会出现脱落或桔皮现象。因此,上漆前尚需要除油。最好使用除蜡清洁剂,用洁净的干布擦拭待喷漆表面即可。

4 汽车清洗中应注意的问题

(1)应使用专用洗车液,严禁使用肥皂或洗洁精,因为这类用品碱性强,会导致漆面失光,局部产生色差,密封橡胶老化,还会加速局部漆面脱落部位的金属腐蚀。(2)高压冲洗前,须检查车窗,前后盖板是否关闭良好。(3)高压冲洗时,水压不宜太高,一般不高于7Mpa。且先使用分散雾状水流清洗全车,浸润后再利用集中水流冲洗。对于可调压的清洗机,底盘冲洗时,水压可高一些,以便能够冲掉底盘上附着的污泥和其他附着特。车身清洗时,可将水压调低些,如果清洗车身的水压和水流过大,污物颗粒会划伤漆层。(4)使用调温式清洗机,注意热水温度不宜过高,以免损坏漆层。(5)擦清洗剂时应使用软毛巾或海绵,最好使用海绵以免其中裹有硬质颗粒划伤漆面。(6)洗车各工序都应遵循由上到下的原则,即由车顶、前后盖板、车身侧面、灯具、 保险 杠、车裙、车轮等。(7)不要在阳光直射下洗车。如果阳光直射,车表水分蒸发快,干涸的车身上的水滴会留下斑点,影响清洗效果。(8)不要在严寒中洗车,以防水滴在车身上结冰,造成漆层破裂,北方严寒季节洗车应在室内进行,车辆进入工位后,停留5-10min,然后冲冼。(9)发现车身附有灰尘或杂质,应及时清除,以免玷污漆面。

5 注重日常养护

(1)车辆使用前、中、后,要及时地清除车体上的灰尘,尽量减少车身静电对灰尘的吸附。(2)雨后及时冲洗。雨后车身上的雨渍会逐渐缩小,使 雨水 酸性物质的浓度逐渐增大,如果不尽快用清水冲洗雨渍久而久之就会损害面漆。(3)洗车时,应待发动机冷却后进行,不要在烈日或高温下清洗车辆,以免洗洁剂被烘干而留下痕迹。平常自己动手冲洗车辆要用专用洗涤剂和中性活水,不应使用碱性大的洗衣粉、肥皂水和洗涤灵,以防洗掉漆面中的油脂,加速漆面老化。(4)擦洗车辆要用干净、柔软的擦布或海绵,防止混入金属屑和沙粒,勿用干布、干毛巾、干海绵擦车,以免留下划痕。擦拭时,应顺着水流的方向自上而下轻轻地擦拭,不应画圈和横向擦拭。(5)对一些特殊的腐蚀性极强的痕迹(如沥青、鸟粪、昆虫等),要及时清除。对此,必须用专用清洁剂清洗,不要随意使用刀片刮削或用汽油消除,以免伤害漆面。

点击下页还有更多>>>关于汽车涂装技术论文

温度控制毕业论文

哥们你这个毕业论文 不难 但是给的分太少了 我当年网上找毕业论文时可是花了50分啊 不知道你是想做简单的温度控制和监控还是精度高的呢 但是基本的得有 plc,AD模块,温度变送器,温度显示组态你是想用触摸屏还是上位机,还是说随便显示一下 ,如果是这样的话买个两三百的小温控仪也能用,至于声光报警就用开关量随便控制一下就行。

已把我毕业论文的一部分发给你了,应该是你想要的。还需要其它的说一声

温度相关的毕业设计 ·基于单片机的数字温度计的设计·基于MCS-51数字温度表的设计·单片机的数字温度计设计·基于单片机的空调温度控制器设计·基于数字温度计的多点温度检测系统·设施环境中温度测量电路设计·DS18B20数字温度计的设计·多点温度采集系统与控制器设计·基于PLC和组态王的温度控制系统设计·温度监控系统的设计·用单片机进行温度的控制及LCD显示系统的设计·单片机电加热炉温度控制系统·全氢罩式退火炉温度控制系统·数字温度计的设计·基于单片机AT89C51的语音温度计的设计·基于单片机的多点温度检测系统·基于51单片机的多路温度采集控制系统·基于单片机的数字显示温度系统毕业设计论文·基于MCS51单片机温度控制毕业设计论文·西门子S7-300在温度控制中的应用·燃气锅炉温度的PLC控制系统·焦炉立火道温度软测量模型设计·温度检测控制仪器·智能温度巡检仪的研制·电阻炉温度控制系统·数字温度测控仪的设计·温度测控仪设计·多路温度采集系统设计·多点数字温度巡测仪设计·LCD数字式温度湿度测量计·64点温度监测与控制系统·温度报警器的电路设计与制作·基于单片机的数字温度计的电路设计·全氢煤气罩式炉的温度控制系统的研究与改造·温度检测与控制系统·红外快速检测人体温度装置的设计与研制·具有红外保护的温度自动控制系统的设计·基于单片机的温度测量系统的设计·数字温度计设计·DS18B20温度检测控制·PN结(二极管)温度传感器性能的实验研究·多功能智能化温度测量仪设计·软胶囊的单片机温度控制(硬件设计)·空调温度控制单元的设计·大容量电机的温度保护——软件设计·大容量电机的温度保护 ——硬件电路的设计·基于DS18B20温度传感器的数字温度计设计·热轧带钢卷取温度反馈控制器的设计·基于单片机的温度采集系统设计·多点温度数据采集系统的设计·基于单片机的数字式温度计设计·18B20多路温度采集接口模块·基于单片机的户式中央空调器温度测控系统设计·单片机电阻炉温度控制系统设计·基于单片机的电阻炉温度控制系统设计·基于ARM的嵌入式温度控制系统的设计·基于DS18B20的多点温度巡回检测系统的设计·基于单片机的多点无线温度监控系统·基于MSC1211的温度智能温度传感器·用集成温度传感器组成测温控制系统·室内温度控制报警器·自动温度控制系统·烤箱温度控制系统·基于单片机的电加热炉温度控制系统设计·基于PLC的温度监控系统设计·基于无线传输技术的室温控制系统设计——温度控制器软件设计·温度箱模拟控制系统·基于无线传输技术的室温控制系统设计——温度控制器硬件设计·数字式温度计的设计·温度监控系统设计·基于单片机的电阻炉温度控制系统·基于plc的温度湿度检测和显示系统设计·基于单片机的3KW电炉温度控制系统的设计·腔型肿瘤热疗仪温度控制系统设计·基于AT89S51单片机的数字温度计设计·吹塑薄膜挤出机温度控制与检测系统设计·电加热炉PLC温度自适应控制系统的研究·高压母线温度自动监测装置的设计·高压母线温度自动检测装置·小型热水锅炉单片机温度控制系统·消毒柜单片机温度控制·嵌入式系统在多点温度控制中的应用·单片机温度控制系统·上下限温度报警器的设计·基于单片机的饮水机温度控制系统设计·基于单片机的温度测量系统设计

温度控制论文文献

1、张会新,龚进,樊姣荣,等. 分布式数字无线测温系统[J]. 化工自动化及仪表,2011,38 ( 12) : 1493 ~ 1495.  .中国知网[引用日期2017-12-20]

2、 赵科,李常贤,张彤.基于STM32的无线温湿度控制器[J].化工自动化及仪表,2015,42(06):629-633.  .中国知网[引用日期2017-12-20]

温湿度控制器主要由传感器、控制器、加热器三部分组成,其工作原理如下:传感器检测箱内温湿度信息,并传递到控制器由控制器分析处理:当箱内的温度、湿度达到或超过预先设定的值时,控制器中的继电器触点闭合,加热器接通电源开始工作,对箱内进行加热或鼓风等;一段时间后,箱内温度或湿度远离设定值,控制器中的继电器触点断开,加热或鼓风停止。

