首页 > 期刊论文知识库 > 论文查重效应

论文查重效应

发布时间:

论文查重效应

现在国内论文查重系统多得眼花缭乱,不知道该如可选择,例如知名度较高的查重系统知网、文思慧达、论文狗等因出现得较早,现在已经更加稳定了,并且收录了丰富的文献信息。他们也是毕业生的首选。在这个基础上,越来越多的毕业生将在完成论文后提前检测重复率,与知网相比,论文狗论文检测价格合理,性价格高,使得它成为许多学生的首选。那么论文狗的重复率如何修改?重要的是被标红了不要着急,这个时候小学的语文常识会减轻每个人的负担。一般来说用以下技巧可以渡过难关。第一项措施:翻译大法将外文翻译成中文,每个人的翻译水平都不一样,所以不会重复。第二项措施:反翻译法中文文献怎么办?首先用翻译软件将其翻译成英文,然后正确翻译成中文,发生奇迹。但是翻译软件的水平呢?所以还需要我们自己来润色。第三项措施:同义词法小学语文教师教过这么多的同义词,不要告诉我你都忘记了,原则-基本思路,使用-采用;途径-用途。第四项措施:自动被迫法我们使用XXX方法来进行XXX的讨论,XXX方法通常用于XXX的讨论。自动被迫改变,句子就产生了变化。第五项措施:增加或减少大法论文狗论文查重原理是,按语句相似或剽窃将被标示,然后添加和减去它们并删除一些不必要的文本。添加一些形容词,这是成功的一小步。第六项措施:截图大法一般来说,检查不会检查图片,真正的不能拿下别人的文件。 “不留痕迹”正确粘贴,终极必杀技:自己写。世界上没有两片叶子。每个人的想法和语言都不一样。怎么会写重复呢!最后一点是,首先自己检查修改到15%以下,差不多就可以了过关。最后,祝所有毕业生顺利通过查重。

是的,可以适当减少背景和意义部分的篇幅,论文写长一点,稀释一下这部分的重复率。另外在引用这些内容时,不要全部照抄,把重要内容挑出来,用自己的话带进去,这样可以降低不少的重复率。查重的话可以用PaperPP论文查重系统,自带降重功能。

我这里查重价格便宜

论文查重的目的如下:

1、考察研究水平

进行论文抄袭率检测,针对性的考察撰写者的专业水平,尤其是对专业成果的合理考察,可以考量撰写者的学习研究能力,在一定程度上也能够激励撰写者深入地进行学术研究,对提升研究水平具有重要的意义。

2、促进学术发展

不管是学位论文还是学术论文,对论文进行抄袭率检测,可以避免论文重复率超标,有效提高论文的质量,从而能够促进学术思想的发展。撰写者即使不是为了论文的学术严谨性,也会为了让论文的抄袭率查重检测过关而深入研究思考,自然会针对论文的主题进行深入的探索,找寻相关的文献资料,形成自己全新的论文,这也是能够推进学术领域的发展进步的。

3、规范学术风气

对论文抄袭率的检测,直接目的就是为了防止学术不端行为,制止撰写者抄袭剽窃伪造等不恰当的写作方式。论文通过抄袭率检测之后才算合格过关,才能进行下一步的操作,任何学术不端行为在检测系统面前都可以有效地查出来,这在一定程度上能够有效规范学术风气,净化学术环境。

参考资料:《为什么要对论文的抄袭率进行检测》

论文查重固定效应控制变量

论文撰写步骤:

一、论文的标题部分

标题就是题目或题名,标题需要以最恰当、最简明的词语反映论文中重要的特定内容逻辑组合,论文题目非常重要,必须用心斟酌选定。

二、论文的摘要

论文一般应有摘要,它是论文内容不加注释和评论的简短陈述。摘要应该包含以下内容:

1、从事这一研究的目的和重要性

2、研究的主要内容

3、完成了哪些工作

4、获得的基本结论和研究成果,突出论文的新见解

5、结构或结果的意义

三、论文关键词

关键词属于主题词中的一类,主题词除关键词外,还包含有单元词、标题词和叙词。关键词是标识文献的主题内容,单未经规范处理的主题词。

四、引言

又称为前言,属于正片论文的引论部分。写作内容包括:

1、研究的理由

2、研究目的

3、背景

4、前人的工作和知识空白

5、作用和意义

五、正文部分

论文的主题,占据论文大部分篇幅。论文所体现的创造性成果或新的研究结果,都将在这一部分得到充分的反映,要求这部分内容一定要充实,论据充分可靠,论证有利,主题明确。

六、参考文献

参考文献是文章在研究过程和论文撰写是所参考过的有关文献的目录,参考文献的完整标注是对原作者的尊重。不只在格式上有具体要求,在数量、种类、年份等方面又有相关要求。

下面学术堂来给大家讲述一下,关于服装的毕业论文怎么写:题目,论文的选题是论文工作中最为重要的一个环节,论文的选题有很多的奥妙,比如说选择的论文查重的题目是从小处着手的为最好.这样在论文查重的时候就不容易重复.毕业论文怎样写,从准备开始写论文到论文完成要有期限,有一个时间范围在这个时间范围内要合理安排论文的各个环节工作,比如说论文题目的准备,论题的评审.在什么时间点做预答辩,关于时间节点的提交材料以外,还要自己提前做好功课.清清楚楚知道什么时间点,应该提交哪些材料.在论文细节方面要按照学院要求的论文格式进行编写.否则格式如果过于随意.没有达到要求反倒舍本逐末.这样查重的时候很可能会影响论文查重的最后的结果.但是在写论文的时候,千万要注意不能抄袭别人的论文,目前知网的查重能力想必大家都听过,如果重复率过高的话,对自己写论文的时间也有很大影响的.这些就是针对服装毕业论文怎样写的说明了

1.选好课题。要坚持选择有科学价值和现实意义的课题。要根据自己的能力选择切实可行的课题。2.研究课题。研究课题的基础工作———搜集资料。研究课题的重点工作———研究资料。研究课题的核心工作―――明确论点和选定材料。研究课题的关键工作―――执笔撰写。研究课题的保障工作―――修改定稿。3.对论文进行格式排版。一般毕业论文由标题、摘要、正文、参考文献等4方面内容构成。