随着工业的发展,对现场温湿度控制的要求越来越高,传统的模拟开关控制已经很难满足生产要求,因此设计更加可靠、智能的无线温湿度控制器将具有较高的经济效益和实用价值。无线温湿度控制器是一种集温湿度信号采集、数据存储、无线收发、控制及通信等功能于一体的新型控制器  。

对于有害及危险等人类难以或无法到达的工作现场,通过设计无线温湿度控制器对生产现场的温湿度进行采集、控制和记录,可达到可靠生产、提高产品质量的目的。

另外,由于工业现场空间较大,温湿度又是非线性、纯滞后和大惯性的被控量,因此采用从机分布控制与主机集中控制相结合的方式进行现场温湿度控制,即通过多点从机进行温湿度采集和控制,采用无线模块将信息传送到中心主机,中心主机通过无线通信向各从机传送给定值和控制参数,主机可进行监控。

参考资料来源:百度百科-温湿度控制器

锅炉温度控制策略的应用研究 摘要:针对锅炉汽温控制的特点,设计了过热汽温串级模糊控制系统,介绍了系统的构成、原理 及该系统的优越性,并利用MATLAB仿真软件进行了仿真分析。 关键词:汽温;串级模糊控制;系统仿真 0 引言 过热蒸汽温度是衡量锅炉能否正常运行的重要 指标。假如过热蒸汽温度过高,若超过了设备部件 (如过热器管、蒸气管道、阀门、汽轮机的喷嘴、叶片 等)的允许工作温度,将使钢材加速蠕变,从而降低 使用寿命。严重的超温甚至会使管子过热而爆破。 可能造成过热器、蒸汽管道和汽轮机的高压部分损 坏。过热蒸汽温度过低,会引起热耗上升,引起汽轮 机末级蒸汽湿度增加,从而降低汽轮机的内效率,加 剧对叶片的侵蚀。因此在锅炉运行中,必须保持过 热汽温稳定在规定值附近。通常允许变化范围为额 定值±5℃。目前对锅炉过热汽温调节大都采用导 前汽温的微分作为补充信号的系统。其系统原理如 图1所示。 系统针对过热汽温调节对象调节通道惯性延迟 大、被调量反馈慢的特点,从对象调节通道找出一个 比被调量反应快的中间信号θ1作为调节器的补充 信号,以改善对象调节通道的动态特性。动态时调 节器根据θ1的微分和θ2这两个信号而动作。但在 静态时(调节过程结束后)θ1不再变化,则dθ1/dt= 0,这时过热器汽温必然恢复到给定值。实际使用 中,中间信号θ1的引入在一定程度上确实改善了控 制系统的动态特性,但是,影响蒸汽温度的因素很 多,除减温水流量的扰动外,负荷的变化,工况的不 稳定,过剩空气系数等都会导致蒸汽θ2温度发生波 动。这些波动是无法预知的,无法用精确的数学模 型来描述。由于模糊控制不依赖被控对象的精确数 学模型,它主要是根据人的思维方式,总结人的操作 经验,完成控制作用,特别适合于大滞后、时变、非线 性场合,因此该文提出一种锅炉过热气温的串级模 糊控制系统。 1 控制方案的研究设计 串级调节系统是改善大惯性、纯滞后系统调节 质量的最有效方法之一,所以设计的控制方案采用 串级模糊控制,其控制系统如图2所示。 图2中F为减温水流量调节阀。P为副调节 器,采用比例调节;FC为主调节器,采用混合模糊控 制器,即一个二维模糊控制器和常规PI调节器并联 而成,除能够尽快消除副环外的扰动之外还可以校 正汽温偏差,保证汽温控制的精度。 汽温调节对象由减温器和过热器组成,减温水 流量Wj为对象调节通道的输入信号,过热器出口汽 温θ2为输出信号。为了改善调节品质,系统中采用 减温器出口处汽温θ1作为辅助调节信号(称为导前 汽温信号)。当调节机构动作(喷水量变化)后,导 前汽温信号θ1的反应显然要比被调量信号θ2早很 多。由于从调节对象中引出了θ1信号,对象调节通 道的动态特性可以看成由两部分构成:①以减温水 流量Wj作为输入信号,减温器出口处温度θ1作为 输出信号的通道,这部分调节通道称为导前区,传递 函数为G01(s);②以减温器出口处汽温θ1作为输入 信号,过热器出口汽温θ2为输出信号的通道,这部 分调节通道称为惰性区,传递函数为G02(s),显然 导前区G01(s)的延迟和惯性要比惰性区G02(s)小 很多。系统结构如图3所示。 图3中有两个闭合的调节回路:①由对象调节 通道的惰性区G02(s)、副控制器Gc2(s)、副检测变送 器Gm2(s)组成的副调节回路;②由对象调节的导前 区G01(s)、主控制器(PI+混合模糊控制器)、主检 测变送器Gm1(s)以及副调节回路组成的主回路。 引入θ1负反馈而构成的副回路起到了稳定θ1的作 用,从而使过热汽温保持基本不变,因此可以认为副 回路起着粗调过热汽温θ2的作用。而过热汽温的 给定值,主要由主控制器(PI+混合模糊控制器)来 严格保持。只要θ2不等于给定值,主控制器就会不 断改变其输出信号σ2,并通过副调节器去不断改变 减温水流量,直到θ2恢复到等于给定值为止。可 见,主调节器的输出信号σ2相当于副调节器的可变 给定值。稳态时,过热汽温等于给定值,而导前汽温 θ1则不一定等于主调节器输出值σ2。 当扰动发生在副回路内,例如当减温水流量发 生自发性波动(可能是减温水压力或蒸汽压力改 变),由于有副回路的存在,而且导前区的惯性又很 小,副调节器将能及时动作,快速消除其自发性波 动,从而使过热汽温基本不变。当扰动发生在副回 路以外,引起过热汽温偏离给定值时,串级系统首先 由主调节器(PI+混合模糊控制器)迅速改变其输 出校正信号σ2,通过副调节回路去改变减温水流 量,使过热汽温恢复到给定值。由于主调节器(PI+ 混合模糊控制器)的惯性迟延小,故反应迅速。 因此在串级模糊蒸汽温度控制系统中,副回路 的任务是尽快消除减温水流量的自发性扰动和其他 进入副回路的各种扰动,对过热汽温的稳定起粗调 作用。主调节器的任务是保持过热汽温等于给定 值。系统在主控制器的设计上将模糊控制与常规的 PI调节器相结合,使控制系统既具有模糊控制响应 快、适应性强的优点,又具有PI控制精度高的特点。 2 模糊控制器的设计 模糊控制是一种基于规则的控制,在设计中不 需要建立被控对象的精确的数学模型。 模糊控制器的结构设计 该系统以过热蒸汽的实际温度T与设定值Td 之间的误差E=Td-T和误差变化DE作为输入语 言变量,系统控制值U为输出语言变量,构成一个 二维模糊控制器。其结构如图4所示。 Ku为模糊控制器比例因子,Ke,Kec为量化因子。 Ke:在输入量化等级确定之后,算法中改变误差 输入论域大小即改变了Ke的值,Ke增大,相当于缩 小误差的基本论域,起增大误差变量的控制作用。 若Ke选择较大,则上升时间变短,但会使系统产生 较大超调,从而过渡过程变长;Ke很小,则系统上升 较慢,快速性差。同时它还直接影响模糊控制系统 的稳态品质。 Kec:Kec选择较大时,超调量减小,但系统的响应 速度变慢,Kec对超调的抑制作用十分明显。但在 Ke,Kec和Ku中,系统对Kec的变化最不敏感,一般Kec 可调整范围较宽,其鲁棒性较好,给实际调试带来很 大方便。 Ku:比例因子Ku实质上是模糊控制器总的增益, 它的大小对系统输出的影响较大。Ku增大,系统超 调量随之增大,动态过程加快;反之,Ku减小,系统超 调量减小,动态过程变慢;Ku选择过大将会导致系统 震荡。由于Ku的敏感性,故可调范围较小。 模糊控制器可调参数Ke,Kec和Ku对系统性能 的影响各不相同,改变这3个参数可使控制器适用 于不同系统的性能要求。 模糊概念的确定及模糊化过程 对输入变量E进行模糊化,选择语言集为{负 大(NB),负中(NM),负小(NS),零(ZE),正小 (PS),正中(PM),正大(PB)},模糊论域选择如下 [-n,-n-1,…,-1,0,1,…, n-1, n],E的实际 变化范围为[-x,x],则量化因子为Ke=n /x。对偏 差变化率DE进行模糊化,选择合适的模糊论域和 偏差变化率范围,同理可以计算出相应的模糊量化 因子Kec,在这里为了方便起见,选择偏差e、偏差变 化率DE具有相同模糊论域。 对于输出量U,调节范围为[-R,R],语言集为 {负大(NB),负中(NM),负小(NS),零(ZE),正小 (PS),正中(PM),正大(PB)},模糊论域选择为[- m,-m-1,…,-1,0,1,…,m-1,m ],输出比例 因子为Ku=R /m。 在设计过程中,选取各变量的模糊论域,E= {-3,-2,-1,0,1,2,3};DE={-3,-2,-1,0,1, 2,3};U={-3,-2,-1,0,1,2,3},输入量E,DE 及输出量U模糊集的隶属函数选择为三角形,如图 5所示。 模糊规则的确定 模糊决策一般都采用“选择从属度大”的规则, 在过热蒸汽温度调节过程中,当系统的偏差较大时, 系统的快速性为主要矛盾,系统的稳定性控制精度 却是次要的,这时应使系统快速减小偏差;而当系统 偏差较小时,则要求以保证系统的稳定性及控制精 度为主。因而模糊控制规律应遵循:过热汽温上升 速度快,汽温偏高,则汽温的控制量应向下浮动;过 热汽温下降速度快,汽温偏低,则汽温的控制量应向 上浮动。因此采用的模糊控制器的模糊控制规则具 有以下的形式: if {E=AiandDE=Bi}thenU=Ci, i=1, 2,...,n 其中Ai, Bi以及Ci分别为E, EC、和U的模糊子 集。控制规则的多少可视输入输出物理量数目及所 需的控制精度而定。由于模糊控制器采用两个输入 E, EC,每个输入分为7级共有49条规则。 按模糊数学推理法则选则表1所示控制规则。 逆模糊化过程 文中采用的模糊推理方式是常用的Mamdani 的Min-Max-COA法,即前项取小,多规则取大合 成结论,然后取重心得出非模糊化结论的算法。在 上述规则中,Ai,Bi, Ci分别为论域E,DE,U的模糊 子集,根据上述规则可推出模糊关系Ri=ExDE,这 里采用的最小运算规则,在按最大—最小合成(max -min composition)推理算法求得控制器输出的模糊 子集为U=(ExDE)·Ri,其中“·”为合成运算,非 模糊化后的结论即为输出U的修正值。逆模糊化 方法采用重心平均法(centroid of area)。 3 系统仿真 为了说明串级模糊控制系统在锅炉过热蒸汽温 度的控制上有更好的调节效果,分别搭建具有导前 微分信号控制系统和串级模糊控制系统的仿真框 图。在保持相同输入信号条件下设置两系统被控对 象为相同的参数,以利于比较。 考虑到在实际应用中,各种随机扰动的影响及 过程的复杂性,被控对象有着大惯性、纯滞后的特 性,设系统的主副被控对象的数学模型分别为: 两系统仿真方框图搭建分别如图6、图7所示; 过热汽温响应曲线分别如图8、图9所示。 从仿真曲线可以很清楚的看到:串级模糊控制 系统应用在锅炉过热蒸汽温度控制上能够获得比具 有导前微分信号控制系统更好的调节效果。具有导 前微分信号的控制系统仿真曲线有振荡,有超调,动 态过渡时间长,误差大。而串级模糊控制系统仿真 曲线基本无振荡,无超调,动态过渡时间短,误差小, 有较好的控制品质。 根据现场锅炉运行情况,为了能 更好地说明问题,在保持两个系统中 各调节器、控制器参数不变的情况下, 同时改变两个系统的被控对象的参 数。 W02=e-5s12s+1 观察仿真曲线,如图10、图11所 示。 由于被控对象在电厂中各种设备复杂的运行环 境下,一直处于波动状态,改变主被控对象参数后而 其他参数保持不变时,具有导前微分信号的控制系