只需要八个步骤,学术堂教你如何写好研究生毕业论文:第一步,确定论文的选题从广义上说,选任何本专业范围内的题目都能够写出东西来,只要你有新观点、新发现、新角度、新研究方法、新材料等等。但是这后面的“五新”大大限制了论文的选题。这是由于作者多数是第一次写这么长的学术论文,缺乏经验,也缺乏深厚的知识积累,难以把握;同时,二三万字这个条件也对选题有很大的制约,如果题目过大,无法在这个相对狭小的范围内展开。所以,选题是否得当,对于论文的成功,影响很大,甚至有人说,一个好的选题等于成功了一半。根据许多论文的选题经验,这一级论文的选题可从以下几方面考虑:本专业的研究空白、发生争议的话题(自己的观点感到较为充分)、对比性的话题、从其他专业角度研究本专业的话题(这是一种选题的边际效应)、有新的插入角度的老话题、刚刚冒出来的本专业的新问题。第二步,文献检索其实就是围绕已经确定的论文选题,回顾相关的理论和研究。这一步的工作是较为艰苦的,需要有思想准备。这一步是必要的,如果没有这一步,你的论文内容很可能重复了别人已经做过的工作,等于白做;查找的过程,也是启发思路、产生观点火花的过程,不走这一步,等于掐掉了自己新观点、新视角、新材料的来源。这也是为下一步做观点、角度、材料上的准备。第三步,提出选题的理论假设,或要研究的具体问题选题是指准备写的论文的大体方向和范围,真要动手写作,就会遇到两类具体的问题。第一类属于观点方面的:我的具体观点是什么?你可以设想出一个或几个观点,但它们仅仅是一种假设,通过许多证据、材料,通过严密的论证和适当的论证框架结构,证明你的假设是成立的,这才能形成论文的主体。第二类属于实用方面的:我要具体论证什么问题?你可以提出许多原因、各种环境条件的影响,它们是不是与所论证的问题相关,相关到什么程度,这需要通过科学的调查和分析。不论哪一种情况,这涉及论文的中心思想或论证主题,一定要明确,并且贯穿论文的始终。有些作者把握不住全文,写着写着,无形中脱离了自己原来确定的假设或具体问题,说了许多无关中心思想或论证主题的内容。第四步,研究方法决定人文社会科学的研究方法,大体可以归为两大范畴,思辨研究和实证研究,后者又可分为定性研究、定量研究两种具体的研究方法。人们为探究社会事实或社会现象,而采用不同的研究取向,不同的研究取向又有不同的研究方法,不同的研究假设、收集资料的方式和对结果的判断标准。但是各种研究方法在现在的论文写作中,已经越来越多地呈现相容和内在的连接。一般地说,根据自己的选题和讨论的具体问题,可以以一种研究方法为主,辅以其他的方法。例如研究“人”作为大众媒体信息的接受者其接受信息时的状况,这种研究取向就决定了研究本身要以定量分析为主,但同时也需要一些历史的、文化的、政治经济学的思辨研究。第五步,设计论文框架结构一般文章的写作也需要有这一步,但对论文来说,更为必要,其要求也更细一些。一般情况下,一篇论文要有绪章、入题的第一章、主体章节,以及结束语。章节的设置在写前要有个大体的布局逻辑,使之结构合理;章和章之间有一种逻辑联系,防止盲目写下去,淹没主题,不知所云。这一步很少有一次完成的,往往会根据收集材料的情况、调查访问中遇到的新情况,经常变动。但是就像建筑师在盖房子前必须有图纸一样,到了写论文这个层次上,大体的文章框架不能仅仅存于脑子中,一般要形成文字,相对细致一些,具体到“节”更好(但“节”的层次开始时不要固定化),便于写作时心中有数。到了设计论文框架这一步,因为有了文字化的章节设计,除了请导师指导外,这是在正式动笔写前较广泛地征求其他专家意见的一个好机会。框架还不是厚厚的论文,看时花费的时间不多,又可以大体看出文章的价值或存在的问题。这时修改论文结构比写完后修改要轻松、容易得多,时间也较为宽余,不要错过这个机会。第六步,分析、归类,将分别充实到论文各部分中,再进行解释、论证这实际就是论文写作本身,所以这样描述,意在让作者理解论文写作的过程。各种材料和论据,不是天生就可以证明论点或说明具体问题的,需要通过作者对材料的组织和论证,才能使其变得富有生命力,极其自然、有力地为自己所论的题目服务。在这一步,需要温习一下学过的逻辑学或社会调查统计的知识,用正确的逻辑思维和严谨的数据组织方式,紧紧围绕已经确定的理论假设或具体问题,调动自己所学的各种知识,通过正论(这是主要的)、反论、设论、驳论、喻论等等手法,论证观点或问题,得出结论,完成论文。论证中肯定会出现种种材料使用或缺乏的问题、逻辑推理的问题、论据与论题不相配的问题等等,需要停下来再找材料和访问专家,充实或削减原来论文框架中的内容,必要时对框架结构进行局部调整。这种情形是正常的、经常发生的。在时间的安排上,对此要做出计划。如果时间安排不当,有时论文功亏一篑的原因就在于写作时间安排过紧,来不及调整论文结构,这很不值得。第七步,必要时重新估量选题,修正论证对象范围这是与第六步同时出现的另一种情形,即通过较为广泛地征求意见和本人的思考,感到原来的选题对自己不适当,或难以完成,那么就要及时调整整个论文写作的计划,改变选题。这种情形也是正常的,关键在于不要长时期犹豫不决,必须较快地做出决定,以便有时间重起炉灶。由于前面已经对本专业的学术研究有过较多的思考和文献检索,即使改变选题,重新做起,花费的时间不会很多,对此过多的担心是不必要的。选题不当、难以完成的另一种情况不在于选题本身,而在于选题论证的范围过大。解决这个问题并不难,把论证对象的范围缩小就是了。这里最大的障碍在于作者舍不得“割爱”,花费了许多功夫准备论文,一旦许多材料用不上,难以割舍。这种情况当然会涉及到重新设计论文框架结构的问题。不过,将较大的论证对象的范围缩小,总比相反的情形要容易得多。第八步,规范化的检查和调整文中的引证标示、注释及编号、文后的参考文献编排,以及不属于论文本身的内容提要(包括英文提要)、关键词等等,都要按照规范化的要求进行检查和调整。这些虽然属于技术性问题,但也反映出作者的治学态度。特别是引证,凡是使用了别人观点的地方,都必须注明材料来源,不能含糊不清,更不能将别人的研究成果变成自己的。标明的材料来源也要十分清楚,论着名称、作者或编者、出版社或发表的刊物名称、出版或发表时间等等,一应俱全。

光电效应及其应用毕业论文

光电效应实验中人们发现了几个实验现象:只有频率超过某一极限频率的光照射才有电子从金属表面逸出,从光照到电子逸出所需时间极短。

爱因斯坦提出的光子说认为光子的能量是一份一份的,每一份能量值为E=hv光照射金属表面,一个电子吸收一个光子的能量,若光子的能量足够大,电子就将从金属表面逸出,因为吸收光子能量不需要积累的时间,所以吸收能量和从金属表面逸出的时间极短。

扩展资料

实验验证

1887年,赫兹在做证实麦克斯韦的电磁理论的火花放电实验时,偶然发现了光电效应。赫兹用两套放电电极做实验,一套产生振荡,发出电磁波;另一套作为接收器。

他意外发现,如果接收电磁波的电极受到紫外线的照射,火花放电就变得容易产生。赫兹的论文《紫外线对放电的影响》发表后,引起物理学界广泛的注意,许多物理学家进行了进一步的实验研究。

1888年,德国物理学家霍尔瓦克斯(Wilhelm Hallwachs)证实,这是由于在放电间隙内出现了荷电体的缘故。

1899年,.汤姆孙用巧妙的方法测得产生的光电流的荷质比,获得的值与阴极射线粒子的荷质比相近,这就说明产生的光电流和阴极射线一样是电子流。这样,物理学家就认识到,这一现象的实质是由于光(特别是紫外光)照射到金属表面使金属内部的自由电子获得更大的动能,因而从金属表面逃逸出来的一种现象。

1899—1902年,勒纳德(,1862—1947)对光电效应进行了系统的研究,并首先将这一现象称为“光电效应”。为了研究光电子从金属表面逸出时所具有的能量,勒纳德在电极间加一可调节反向电压,直到使光电流截止,从反向电压的截止值,可以推算电子逸出金属表面时的最大速度。

他选用不同的金属材料,用不同的光源照射,对反向电压的截止值进行了研究,并总结出了光电效应的一些实验规律。根据动能定理:qU=mv^2/2,可计算出发射出电子的能量。可得出:hf=(1/2)mv^2+I+W

深入的实验发现的规律与经典理论存在诸多矛盾,但许多物理学家还是想在经典电磁理论的框架内解释光电效应的实验规律。有一些物理学家试图把光电效应解释为一种共振现象。

勒纳德在1902年提出触发假说,假设在电子的发射过程中,光只起触发作用,电子原本就是以某一速度在原子内部运动,光照射到原子上,只要光的频率与电子本身的振动频率一致,就发生共振,电子就以其自身的速度从原子内部逸出。

勒纳德认为,原子里电子的振动频率是特定的,只有频率合适的光才能起触发作用。勒纳德的假说在当时很有影响,被一些物理学家接受。但是,不久,勒纳德的触发假说被他自己的实验否定。

爱因斯坦用光量子理论对光电效应提出理论解释后,最初科学界的反应是冷淡的,甚至相信量子概念的一些物理学家也不接受光量子假说。尽管理论与已有的实验事实并不矛盾,但当时还没有充分的实验来支持爱因斯坦光电效应方程给出的定量关系。直到1916年,光电效应的定量实验研究才由美国物理学家密立根完成。

密立根对光电效应进行了长期的研究,经过十年之久的试验、改进和学习,有效地排除了表面接触电位差等因素的影响,获得了比较好的单色光。他的实验非常出色,于1914年第一次用实验验证了爱因斯坦方程是精确成立的,并首次对普朗克常数h作了直接的光电测量,精确度大约是(在实验误差范围内)。

1916年密立根发表了他的精确实验结果,他用6种不同频率的单色光测量反向电压的截止值与频率关系曲线关系,这是一条很好的直线,从直线的斜率可以求出的普朗克常数。结果与普朗克1900年从黑体辐射得到的数值符合得很好。