基于PID的锅炉温度控制系统设计 摘要:利用BP神经网络PID控制具有逼近任意非线性函数的能力,将神经网络PID与LabVIEW友好地人 机交互结合,实现对锅炉温度的控制.仿真结果表明,该系统具有更小的超调量,并且更快地到达需要的控制温 度. 关键词:BP神经网络;PID控制;温度控制 温度是锅炉生产蒸汽质量的重要指标之一,也是保证锅炉设备安全的重要参数.同时,温度是影响锅 炉传热过程和设备效率的主要因素.例如,在利用烟化炉对锌、铝冶炼过程中,如果温度过低,则还原速度 和挥发速度都会降低;但温度也不宜过高,否则在温度超过1 250℃时,可能形成Zn-Fe合金,有害于烟 化炉的作业,因此温度的精确测量和控制是十分必要的.作为工业控制系统中的基本方式,PID控制对于 动态反应较缓慢的工业过程是非常好的控制规律[1].但是,当工业过程复杂,负荷变化很多,对象的纯滞 后又较大时常规PID控制达不到要求,为了解决上述问题系统采用PLC作为下位机,PC作为上位机,利 用labVIEW构造人机交互界面,应用神经网络PID对系统进行控制,设计锅炉温度的监制电路. 1 系统总体设计 系统通过热电偶传感器检测出锅炉的温度,采集的信号经过A/D电路转换后传给PLC控制器.PLC 根据数据做出判断,当锅炉处在升温阶段时对锅炉进行加热,当锅炉处于保温段时调用PID算法控制温 度满足输出要求.同时PLC把数据传给PC机,PC机做出显示和报警.具体电路如图1所示. 1·1 主控芯片 S7-300PLC是西门子生产的模块式中小型PLC,提供了大量可以选择的模块,包括:PS 电源模块、CPU模块、IM接口模块、SM信号模块、FM功能模块和CP通信模块.其中FM模块可实现高 速级数、定位控制、闭环控制功能;CP模块是组态网使用的接口模块常用的网络有PROFIBUS,工业以太 网及点对点连接网络.这些模块可以通过U形总线紧密地固定在轨道上,一条导轨共有11个槽号:1号槽 至3号槽分别放置电源、CPU、IM模块4号槽至11号槽 可以随意放置其他模块. 1·2 通信网络 一般的自动化系统都是以单元生产设备 为中心进行检测和控制,不同单元的生产设备间缺乏信息 交流,难以满足生产过程的统一管理.西门子全集成自动 化解决方案顺应了当今自动化的需求,TIA从统一的组态 和编程、统一的数据管理及统一的通信三方面集成在一 起,从现场级到管理级,可以使用如工业以太网、PROFIB- BUS,MPI,EIB等通信网络.根据设计的需要可以自由选择通信网络的配置[2]. 1·3 温度传感器 热电偶是将2种不同的导体焊接起来组成闭合回路,当两端节点有温度差时,两端点 之间产生电动势,回路中会产生电流,这种现象称为热电效应.热电偶温度传感器就是利用这一效应来工 作的.在工业生产过程中被测点与基准节点之间的距离常常过远,为了节省热电偶材料,降低成本,通常采 用补偿导线的方式进行补偿[3]. 1·4 显示界面 LabVIEW是美国NI公司推出的图形化工业控制测控开发平台,是目前应用最广、发展 最快、功能最强的图形软件集成开发环境.LabVIEW具有界面友好、开发周期短等优点,广泛应用于仪器 控制、数据采集、数据分析和数据显示等领域.所以,我们可以在计算机上采用它来实现对设备运行状态的 监控,同时也可以对各种数据进行采集显示.系统的温度显示界面如图2所示. 2 系统控制算法设计 PID控制是工业过程控制中最常用的一种控制方法, 但常规的PID控制在被控对象具有复杂的非线性时,如锅 炉的温度控制,不仅具有较大的纯延迟,而且模型也不确 定时,对于这种对象往往难以达到满意的控制效果.BP神 经网络PID控制具有逼近任意非线性函数的能力,通过神 经网络自身的学习,找到最佳组合的PID控制参数,以满 足控制系统的要求.具体的神经网络PID控制系统框图如 图3所示. 设PID神经元网络是一个3层BP网络,包括2个输入节点,3个隐含层节点,1个输出接点.输入节 点对应所选的系统运行状态量,如系统不同时刻的输入量和输出量等,必要时要进行归一化处理.输出节 点分别对应PID控制的3个可调参数KP,KI,KD.输入层的2个神经元在构成控制系统可分别输入系统 被调量的给定值和实际值.由文献[4]和[5]中的前向算法可得到输出层的权系数计算公式为: 3结论 PID控制算法是一种易于实现而且经济实用的方法,具有很强的灵活性,但在被控制对象具有复杂的 非线性时,难以满足控制要求,而神经网络PID控制具有逼近任意非线性函数的能力,神经网络PID与 LabVIEW结合实现对锅炉温度的数据采集、控制和显示,提高了锅炉监控系统的效率. 参考文献: [1] 邓洪伟.供暖锅炉温度和压力的PLC控制[J].动力与电力工程,2008(18):93-94. [2] 张运刚.西门子S7-300/400PLC技术与应用[M].北京:人民邮电出版社,2007. [3] 何希才.传感器及其应用实例[M].北京:机械工业出版社,2004. [4] 何离庆.过程控制系统与装置[M].北京:重庆大学出版社,2003. [5] 舒怀林.PID神经元网络及其控制系统[M].北京:国防工业出版社,2006.