太阳能充电器的设计摘要:设计了基于LP3947的太阳能充电电路,通过脉宽调制对锂电池充电进行智能控制,从而提高太阳能电池输出功率及锂电池的使用效率,达到延长电池使用寿命和时间的目的。关键词:太阳能;LP3947;锂电池1.引言 太阳能作为一种新型的资源越来越多地被人们关注,它所带来的一系列的产业也逐渐成为目前非常具有开发潜力的产业。太阳能光伏发电是太阳能应用的主要产业之一。在我国太阳能资源极其丰富,陆地每年接受的太阳辐射能相当惊人。如果将这些太阳能充分加以利用,不仅有可能节省大量常规能源,而且可以有效地减少常规能源所带来的环境污染。 目前光伏发电在小型电器电路上的运用也逐渐的成熟,随着人们生活中越来越多的离不开手机、mp3、数码相机等一系列的数码产品,它们的充电问题成为了使用者极其关心的问题之一。设计一个利用光伏充电原理的充电器来为这些数码产品进行充电可以在很多方面解决各种问题。太阳能充电器具有携带方便、外型美观时尚,甚至可以在没有电源的情况下为手机等一系列的数码产品进行充电。2.太阳能电池板种类及工作原理 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置,目前处于主流的是应用光电效应原理工作的太阳能电池,其基本原料为以半导体.当P-N 结受光照时,样品对光子的本征吸收和非本征吸收都将产生光生载流子,即引起光伏效应,产生一与P-N 结内建电场方向相反的光生电场,其方向由P 区指向N区.此电场使势垒降低,其减小量即为光生电势差,P 端正,N 端负,由此生产的结电流由P 区流向N 区,形成单向导电,发挥出与电池一样的功能。由于太阳电池板输出电压不稳定,故增加了稳压电路,通过稳压电路、充电电路为负载电池充电,同时还可以为内部蓄电池充电以备应急之用;光照条件较差时,太阳电池板输出电压较低,达不到充电电路的工作电压,因此增加了升压、稳压电路,以便为充电电路提供较稳定的工作电压.阴天、夜间等光照条件极差的情况下,可利用系统内部的蓄电池,通过升压电路为后续设备充电。另外,充电器还设计有照明灯,当夜间光线较暗时,通过蓄电池为照明灯供电,可供应急使用。3.充电器设计电池充电原理 锂离子电池在充电或放电过程中若发生过充、过放或过流时,会造成电池的损坏或降低使用寿命,图3为锂电池的充电曲线,共分三个阶段:预充状态、恒流充电和恒压充电阶段。以800 mAh 容量的电池为例,其终止充电电压为。用1/10C(约80 mA)的电池进行恒流预充,当电池端电压达到低压门限V(min)后,以800 mA(充电率为1C)恒流充电,开始时电池电压以较大的斜率升压,当电池电压接近 V 时,改成恒压充电,电流渐降,电压变化不大,到充电电流降为1/10C(约80 mA)时,认为接近充满,可以终止充电。 手机电池充电曲线充电器设计思想 太阳能手机充电控制电路的设计思想,从手机锂离子二次电池的恒流/恒压充电控制出发,同时配有锂离子蓄电池.当在户外无220V 交流电时,采用太阳能对手机锂离子直接充电,同时对锂离子蓄电池充电;当阴雨天天气或夜晚等阳光不足时,采用配置的锂离子蓄电池对手机锂离子充电,以保证任何情况下不间断.即:系统的设计以太阳能充电为主,在有足够的阳光且蓄电池又有足够供电能力的情况下,系统能够以太阳能充电为主给手机充电,蓄电池给手机补电;在无阳光或阳光弱时,以蓄电池充电为主给手机充电,太阳能为手机补电。充电控制电路设计升压电路设计由于在不同的时间、地点太阳光照强度不同,太阳电池板输出电能不稳定,需加人相应的升压、稳压等控制环节。直流升压就是将电池提供的较低的直流电压提升到需要的电压值。稳压电路设计稳压电路的设计以三端集成稳压器W7800为核心,它属于串联稳压电路,其工作原理与分立元件的串联稳压电源相同。由启动电路、取样电路、比较放大电路、基准环节、调整环节和过流保护环节等组成,此外还有过热和过压保护电路,因此,其稳压性能要优于分立元件的串联型稳压电路。而且三端集成稳压器设置的启动电路,在稳压电源启动后处于正常状态下,启动电路与稳压电源内部其他电路脱离联系,这样输入电压变化不直接影响基准电路和恒流源电路,保持输出电压的稳定。充电电路设计 锂电池以体积小、容量大、重量轻、无记忆效应、无污染、电池循环充放电次数多(寿命长)等优点,广泛地被使用在许多数码产品中。但锂电池对使用条件要求较严格,如充电控制要求精度高,对过充电的承受能力差等。因此,为了保护锂电他,该充电电路包括电池充电控制电路与电池电量检测控制电路两部分。电池充电控制电路,用来控制升压或稳压电路对锉电池进行充电,同时也是锂电池的充电电路。电池电量检测电路,用以检测充电电量的多少,当电池充满电时,充满指示灯亮,逻辑电路控制充电电路断开,停止充电。4结束语 随着现代的科技发展电子产品几乎可以普及,但电子产品的电池却一直困扰这我们。我着次的研究的目的不是让电池的容量增大,而是把太阳能充电器安装在电子产品表面上这样就可以大量增加电池的使用时间。

把光看成某种粒子(因为波粒2相性),即爱因斯坦提出的光量子 1定能量的光量子碰撞金属会有电子出来.

塞曼效应毕业论文

1896年,荷兰物理学家塞曼使用半径10英尺的凹形罗兰光栅观察磁场中的钠火焰的光谱,他发现钠的D谱线似乎出现了加宽的现象。这种加宽现象实际是谱线发生了分裂。随后不久,塞曼的老师、荷兰物理学家洛仑兹应用经典电磁理论对这种现象进行了解释。他认为,由于电子存在轨道磁矩,并且磁矩方向在空间的取向是量子化的,因此在磁场作用下能级发生分裂,谱线分裂成间隔相等的3条谱线。塞曼和洛仑兹因为这一发现共同获得了1902年的诺贝尔物理学奖。1897年12月,普雷斯顿()报告称,在很多实验中观察到光谱线有时并非分裂成3条,间隔也不尽相同,人们把这种现象叫做为反常塞曼效应,将塞曼原来发现的现象叫做正常塞曼效应。反常塞曼效应的机制在其后二十余年时间里一直没能得到很好的解释,困扰了一大批物理学家。1925年,两名荷兰学生乌仑贝克()和古兹米特()提出了电子自旋假设,很好地解释了反常塞曼效应。应用正常塞曼效应测量谱线分裂的频率间隔可以测出电子的荷质比。由此计算得到的荷质比数值与约瑟夫·汤姆生在阴极射线偏转实验中测得的电子荷质比数量级是相同的,二者互相印证,进一步证实了电子的存在。塞曼效应也可以用来测量天体的磁场。1908年美国天文学家海尔等人在威尔逊山天文台利用塞曼效应,首次测量到了太阳黑子的磁场。1912年,帕邢和拜克(E.E.A.Back)发现在极强磁场中,反常塞曼效应又表现为三重分裂,叫做帕邢-拜克效应。这些现象都无法从理论上进行解释,此后二十多年一直是物理学界的一件疑案。正如不相容原理的发现者泡利后来回忆的那样:"这不正常的分裂,一方面有漂亮而简单的规律,显得富有成果;另一方面又是那样难于理解,使我感觉简直无从下手。"1921年,德国杜宾根大学教授朗德(Landé)发表题为:《论反常塞曼效应》的论文,他引进一因子g代表原子能级在磁场作用下的能量改变比值,这一因子只与能级的量子数有关。1925年,乌伦贝克与哥德斯密特"为了解释塞曼效应和复杂谱线"提出了电子自旋的概念。1926年,海森伯和约旦引进自旋S,从量子力学对反常塞曼效应作出了正确的计算。由此可见,塞曼效应的研究推动了量子理论的发展,在物理学发展史中占有重要地位。洛伦兹在物理学上最重要的贡献是发展了经典电子论。1878年,他发表了光与物质相互作用的论文,把以太与普通的物质区别开来,认为以太是静止的,无所不在,而普通物质的分子则都含有带电的谐振子;在这个基础上,他导出了分子折射率的公式(即洛伦兹-洛伦茨公式)。1892年,他开始发表电子论的文章,他认为一切物质的分子都含有电子,阴极射线的粒子就是电子,电子是很小的有质量的刚球,电子对于以太是完全透明的,以太与物质的相互作用归结为以太与物质中的电子的相互作用。在这个基础上,1895年他提出了著名的洛伦兹力公式。另外,1892年他研究过地球穿过静止以太所产生的效应,为了说明迈克耳孙一莫雷实验的结果,他独立地提出了长度收缩的假说,认为相对以太运动的物体,其运动方向上的长度缩短了。1895年,他发表了长度收缩的准确公式,即在运动方向上,长度收缩因子为 。1899年,洛伦兹讨论了惯性系之间坐标和时间的变换问题,并得出电子质量与速度有关的结论。1904年,他发表了著名的洛伦兹变换公式和质量与速度的关系式,并指出光速是物体相对于以太运动速度的极限。洛伦兹1853年7月18日出生于荷兰的阿纳姆,少年时就对物理学感兴趣并且熟练地掌握多门外语。1870年洛伦兹考入莱顿大学,自数学、物理和天文。1875年获博士学位。1877年,莱顿大学聘请他为理论物理学教授,其时洛伦兹年仅23岁。他在莱顿大学任教长达35年。1911年-1927年间洛伦兹多次担任索尔维会议主席。在国际物理学界享有崇高的名望。此外,洛伦兹在经典物理学的许多领域里也有很深的造诣,在热力学、物质分子运动论和引力理论等方面,都有过贡献。洛伦兹受到爱因斯坦、薛定谔和其他很多物理学家的尊敬,爱因斯坦就曾说过,他一生中受洛伦兹的影响最大。