温度传感器原理及应用论文参考文献

温度传感器原理及应用论文参考文献,温度传感器是温度测量仪表的核心部分,是指能感受温度并转换成可用输出信号的传感器,品种繁多,也是用处比较广的工具。以下分享温度传感器原理及应用论文参考文献。

一、温度传感器工作原理–恒温器

恒温器是一种接触式温度传感器,由两种不同金属(如铝、铜、镍或钨)组成的双金属条组成。

两种金属的线性膨胀系数的差异导致它们在受热时产生机械弯曲运动。

一、温度传感器工作原理–双金属恒温器

恒温器由两种热度不同的金属背靠背粘在一起组成。当天气寒冷时,触点闭合,电流通过恒温器。当它变热时,一种金属比另一种金属膨胀得更多,粘合的双金属条向上(或向下)弯曲,打开触点,防止电流流动。

有两种主要类型的双金属条,主要基于它们在受到温度变化时的运动。有在设定温度点对电触点产生瞬时“开/关”或“关/开”类型动作的“速动”类型,以及逐渐改变其位置的较慢“蠕变”类型随着温度的变化。

速动型恒温器通常用于我们家中,用于控制烤箱、熨斗、浸入式热水箱的温度设定点,也可以在墙上找到它们来控制家庭供暖系统。

爬行器类型通常由双金属线圈或螺旋组成,随着温度的变化缓慢展开或盘绕。一般来说,爬行型双金属条对温度变化比标准的按扣开/关类型更敏感,因为条更长更薄,非常适合用于温度计和表盘等。

二、温度传感器工作原理–热敏电阻

热敏电阻通常由陶瓷材料制成,例如镀在玻璃中的镍、锰或钴的氧化物,这使得它们很容易损坏。与速动类型相比,它们的主要优势在于它们对温度、准确性和可重复性的任何变化的响应速度。

大多数热敏电阻具有负温度系数(NTC),这意味着它们的电阻随着温度的升高而降低。但是,有一些热敏电阻具有正温度系数 (PTC),并且它们的电阻随着温度的升高而增加。

热敏电阻的额定值取决于它们在室温下的电阻值(通常为 25 o C)、它们的时间常数(对温度变化作出反应的时间)以及它们相对于流过它们的电流的额定功率。与电阻一样,热敏电阻在室温下的电阻值从 10 兆欧到几欧姆不等,但出于传感目的,通常使用以千欧为单位的那些类型。

温度传感器类毕业论文文献有哪些?

1、[期刊论文]一种高稳定性双端出纤型光纤光栅温度传感器

期刊:《声学与电子工程》 | 2021 年第 002 期

摘要:针对双端出纤型光纤光栅温度传感器线性度较差、温度测量精度低的问题,文章首先对传感器内部结构进行了优化,使光纤光栅在整个温度测量区间内不受结构件热胀冷缩的应力影响,从而提升传感器的稳定性、实验验证,采用新工艺封装的.光纤光栅温度传感器在5~65°C的范围内温度精度达到0、1°C,且重复性良好,适用于自然环境下的温度传感、

关键词:光纤光栅;温度传感器;应力;测温精度

链接:、zhangqiaokeyan、com/academic-journal-cn_acoustics-electronics-engineering_thesis/0201290086379、html

2、[期刊论文]某型温度传感器防护套弯折疲劳试验的寿命研究

期刊:《环境技术》 | 2021 年第 001 期

摘要:由于动车组轴端温度传感器的大多数已达到三级修、四级修的修程,检修的数量和成本逐年增加,检修发现出现防护套破损的情况较多,需要大量更换,本文通过对温度传感器的防护套进行弯折疲劳试验,对数据结果进行统计分析,确认导致防护套弯折老化的主要原因、

关键词:防护套;破损;弯折疲劳

链接:、zhangqiaokeyan、com/academic-journal-cn_environmental-technology_thesis/0201288850019、html

3、[期刊论文]进气压力温度传感器锡晶须的分析

期刊:《机械制造》 | 2021 年第 004 期

摘要:对进气压力温度传感器的结构进行了介绍,对进气压力温度传感器产生锡晶须问题进行了分析,并在分析锡晶须生长机理的基础上提出了抑制方法、

关键词:传感器;锡晶须;分析

链接:、zhangqiaokeyan、com/academic-journal-cn_machinery_thesis/0201288850874、html

4、[期刊论文]一种具有±0、5℃精度的CMOS数字温度传感器

期刊:《电子设计工程》 | 2021 年第 001 期

摘要:该文设计了一种基于0、35μm CMOS工艺的采用双极型晶体管作为感温元件的数字温度传感器、该温度传感器主要由正温度系数电流产生电路、负温度系数电流产生电路、一阶连续时间Σ-Δ调制器、计数器和I2C总线接口等模块组成、为提高温度传感器的测量精度