19世纪以前,人们一直认为电、磁、光是毫不相关的自然现象。

步入19世纪,科学家法拉第、麦克斯韦把电、磁、光现象放在一起解释;赫兹则用实验证明了电磁波的存在,电、磁与光效应从此结合起来。

发现阴极射线后,西方物理学家全力研究它的本质。到19世纪70年代,对阴极射线的本质认识,他们之中存在两种截然不同的看法:英国科学家克鲁克斯等认为它是带负电的粒子流,德国物理学家赫兹等认为它不过是电磁波产生的辐射物。

两派之间发生过激烈的讨论。

荷兰物理学家 亨得里克·安顿·洛伦兹 也加入到这场讨论中。经过深入研究,他得出如下结论: 阴极射线是由比原子更小的微粒振动产生的,这种微粒存在于任何物体的原子之中,而发光现象即与这种微粒振动相关,这种微粒进行振动后会产生电场和磁场,只要改变电场或磁场的方向,光线也会发生偏移。

可是,这些先进的理论在当时完全站不住脚。一则,著名科学家法拉第生前研究过磁场对光源的影响,但以失败告终,后来几乎无人研究;二则西方科学界一直认为,物体是由原子构成的,原子就像一个小得不能再小的玻璃实心球,无法打开。

洛伦兹偏不信邪。他决心用自己的强项——理论研究,来证明原子是可分的。 他于1870年进入莱顿大学,受天文学教授弗雷德里克·凯瑟影响,对理论物理学产生浓厚的兴趣。

1878年1月25日,他就任莱顿大学理论物理学教授。此后近20年时间,他的理论研究包括阴极射线的本质,解释电、磁、光的关系等,紧跟时代潮流。

经过理论研究,洛伦兹发现物体的原子里有带负电的微粒,这些微粒由于围绕原子核运动产生电场。根据法拉第的实验推断,运动的微粒也会产生磁场。原子核自转产生电场和磁场,与负电微粒相互制衡形成了原子磁场。

“当光源经过原子磁场时,它原子里的微粒振动将发生改变,光源的谱线一定会加宽或分裂。” 洛伦兹经过反复推理,得出这样的结论。

物理学的发展,离不开理论与实践的结合。尽管洛伦兹从“虚”的理论方面证实原子里有带负电的微粒,那 怎么才能通过“实”的实验方面来证明理论呢?

正当他为此苦恼不堪时,他的学生—— 彼得•塞曼 出现了。

塞曼也是荷兰人。1865年5月24日深夜,荷兰泽兰小岛上的拦海大坝决堤。一条无舵无桨的小木船上,一位中年产妇在撞击中,痛苦地生下塞曼。

塞曼小学时成绩平平,中学毕业考试物理成绩居然没有及格。 母亲用塞曼出生的故事对其进行感化,他于是刻苦攻读,进入代尔夫特中学。

在这里,塞曼遇到了比他大12岁的海克·卡末林·昂内斯。后来获诺贝尔物理学奖的昂内斯聪明好学,给塞曼留下极深的印象。

塞曼通过不懈努力终于考上了莱顿大学。 他1890年大学毕业后留校,并有幸成为物理学教授洛伦兹的学生兼助手。

作为洛伦兹的助手,塞曼最高兴的事儿莫过于可以继续研究 磁光克尔效应 。 磁光克尔效应是指光线射入磁体会发生偏转的现象 ,因1877年由英国科学家约翰·克尔发现而得名。

研究3年后,塞曼完成了关于磁光克尔效应的博士论文。后来,他受聘为莱顿大学的讲师,暂时离开了洛伦兹的实验室。

1896年,塞曼被开除了,起因是他不听莱顿大学实验室主管的安排,悄悄进行光谱线磁场分裂的实验。 他把光源放在很强的磁场里,结果发光体的光谱发生变化,谱线一分为三。 塞曼平静地把实验过程和结果写成论文提交给荷兰皇家艺术与科学院,然后离开莱顿大学。

当年10月31日,洛伦兹在皇家艺术与科学院开会时偶然间发现塞曼关于光谱研究的论文,大为震惊。

两天后的星期一早上,他把塞曼请到办公室。 塞曼详细叙述了关于光谱实验的过程,洛伦兹仔细聆听后表示,磁场中光谱发生变化的根本原因是原子中带负电的微粒振动。

由于洛伦兹的强力推荐,塞曼的实验引起西方科学界的重视。

他的实验首先证明了原子内部具有细致的结构,并非“不可再分”,这是对洛伦兹关于“原子里有带电微粒”的最好支持。

其次,实验证实了洛伦兹关于 “磁场中发出的光会发生偏振” 的理论。这也意味着电、磁、光可以相互影响。后世科学家把 磁场分裂光谱的现象称为 塞曼效应 。

作为著名的磁光效应,塞曼效应使世人对物质的原子、光谱等有了更多了解,被誉为继X射线之后物理学最重要的发现之一。 为了表示对塞曼的纪念,科学界把月球背面的一座环形山命名为“塞曼”。

塞曼效应可用于测量星球的磁场,海尔等美国天文学家在威尔逊山天文台用塞曼效应首次测量到了太阳黑子的磁场。物理学家汤姆逊则用塞曼效应来测量谱线分裂的频率间隔,把原子中带负电的微粒称为电子,还用数据证实了电子的存在。汤姆逊因此获1906年诺贝尔物理学奖。

1902年12月10日下午16:30,瑞典斯德哥尔摩皇家音乐学院大礼堂里座无虚席。第二届诺贝尔奖颁奖典礼在此举行。

在严肃的乐曲中,各国获奖者分别领取了奖牌、证书和奖金。轮到塞曼上台时,只见他胸前没有戴花,而是挂着一个五六寸大的金制相框,相片上是他去世的母亲。他每次领奖都会挂着这个相框,以示对母亲的尊重。这已成为诺贝尔奖史上的一段佳话。

从诺贝尔物理学奖颁奖典礼回来的洛伦兹,也因此受到世人的尊敬和爱戴。由于他提出原子中存在电子的理论,所以 被尊称 为经典电子论的创立者 。

后来,他的名字在物理学上被用作学术名词,比如 洛伦兹-洛伦兹公式、洛伦兹力、洛伦兹分布、洛伦兹变换 等。

爱因斯坦在科学研究中,把洛伦兹变换用于力学关系式,这才有著名的狭义相对论。

1928年2月4日,洛伦兹在荷兰的哈勒姆市逝世。葬礼当天,荷兰全国电话中止3分钟,以示哀悼。公认的新一代物理学领袖、著名科学家爱因斯坦发来悼词,称洛伦兹是“我们时代最伟大、最高尚的人”。

再后来,为纪念洛伦兹的巨大贡献,荷兰政府从1945年起把他的生日(7月18日)定为一年一度的“洛伦兹节”。

洛伦兹从理论上创立经典电子论,塞曼则用实验证明了电子的存在,师生两人共同分享了1902年度诺贝尔物理学奖。

END

封图 |

原标题:没有这个理论做基础,我们可能看不到爱因斯坦的相对论......

塞曼效应论文题目

磁场对运动点电荷的作用力。1895年荷兰物理学家.洛伦兹建立经典电子论时,作为基本假设提出来的,现已为大量实验证实。洛伦兹力的公式是f=q·v×B。式中q、v分别是点电荷的电量和速度;B是点电荷所在处的磁感应强度。洛伦兹力的大小是f=|q|vBsinθ,其中θ是v和B的夹角。洛伦兹力的方向循右手螺旋定则垂直于v和B构成的平面,为由v转向B的右手螺旋的前进方向(若q为负电荷,则反向)。由于洛伦兹力始终垂直于电荷的运动方向,所以它对电荷不作功,不改变运动电荷的速率和动能,只能改变电荷的运动方向使之偏转。 洛伦兹力既适用于宏观电荷,也适用于微观荷电粒子。电流元在磁场中所受安培力就是其中运动电荷所受洛伦兹力的宏观表现。导体回路在恒定磁场中运动,使其中磁通量变化而产生的动生电动势也是洛伦兹力的结果,洛伦兹力是产生动生电动势的非静电力。 如果电场E和磁场B并存,则运动点电荷受力为电场力和磁场力之和,为f=q(E+v×B),左式一般也称为洛伦兹力公式。 洛伦兹力公式和麦克斯韦方程组以及介质方程一起构成了经典电动力学的基础。在许多科学仪器和工业设备,例如β谱仪,质谱仪,粒子加速器,电子显微镜,磁镜装置,霍耳器件中,洛伦兹力都有广泛应用。 值得指出的是,既然安培力是洛伦兹力的宏观表现,洛伦兹力对运动电荷不作功,何以安培力能对载流导线作功呢?实际上洛伦兹力起了传递能量的作用,它的一部分阻碍电荷运动作负功,另一部分构成安培力对载流导线作正功,结果仍是由维持电流的电源提供了能量。