该文深入分析了在不采用校准技术的情况下工艺漂移对温度传感器精度的影响,并在此基础上提出了简单的校准电路设计、根据电路仿真结果,在加入校准电路之后,温度传感器在-40~120℃温度范围内的精度可以达到±0、5℃、

关键词:数字温度传感器;CMOS工艺;双极型晶体管;校准

链接:、zhangqiaokeyan、com/academic-journal-cn_electronic-design-engineering_thesis/0201286451032、html

5、[期刊论文]柴油机冷却水温度传感器断裂故障分析

期刊:《内燃机与配件》 | 2021 年第 004 期

摘要:针对柴油机冷却水温度传感器断裂的问题,通过对该测点管路流腔进行CFD仿真计算,分析了流腔内部速度和压力场的变化情况,确定了传感器的断裂原因。计算结果表明:传感器位置处流速较大,导致传感器下部受振荡力,且发生了空蚀,使传感器失效。

本文针对此次传感器断裂故障提出了解决措施:对传感器的位置进行了优化布置;对传感器的结构形式进行了改进。通过改进,传感器随整机验证时间超过1500h,未再发生同类断裂故障,保证了柴油机的安全运行,为以后类似故障的分析和解决提供参考。

关键词:柴油机;温度传感器;流速;受力

链接:、zhangqiaokeyan、com/academic-journal-cn_internal-combustion-engine-parts_thesis/0201288594662、html

常见温度传感器

温度是与人类生活息息相关的物理量,在工业生产自动化流程中,温度测量点要占全部测量点的一半左右。它不仅和我们的生活环境密切相关,在科研及生产过程中,温度的变化对实验及生产的结果至关重要,所以温度传感器应用相当广泛。

温度传感器对温度敏感具有可重复性和规律性,是利用一些金属、半导体等材料与温度相关的特性制成的。现在来介绍一些温度传感器的工作原理。

铂容易提纯,其物理、化学性能在高温和氧化介质中非常稳定。铂电阻的输入-输出特性接近线性,且测量精度高,所以它能用作工业测温元件,还能作为温度计作基准器。

铂电阻在常用的热电阻中准确度最高,国际温标ITS-90中还规定,将具有特殊构造的铂电阻作为℃~℃标准温度计来使用。铂电阻广泛用于-200℃~850℃范围内的温度测量,工业中通常在600℃以下。

PN结温度传感器是利用PN结的结电压随温度成近似线性变化这一特性实现对温度的检测、控制和补偿等功能。实验表明,在一定的电流模式下,PN结的正向电压与温度之间具有很好的线性关系。

根据PN结理论,对于理想二极管,只要正向电压UF大于几个kbT/e(kb为波尔兹曼常数,e为电子电荷)。其正向电流IF与正向电压UF和温度T之间的关系可表示为

由半导体理论可知,对于实际二极管,只要它们工作的PN结空间电荷区中的复合电流和表面漏电流可以忽略,而又未发生大注入效应的电压和温度范围内,其特性与上述理想二极管是相符合的[6]。实验表明,对于砷化镓、

锗和硅二极管,在一个相当宽的温度范围内,其正向电压与温度之间的关系与式(1-3)是一致的,如图1-1所示。

实验发现晶体管发射结上的正向电压随温度的上升而近似线性下降,这种特性与二极管十分相似,但晶体管表现出比二极管更好的线性和互换性。

二极管的温度特性只对扩散电流成立,但实际二极管的正向电流除扩散电流成分外,还包括空间电荷区中的复合电流和表面漏电流成分。这两种电流与温度的关系不同于扩散电流与温度的关系,因此,实际二极管的电压—温度特性是偏离理想情况的。

由于三极管在发射结正向偏置条件下,虽然发射结也包括上述三种电流成分,但是只有其中的扩散电流成分能够到达集电极形成集电极电流,而另外两种电流成分则作为基极电流漏掉,并不到达集电极。因此,晶体管的

所以表现出更好的电压-温ICUBE关系比管的IFUF关系更符合理想情况,

度线性关系。根据晶体管的有关理论可以证明,NPN晶体管的基极—发射极电压UBE与温度T和集电极电流Ic的函数关系式与二极管的UF与T和IF函数关系式(1-3)相同。因此,在集电极电流Ic恒定条件下,晶体管的基极—发射极电压UBE与温度T呈线性关系。但严格地说,这种线性关系是不完全的,因为关系式中存在非线性项。

集成温度传感器是将温敏晶体管及其辅助电路集成在同一芯片的集成化温度传感器。这种传感器的优点是直接给出正比于绝对温度的理想的线性输出[7]。目前,集成温度传感器已广泛用于-50℃~+150℃温度范围内的温度检测、控制和补偿等。集成温度传感器按输出形式可分为电压型和电流型两种。

进气温度传感器工作原理是什么?

进气温度传感器的工作原理是:进气温度传感器在工作状态下,内部安装了一个具有负温度电阻系数的热敏电阻,通过这个负温度热敏电阻感知温度变化,进而调节电阻的大小改变电路电压。

以下是关于进气温度传感器的详细介绍:

1、原理:进气温度传感器就是一个负温度系数的热敏电阻,当温度升高的时候电阻阻值会变小,当温度降低的时候电阻值会增大,汽车的电压会随着汽车电路中电阻的变化而变化,从而产生不一样的电压信号,可以完成汽车控制系统的自动操作。

2、作用:汽车的进气温度传感器就是检测汽车发动机的进气温度,将进气温度转变为电压信号输入为ecu作为喷油修正的信号使用。

汽车温度传感器的毕业论文

温度传感器原理及应用论文参考文献

温度传感器原理及应用论文参考文献,温度传感器是温度测量仪表的核心部分,是指能感受温度并转换成可用输出信号的传感器,品种繁多,也是用处比较广的工具。以下分享温度传感器原理及应用论文参考文献。

一、温度传感器工作原理–恒温器

恒温器是一种接触式温度传感器,由两种不同金属(如铝、铜、镍或钨)组成的双金属条组成。

两种金属的线性膨胀系数的差异导致它们在受热时产生机械弯曲运动。

一、温度传感器工作原理–双金属恒温器

恒温器由两种热度不同的金属背靠背粘在一起组成。当天气寒冷时,触点闭合,电流通过恒温器。当它变热时,一种金属比另一种金属膨胀得更多,粘合的双金属条向上(或向下)弯曲,打开触点,防止电流流动。

有两种主要类型的双金属条,主要基于它们在受到温度变化时的运动。有在设定温度点对电触点产生瞬时“开/关”或“关/开”类型动作的“速动”类型,以及逐渐改变其位置的较慢“蠕变”类型随着温度的变化。

速动型恒温器通常用于我们家中,用于控制烤箱、熨斗、浸入式热水箱的温度设定点,也可以在墙上找到它们来控制家庭供暖系统。

爬行器类型通常由双金属线圈或螺旋组成,随着温度的变化缓慢展开或盘绕。一般来说,爬行型双金属条对温度变化比标准的按扣开/关类型更敏感,因为条更长更薄,非常适合用于温度计和表盘等。

二、温度传感器工作原理–热敏电阻

热敏电阻通常由陶瓷材料制成,例如镀在玻璃中的镍、锰或钴的氧化物,这使得它们很容易损坏。与速动类型相比,它们的主要优势在于它们对温度、准确性和可重复性的任何变化的响应速度。

大多数热敏电阻具有负温度系数(NTC),这意味着它们的电阻随着温度的升高而降低。但是,有一些热敏电阻具有正温度系数 (PTC),并且它们的电阻随着温度的升高而增加。

热敏电阻的额定值取决于它们在室温下的电阻值(通常为 25 o C)、它们的时间常数(对温度变化作出反应的时间)以及它们相对于流过它们的电流的额定功率。与电阻一样,热敏电阻在室温下的电阻值从 10 兆欧到几欧姆不等,但出于传感目的,通常使用以千欧为单位的那些类型。

温度传感器类毕业论文文献有哪些?

1、[期刊论文]一种高稳定性双端出纤型光纤光栅温度传感器

期刊:《声学与电子工程》 | 2021 年第 002 期

摘要:针对双端出纤型光纤光栅温度传感器线性度较差、温度测量精度低的问题,文章首先对传感器内部结构进行了优化,使光纤光栅在整个温度测量区间内不受结构件热胀冷缩的应力影响,从而提升传感器的稳定性、实验验证,采用新工艺封装的.光纤光栅温度传感器在5~65°C的范围内温度精度达到0、1°C,且重复性良好,适用于自然环境下的温度传感、

关键词:光纤光栅;温度传感器;应力;测温精度

链接:、zhangqiaokeyan、com/academic-journal-cn_acoustics-electronics-engineering_thesis/0201290086379、html

2、[期刊论文]某型温度传感器防护套弯折疲劳试验的寿命研究

期刊:《环境技术》 | 2021 年第 001 期

摘要:由于动车组轴端温度传感器的大多数已达到三级修、四级修的修程,检修的数量和成本逐年增加,检修发现出现防护套破损的情况较多,需要大量更换,本文通过对温度传感器的防护套进行弯折疲劳试验,对数据结果进行统计分析,确认导致防护套弯折老化的主要原因、

关键词:防护套;破损;弯折疲劳

链接:、zhangqiaokeyan、com/academic-journal-cn_environmental-technology_thesis/0201288850019、html

3、[期刊论文]进气压力温度传感器锡晶须的分析

期刊:《机械制造》 | 2021 年第 004 期

摘要:对进气压力温度传感器的结构进行了介绍,对进气压力温度传感器产生锡晶须问题进行了分析,并在分析锡晶须生长机理的基础上提出了抑制方法、

关键词:传感器;锡晶须;分析

链接:、zhangqiaokeyan、com/academic-journal-cn_machinery_thesis/0201288850874、html

4、[期刊论文]一种具有±0、5℃精度的CMOS数字温度传感器

期刊:《电子设计工程》 | 2021 年第 001 期

摘要:该文设计了一种基于0、35μm CMOS工艺的采用双极型晶体管作为感温元件的数字温度传感器、该温度传感器主要由正温度系数电流产生电路、负温度系数电流产生电路、一阶连续时间Σ-Δ调制器、计数器和I2C总线接口等模块组成、为提高温度传感器的测量精度

该文深入分析了在不采用校准技术的情况下工艺漂移对温度传感器精度的影响,并在此基础上提出了简单的校准电路设计、根据电路仿真结果,在加入校准电路之后,温度传感器在-40~120℃温度范围内的精度可以达到±0、5℃、

关键词:数字温度传感器;CMOS工艺;双极型晶体管;校准

链接:、zhangqiaokeyan、com/academic-journal-cn_electronic-design-engineering_thesis/0201286451032、html

5、[期刊论文]柴油机冷却水温度传感器断裂故障分析

期刊:《内燃机与配件》 | 2021 年第 004 期

摘要:针对柴油机冷却水温度传感器断裂的问题,通过对该测点管路流腔进行CFD仿真计算,分析了流腔内部速度和压力场的变化情况,确定了传感器的断裂原因。计算结果表明:传感器位置处流速较大,导致传感器下部受振荡力,且发生了空蚀,使传感器失效。

本文针对此次传感器断裂故障提出了解决措施:对传感器的位置进行了优化布置;对传感器的结构形式进行了改进。通过改进,传感器随整机验证时间超过1500h,未再发生同类断裂故障,保证了柴油机的安全运行,为以后类似故障的分析和解决提供参考。

关键词:柴油机;温度传感器;流速;受力

链接:、zhangqiaokeyan、com/academic-journal-cn_internal-combustion-engine-parts_thesis/0201288594662、html

常见温度传感器

温度是与人类生活息息相关的物理量,在工业生产自动化流程中,温度测量点要占全部测量点的一半左右。它不仅和我们的生活环境密切相关,在科研及生产过程中,温度的变化对实验及生产的结果至关重要,所以温度传感器应用相当广泛。

温度传感器对温度敏感具有可重复性和规律性,是利用一些金属、半导体等材料与温度相关的特性制成的。现在来介绍一些温度传感器的工作原理。

铂容易提纯,其物理、化学性能在高温和氧化介质中非常稳定。铂电阻的输入-输出特性接近线性,且测量精度高,所以它能用作工业测温元件,还能作为温度计作基准器。

铂电阻在常用的热电阻中准确度最高,国际温标ITS-90中还规定,将具有特殊构造的铂电阻作为℃~℃标准温度计来使用。铂电阻广泛用于-200℃~850℃范围内的温度测量,工业中通常在600℃以下。

PN结温度传感器是利用PN结的结电压随温度成近似线性变化这一特性实现对温度的检测、控制和补偿等功能。实验表明,在一定的电流模式下,PN结的正向电压与温度之间具有很好的线性关系。

根据PN结理论,对于理想二极管,只要正向电压UF大于几个kbT/e(kb为波尔兹曼常数,e为电子电荷)。其正向电流IF与正向电压UF和温度T之间的关系可表示为

由半导体理论可知,对于实际二极管,只要它们工作的PN结空间电荷区中的复合电流和表面漏电流可以忽略,而又未发生大注入效应的电压和温度范围内,其特性与上述理想二极管是相符合的[6]。实验表明,对于砷化镓、

锗和硅二极管,在一个相当宽的温度范围内,其正向电压与温度之间的关系与式(1-3)是一致的,如图1-1所示。

实验发现晶体管发射结上的正向电压随温度的上升而近似线性下降,这种特性与二极管十分相似,但晶体管表现出比二极管更好的线性和互换性。

二极管的温度特性只对扩散电流成立,但实际二极管的正向电流除扩散电流成分外,还包括空间电荷区中的复合电流和表面漏电流成分。这两种电流与温度的关系不同于扩散电流与温度的关系,因此,实际二极管的电压—温度特性是偏离理想情况的。

由于三极管在发射结正向偏置条件下,虽然发射结也包括上述三种电流成分,但是只有其中的扩散电流成分能够到达集电极形成集电极电流,而另外两种电流成分则作为基极电流漏掉,并不到达集电极。因此,晶体管的

所以表现出更好的电压-温ICUBE关系比管的IFUF关系更符合理想情况,

度线性关系。根据晶体管的有关理论可以证明,NPN晶体管的基极—发射极电压UBE与温度T和集电极电流Ic的函数关系式与二极管的UF与T和IF函数关系式(1-3)相同。因此,在集电极电流Ic恒定条件下,晶体管的基极—发射极电压UBE与温度T呈线性关系。但严格地说,这种线性关系是不完全的,因为关系式中存在非线性项。

集成温度传感器是将温敏晶体管及其辅助电路集成在同一芯片的集成化温度传感器。这种传感器的优点是直接给出正比于绝对温度的理想的线性输出[7]。目前,集成温度传感器已广泛用于-50℃~+150℃温度范围内的温度检测、控制和补偿等。集成温度传感器按输出形式可分为电压型和电流型两种。

进气温度传感器工作原理是什么?