1896年,荷兰物理学家塞曼使用半径10英尺的凹形罗兰光栅观察磁场中的钠火焰的光谱,他发现钠的D谱线似乎出现了加宽的现象。这种加宽现象实际是谱线发生了分裂。随后不久,塞曼的老师、荷兰物理学家洛仑兹应用经典电磁理论对这种现象进行了解释。他认为,由于电子存在轨道磁矩,并且磁矩方向在空间的取向是量子化的,因此在磁场作用下能级发生分裂,谱线分裂成间隔相等的3条谱线。塞曼和洛仑兹因为这一发现共同获得了1902年的诺贝尔物理学奖。1897年12月,普雷斯顿()报告称,在很多实验中观察到光谱线有时并非分裂成3条,间隔也不尽相同,人们把这种现象叫做为反常塞曼效应,将塞曼原来发现的现象叫做正常塞曼效应。反常塞曼效应的机制在其后二十余年时间里一直没能得到很好的解释,困扰了一大批物理学家。1925年,两名荷兰学生乌仑贝克()和古兹米特()提出了电子自旋假设,很好地解释了反常塞曼效应。应用正常塞曼效应测量谱线分裂的频率间隔可以测出电子的荷质比。由此计算得到的荷质比数值与约瑟夫·汤姆生在阴极射线偏转实验中测得的电子荷质比数量级是相同的,二者互相印证,进一步证实了电子的存在。塞曼效应也可以用来测量天体的磁场。1908年美国天文学家海尔等人在威尔逊山天文台利用塞曼效应,首次测量到了太阳黑子的磁场。1912年,帕邢和拜克(E.E.A.Back)发现在极强磁场中,反常塞曼效应又表现为三重分裂,叫做帕邢-拜克效应。这些现象都无法从理论上进行解释,此后二十多年一直是物理学界的一件疑案。正如不相容原理的发现者泡利后来回忆的那样:"这不正常的分裂,一方面有漂亮而简单的规律,显得富有成果;另一方面又是那样难于理解,使我感觉简直无从下手。"1921年,德国杜宾根大学教授朗德(Landé)发表题为:《论反常塞曼效应》的论文,他引进一因子g代表原子能级在磁场作用下的能量改变比值,这一因子只与能级的量子数有关。1925年,乌伦贝克与哥德斯密特"为了解释塞曼效应和复杂谱线"提出了电子自旋的概念。1926年,海森伯和约旦引进自旋S,从量子力学对反常塞曼效应作出了正确的计算。由此可见,塞曼效应的研究推动了量子理论的发展,在物理学发展史中占有重要地位。洛伦兹在物理学上最重要的贡献是发展了经典电子论。1878年,他发表了光与物质相互作用的论文,把以太与普通的物质区别开来,认为以太是静止的,无所不在,而普通物质的分子则都含有带电的谐振子;在这个基础上,他导出了分子折射率的公式(即洛伦兹-洛伦茨公式)。1892年,他开始发表电子论的文章,他认为一切物质的分子都含有电子,阴极射线的粒子就是电子,电子是很小的有质量的刚球,电子对于以太是完全透明的,以太与物质的相互作用归结为以太与物质中的电子的相互作用。在这个基础上,1895年他提出了著名的洛伦兹力公式。另外,1892年他研究过地球穿过静止以太所产生的效应,为了说明迈克耳孙一莫雷实验的结果,他独立地提出了长度收缩的假说,认为相对以太运动的物体,其运动方向上的长度缩短了。1895年,他发表了长度收缩的准确公式,即在运动方向上,长度收缩因子为 。1899年,洛伦兹讨论了惯性系之间坐标和时间的变换问题,并得出电子质量与速度有关的结论。1904年,他发表了著名的洛伦兹变换公式和质量与速度的关系式,并指出光速是物体相对于以太运动速度的极限。洛伦兹1853年7月18日出生于荷兰的阿纳姆,少年时就对物理学感兴趣并且熟练地掌握多门外语。1870年洛伦兹考入莱顿大学,自数学、物理和天文。1875年获博士学位。1877年,莱顿大学聘请他为理论物理学教授,其时洛伦兹年仅23岁。他在莱顿大学任教长达35年。1911年-1927年间洛伦兹多次担任索尔维会议主席。在国际物理学界享有崇高的名望。此外,洛伦兹在经典物理学的许多领域里也有很深的造诣,在热力学、物质分子运动论和引力理论等方面,都有过贡献。洛伦兹受到爱因斯坦、薛定谔和其他很多物理学家的尊敬,爱因斯坦就曾说过,他一生中受洛伦兹的影响最大。