进气温度传感器的工作原理是:进气温度传感器在工作状态下,内部安装了一个具有负温度电阻系数的热敏电阻,通过这个负温度热敏电阻感知温度变化,进而调节电阻的大小改变电路电压。

以下是关于进气温度传感器的详细介绍:

1、原理:进气温度传感器就是一个负温度系数的热敏电阻,当温度升高的时候电阻阻值会变小,当温度降低的时候电阻值会增大,汽车的电压会随着汽车电路中电阻的变化而变化,从而产生不一样的电压信号,可以完成汽车控制系统的自动操作。

2、作用:汽车的进气温度传感器就是检测汽车发动机的进气温度,将进气温度转变为电压信号输入为ecu作为喷油修正的信号使用。

学术堂整理了一份汽车系毕业论文范文,供大家进行参考:范文题目《浅谈混合动力汽车的检测与维修》摘要:目前已研制成功并投入使用的混合动力电动汽车主要是内燃机与蓄电池混合的混合动力电动汽车,它被称为油电混合动力汽车。首先,随着汽车电控化程度的提高,特别是未来混合动力汽车、纯电动汽车以及燃料电池汽车的发展,汽车的主要故障将出现在电路方面,面对复杂、纷乱的汽车电路时,只有具备了过硬的理论知识后才有可能将它们理清楚、弄明白,才有可能进一步的形成正确的诊断思路,找到正确的维修方法。我们知道不同的混合动力系统其结构和工作原理各不相同,这就使得不同的混合动力汽车其检测与维修的方法也会有很大的差异。关键词:混合动力汽车,检测,维修混合动力电动汽车的英文是“Hybrid Electric Vehicle”,简称“HEV”。根据国际机电委员会下属的电力机动车技术委员会的建议,混合动力电动汽车是指有两种或两种以上的储能器、能源或转换器作驱动能源,至少有一种能提供电能的车辆称为混合动力电动汽车。目前已研制成功并投入使用的混合动力电动汽车主要是内燃机与蓄电池混合的混合动力电动汽车,它被称为油电混合动力汽车。本论文所述的混合动力汽车也只局限于这类油电混合动力汽车。所谓油电混合动力电动汽车(以下简称混合动力汽车),是指采用传统的内燃机和电动机(电池) 做为动力源,通过使用热能和电力两套系统驱动汽车。混合动力汽车采用的内燃机既可是汽油机也可以是柴油机,而使用的电动系统包括高效强化的电动机、发电机和蓄电池。两套系统的联合使用使得内燃机、电动机都可在高效区经济内运行,输出功率相对稳定。燃油提供了车辆运行所需的大部分能量来源,而辅助动力单元即动力电池通过电机使车辆具有更好的动力性和经济性。一、混合动力汽车的检测与维修概述汽车维修工作主要分为保养、机械维修、电器及电控系统维修、钣金和喷漆这几个部分。对于混合动力汽车来说,它与传统的内燃机汽车的主要差别在于增加了一套电驱动系统,这套系统的增加使得原本就复杂的电控系统变得更加复杂,电器及电控系统的维修难度之大不言而喻。由于增加了一套电驱动系统并对原有内燃机汽车的结构作了相应的改造,这决定了混合动力汽车必将产生出新的特有的故障类型,原本适用于传统内燃机汽车的一些维修经验、诊断思路和检测方法在混合动力汽车上可能将不再适用,所以,作为一名维修人员如果墨守成规、依赖经验,不注重理论知识的学习和诊断思维的培养,将很快被淘汰。那么我们应该如何来面对接下来的挑战呢?首先,随着汽车电控化程度的提高,特别是未来混合动力汽车、纯电动汽车以及燃料电池汽车的发展,汽车的主要故障将出现在电路方面,面对复杂、纷乱的汽车电路时,只有具备了过硬的理论知识后才有可能将它们理清楚、弄明白,才有可能进一步的形成正确的诊断思路,找到正确的维修方法。其次,多观察、多比较。在掌握相关理论知识的基础上要回到实践当中来,多观察、多比较。仔细观察汽车的结构,认真的比较它与传统的内燃机汽车的异同点,将理论与实践紧密的连接起来。再次,勤总结。混合动力汽车必然会出现不同于现有传统内燃机汽车的特有的故障类型,应该在维修实践中将其详细的记录下来并认真的分析和总结,日积月累便能形成一套适合于混合动力汽车的行之有效的维修方法。二、混合动力汽车的检测与维修我们知道不同的混合动力系统其结构和工作原理各不相同,这就使得不同的混合动力汽车其检测与维修的方法也会有很大的差异。本文以丰田普锐斯混合动力汽车为例简单的介绍一下与混合动力汽车的检测与维修相关的问题。1、普锐斯混合动力汽车检测与维修注意事项普锐斯采用的是高压电路,动力电池组的额定电压为,发电机和电动机发出(或使用)的电压为500V。在普锐斯的电路系统中,高压电路的线束和连接器都为橙色,而且蓄电池等高压零件都贴有“高压”的警示标志,注意!不要触碰这些配线。论文格式。在检修过程中一定要严格按照正确的操作步骤操作。在检修过程中(如安装或拆卸零部件、对车辆进行检查等)必须注意以下几点:(1)对高压系统进行操作时首先应将车辆电源开关关闭;(2)穿好绝缘手套(戴绝缘手套前一定要先检查手套,不能有破损,哪怕针眼大的也不行,不能有裂纹,不能有老化的迹象,也不能是湿的);(3)将辅助蓄电池的负极电缆断开(在此之前应先查看故障码,有必要的化将故障码保存或记录下来,因为与传统内燃机汽车一样,断开蓄电池负极电缆故障码将被清除);(4)拆下检修塞,并将检修塞放在衣袋里妥善保管,这样可以避免其他人员误将检修塞装回原处,造成意外;(5)拆下检修塞后不要操作电源开关,否则可能损坏混合动力ECU;(6)拆下检修塞后至少将车辆放置5分钟后再进行其他操作,因为至少需要5分钟的时间对变频器内的高压电容器进行放电;(7)在进行高压系统的作业时,应在醒目的地方摆放警告标志,以提醒他人注意安全;(8)不要随身携带任何金属物体或其他导电体,以免不小心掉落引起线路短路;(9)拆下任何高压配线后应立刻用绝缘交代将其包好,保证其完全绝缘;(10)一定要按规定扭矩将高压螺钉端子拧紧。扭矩过大或过小都有可能导致故障;(11)完成对高压系统的操作后,在重新安装检修赛前,应再次确认在工作平台周围没有遗留任何零件或工具,并确认高压端子已拧紧,连接器已插好。论文格式。2、普锐斯的基本检修程序(1)车辆进入车间。(2)分析各户所述的故障。(3)将智能诊断仪II连接到车辆的诊断插座上。(4)读取故障码和定格数据,并将其记录下来。如果出现与CAN通信系统有关的故障码则应首先检查并修复CAN通信。(5)清除故障码。(6)故障症状确认。若故障未出现则进行故障症状模拟;若故障出现则查看故障码及相关数据流以获取相关信息。(7)进行基本检查,查阅相关资料。(8)根据故障现象、故障码、相关数据流并结合其他的检测手段进行故障诊断,找出故障原因。(9)排除故障。(10)确认故障排除。3、普锐斯混合动力汽车混合动力控制系统的检测与维修(1)对混合动力汽车控制系统进行操作前必须弄清楚混合动力汽车控制系统的组成和工作原理并结合电路图和相关的维修资料严格按规范的操作步骤进行。(2)普锐斯混合动力系统的相关检查①检查变频器查看故障码;清除故障码;戴上绝缘手套;关闭电源开关;拆下检修塞;拆下变频器盖,断开端子A和B。将电源开关拨到IG位置,此时会产生互锁开关系统的故障码;在线束侧用电压表测电压,同时用欧姆表测电阻。②检查转换器(戴上绝缘手套操作)若混合动力系统警告灯、主警告灯和充电警告灯同时点亮,则检查故障码并进行相应的故障排除。③检查速度传感器用欧姆表测量端子间的电阻,其值应符合标准值,否则更换变速驱动桥总成。④检查温度传感器用欧姆表测量端子间的电阻,应符合标准值,否则更换变速驱动桥总成。⑤检查加速踏板位置信号将电源开关拨到IG位置;用电压表测量混合动力车辆控制ECU连接器B中相应端子的电压,应符合标准值,否则更换加速踏板连杆总成。4、普锐斯混合动力汽车电池系统的检测与维修普锐斯混合动力汽车电池系统主要由以下几部分组成:动力电池组、12V辅助电池、电池ECU、冷却系统、电流传感器、检修塞系统主继电器等组成。动力电池组:普锐斯采用的是镍-氢动力电池组,它具有高功率密度和常使用寿命的特点。该电池组由28个电池模块串联而成,每个模块由6个1V或2V的单节电池串联而成。所以整个电池组共168个单节电池,可以得到的高电压。论文格式。电池ECU:电池ECU的功能是用来检测电池组的充电状态(SOC)、温度、电压、电流以及是否漏电,并将这些信息发送到HV ECU(混合动力ECU)。电池ECU还负责控制冷却风扇的工作,确保电池组处于正常的温度范围内。电池组冷却系统:电池组冷却系统由冷却风扇,一个进气温度传感器和3个位于电池内的温度传感器以及通风管路组成。3个温度传感器和一个进气温度传感器随时检测蓄电池及进气口的进气温度,若温度升高到一定值,电池ECU将启动冷却风扇,直到温度下降到规定值,从而使电池组的温度始终保持在正常的范围内。检修塞:检修塞位于电池组第19模块和第20模块中间,在检查或维修前拆下检修塞便可以切断电池组中部的高压电路,可以保证维修期间的人员安全。系统主继电器(SMR):系统主继电器的作用是按照HV ECU的指令连接和断开到高压电路的动力。系统主继电器共由3个继电器组成,两个位于正极分别为SMR1、SMR2,一个位于负极SMR3。电路接通时,SMR1和SMR3工作,而后SMR2工作而SMR1关闭。辅助蓄电池:普锐斯采用的是12V的免维护电池,它与传统的汽车用蓄电池类似,负极也是通过车身接地的。该电池对高压很敏感,对其充电时应将它从车上拆下,用丰田专用的充电机充电,普通充电器没有专用的电压控制功能,有可能毁坏电池。参考文献[1] 陈清泉,孙逢春 编译. 混合电动车辆基础[M]. 北京:北京理工大学出版社,2001.[2] 张金柱. 混合动力汽车结构、原理与维修[M]. 北京:化学工业出版社,2008.[3] 耿新. 混合动力技术的原理和应用[J]. 汽车维修与保养,2008.[4] Jon Munson. 用于混合动力/电动汽车的可靠锂离子电池监视系统[J]. CompoTechChina,2008(10)[5] 陈宗璋,吴振军. 电动汽车动力源类型[J]. 大众英雄,2008,(3)

你这篇中国知网也好,万方数据也好都有例子!甚至百度文库都有!英文原文最好用谷歌学术搜索!==================论文写作方法===========================论文网上没有免费的,与其花人民币,还不如自己写,万一碰到人的,就不上算了。写作论文的简单方法,首先大概确定自己的选题,然后在网上查找几份类似的文章,通读一遍,对这方面的内容有个大概的了解!参照论文的格式,列出提纲,补充内容,实在不会,把这几份论文综合一下,从每篇论文上复制一部分,组成一篇新的文章!然后把按自己的语言把每一部分换下句式或词,经过换词不换意的办法处理后,网上就查不到了,祝你顺利完成论文!

厢式汽车底盘改装设计【摘要】根据用户需求,使厢式汽车具有各种功能,必须对其底盘进行改造。文章在分析底盘改装设计内容和要求的基础上,对车架后悬的改装,千斤顶的安装,油箱的移位等提出改造设计方案,并提出了操作注意事项。【关键词】底盘;改装设计;注意事项0引言厢式汽车是具有独立的封闭结构车厢或与驾驶室联成一体的整体式封闭结构车厢,装备有专用设施,用于载运人员、货物或承担专门作业的专用汽车厢式汽车主要由二类汽车底盘、车厢,连接装置等组成。多数情况下,生产厢式汽车的专用汽车改装厂自己不生产底盘,而是从生产汽车的主机厂购买二类汽车底盘,回厂后根据需要对底盘进行改装设计。为了满足用户提出的要求,保证厢式车具有各种各样的功能,需要对底盘进行这样那样的改装设计总结笔者多年来的工作经验,底盘改装项目主要有车架后悬的改变、加装千斤顶、油箱移位、移动横梁、移动汽液管等。改装时,总的原则是不影响、不降低原二类底盘的性能,不允许随意改变底盘轴距、轮距,保证改装后底盘的强度性能。改装设计应使原来底盘的保养部位、润滑点、注油口、蓄电池和驾驶室翻转操纵机构易于接近,便于操作,不能损坏原底盘上为用户正确使用而设置的各种标识,不应使底盘的维修及保养变得困难[1]。1车架后悬的改造后悬改装设计车架后悬的改造有两种情况,1)后悬缩短。2)后悬加长。按照GB7258《机动车运行安全技术条件》[2]要求,客车及封闭式车厢的车辆后悬不得超过轴距的65%,最大不得超过。对于特殊改装汽车,除了满足上述条件外,为了保证车辆越野性,还要满足离去角要求,GJB219B《军用通信车通用规范》[3]中规定,底盘改装后离去角不得小于26°。一般情况下,车架后端至上装车厢后端的距离不得超过400 mm。当缩短车架后悬时,要保留后横梁或直接利用后横梁附近之前的横梁,同时注意不能损坏板簧后吊耳的连接。当加长车架后悬时,后横梁至前一横梁的距离不应大于1 200mm~1 400 mm,必要时在延长的空间内纵向增加辅助横梁。不论缩短还是加长车架后悬,改制后的后横梁在车架大梁前大约50mm左右(见图1)。后悬加长设计时,为了保证车架的强度,要采用与原车架纵横梁同型号、规格的材料,材料的性能、质量应符合相应标准的规定,一般车架都选用16MnL专用材料。后悬改装操作注意事项后悬改装时要移动后横梁或增加辅助横梁,横梁与纵梁上下翼联接最好采用铆接方式。铆接具有工艺简单、抗震、耐冲击和牢固可靠等优点。如果采用螺栓联接,要注意螺栓应采用强度等级不低于级的螺栓,螺母应采用自锁螺母,整体上要保证强度和防松要求。纵梁加长一般采用焊接方式,为了确保车架加长不出现质量问题,一般企业都制定了《车辆改装车架接长专用工艺规程》,其中规定了焊接人员、设备、材料、操作方法等,每批产品改装前都要做焊缝强度试验,试验合格后,才允许按照工艺要求进行施工。试样材料与被接长的纵梁一致,一般都是16MnL,按照下图制作两件(见图2)。两件对接立焊,采用J507或J502焊条,分两次焊完,底层采用!( mm焊条,顶层采用(!4 mm焊条,电流I=110~170A。焊缝要求如下(图3)。

  • 索引序列
  • 汽车烤漆温度控制毕业论文
  • 汽车烤铆喷漆毕业论文
  • 温度控制毕业论文
  • 温度控制论文文献
  • 汽车温度传感器的毕业论文
  • 返回顶部