一切磁现象都是由于运动电荷所产生的,磁现象的本质就是电荷的运动。磁场对电荷,一磁场对另一磁场,都会产生作用力。磁场对运动电荷产生劳伦兹力

1902年诺贝尔物理学奖 ¾¾塞曼效应的发现和研究 1902年诺贝尔物理学奖授予荷兰莱顿大学的劳伦兹(Hendrik Antoon Lorentz,1853¾1928)和荷兰阿姆斯特丹大学的塞曼(Pieter Zeeman,1865¾1943),以表彰他们在研究磁性对辐射现象的影响所作的特殊贡献。 磁性对辐射现象的影响也叫塞曼效应,是塞曼在1896年发现的。它是继法拉第效应和克尔效应之后又一项反映光的电磁特性的效应。塞曼效应更进一步涉及了光的辐射机制,因此被人们看成是继X射线之后物理学最重要的发现之一。 劳伦兹是荷兰物理学家,他的主要贡献是创立了古典电子论,这一理论能解释物质中一系列电磁现象,以及物质在电磁场中运动的一些效应。由於塞曼效应发现时及时地从劳伦兹理论得到解释,由此所确定的电子荷质比与.汤姆森用阴极射线所得数量级相同,相互间得到验证,因此1902年劳伦兹与塞曼共享诺贝尔物理学奖。 塞曼也是荷兰人,1885年进入莱顿大学后,与劳伦兹多年共事,并当过劳伦兹的助教。塞曼对劳伦兹的电磁理论很熟悉,实验技术也很精湛,1892年曾因仔细测量克尔效应而获金质奖章,并於1893年获博士学位。他在研究磁场对光谱的影响时,得益於劳伦兹的指导和劳伦兹理论,从而作出了有重大意义的发现。下面介绍塞曼效应的发现经过。 塞曼首先是从法拉第的工作得到启示的。1845年,法拉第将平面偏振光通过强磁场作用下的玻璃,发现光的偏振面发生旋转,后来进一步确定这是许多物质具有的普通性质。1876年,克尔(Kerr)继1875年发现玻璃片在强电场下对光有双折射的作用(即克尔电光效应)之后,又发现平面偏振光垂直射在电磁铁的磨光电极上时,反射得到的光变为椭圆偏振光(即克尔磁光效应)。这些效应对於光的电磁性质当然是极好的佐证。因此,电、磁和光之间的相互作用就成了19世纪末叶物理学家密切关注的对象。 1895年前后,塞曼暂停克尔磁光效应的研究,想试一试磁场对钠焰的光谱有没有影响。这个实验虽然没有成功,但是后来知道法拉第晚年曾亲自做过这个实验,他想法拉第这样伟大的科学家都重视这个实验,一定值得认真去做,於是就下决心用当时最好的设备再次进行实验,他当时产生了一个想法,究竟磁力作用於火焰时,火焰发出的光周期会不会改变。这样的事情果然发生了。塞曼用石棉条粘以食盐,放在电磁铁磁极间的氢氧焰中,用罗兰光栅(Rowland grating)(注:即凹面光栅、是当时最好的分光仪器)检验火焰光。当电磁铁电路接通时,D的两条谱线(注:即钠黄光谱线D1与D2)都看到增宽的现象。 谱线增宽也许会认为是磁场对火焰的某种已知作用,引起钠蒸气的密度和温度发生变化,塞曼就采用了一个方法,把钠放在一素瓷管中强烈加热,瓷管两端以平行玻璃板密封,其有效面积为1平方厘米。管子水平地置於磁场中,与磁力线垂直。弧光灯的光线穿之而过。吸收光谱显示出D双线。瓷管不断沿轴旋转,以避免温度变化。通电励磁,立即使谱线变宽。证明正是磁场使钠光的周期和频率发生了变化。 最初有人向塞曼提出,光的频率变化可能是由於原子与以太分子旋涡之间的加速和减速的作用力;后来,凯尔文勋爵向塞曼提出,或许可以用快速旋转系统和双摆结合在一起的例子,来解释频率变化。然而,这些解释都不够满意,於是塞曼转而从劳伦兹教授的电子理论寻求解释。这一理论认为:一切物体都有带电的小分子单元;一切电学过程都来自这些“离子”(注:即指电子,当时尚未发现电子)的平衡和运动,光波就是“离子”的振动引起的。在塞曼看来,“离子”在磁场中直接受到的作用力足以对这一现象作出解释。 塞曼将这个想法写信告诉劳伦兹教授,劳伦兹指点塞曼计算离子的运动。他还向塞曼指出,如果这个理论用得正确,就应该有下列结果:从增宽的谱线边缘发出的光,沿磁力线方向观察应是圆偏振光,再进而可导致求出离子所带电荷与其质量的比值e/m。塞曼用四分之一波片和检偏器,发现在加磁场后增宽的谱线边缘,从磁力线方向看去果然是圆偏振光。 相反地,如果从与磁力线成直角的方向观察,增宽了的钠谱线的边缘显示是平面偏振光,果然与劳伦兹理论相符。塞曼还根据谱线的增宽,估算了这一带电粒子的荷质比e/m,数量级为107CGSM/克,这时正好是.汤姆森宣布发现电子之前几个月。.汤姆森从阴极射线也测量了荷质比,和塞曼测量所得数量级相同,这一结果就成了电子存在的重要证据。 就这样,塞曼既对他所发现的光谱增宽现象作出了合理的解释,又证明了离子(注:即电子)的存在,对劳伦兹电子论提供了令人信服的实验验证。 1896年,塞曼进一步根据圆偏振光的旋光方向,判断产生辐射的“离子”所带电荷的正负,起先他曾误判为带正电,一年后改正为带负电。 根据劳伦兹的电磁理论,还可推断出如下结果:从垂直於磁场的方向观察,谱线应分裂为三条;从平行於磁场的方向观察,谱线应分裂为两条。塞曼把磁场加大到3万高斯左右,终於观察到了二重线和三重线。 塞曼能进一步证实劳伦兹的理论预见是非常幸运的,因为后来知道,只有单态(singlet)的谱系,才能得到劳伦兹理论预期的结果。 塞曼的结果与劳伦兹理论相符,不但是劳伦兹理论的一大成功,也使塞曼的工作很快得到公认。然而,由於塞曼和他的同代人对这一理论过於相信,也造成了一些困难。困难主要来自与理论不符的反常塞曼效应(anomalous Zeeman effect)。 塞曼自己在实验中也曾看到四重分裂和六重分裂,他没有正视这些与劳伦兹理论不符的现象,而是一心想将这些现象纳入劳伦兹理论的轨道。例如:他解释四重线,是三重线中间的一条“自蚀”为两条,而六重线是三重线的每一条都“自蚀”为两条 1897年,塞曼转到阿姆斯特丹大学任教,用那里的设备继续进行实验,主要的仪器还是凹面光栅。但因为整套设备装设在木质支座和地板上,无法避免振动的干扰,实验非常困难。据他自己说,拍三十张照片,往往只有一张可用,因此只好暂停试验。就在以后这段时间裏,其他许多同时进行这项工作的物理学家纷纷取得了重要成果。 这些人中间值得特别提到的有:1897年,美国的迈克耳逊用他自己发明的干涉仪观察到光谱线在磁场中分裂为二重线。后来迈克耳逊又发明了分辨本领更高的阶梯光栅(echelon grating)(1899年),他用阶梯光栅获得了更为精细的结果。英国人普列斯顿(T. Preston)紧接著对塞曼效应做了深入的研究工作。他在1898年发表的论文中详细叙述了各种磁致分裂图像,并且指出劳伦兹理论不能完全解释塞曼效应。随后发现了普列斯顿定律。根据这条定律可以判定谱线的归属。 德国人龙格(Runge)和帕申(Paschen)也对塞曼效应进行了大量的实验研究。1902年,他们列举了大量数据,叙述磁致分裂之间存在某种共同的规律。 1912年,帕申和巴克(E. E. A. Back)发现在极强磁场中,反常塞曼效应又表现为三重分裂,叫做帕申-巴克效应。这些现象都无法从理论上进行解释,此后二十多年一直是物理学界的一件疑案。正如不相容原理的发现者鲍利后来回忆的那样:“这不正常的分裂,一方面有漂亮而简单的规律,显得富有成果;另一方面又是那样难於理解……,使我感觉简直无法下手。” 1921年,德国杜宾根大学教授朗德(Landé)发表题为:《论反常塞曼效应》的论文,他引进一因子g代表原子能阶在磁场作用下的能量改变比值,这一因子只与能阶的量子数有关。 1925年,乌伦贝克(Uhlenbeck)与哥德施密特(Goldschmidt)“为解释塞曼效应和复杂谱线”提出了电子自旋的概念。1926年,海森堡和乔丹(Jordan)引进自旋S,从量子力学对反常塞曼效应作出了正确的计算。由此可见,塞曼效应的研究推动了量子理论的发展,在物理学发展史中占有重要地位。 劳伦兹1853年7月l8日出生於荷兰的阿纳姆,少年时就对物理学感兴趣并且熟练地掌握多门外语。l870年劳伦兹考入莱顿大学,学习数学、物理和天文。1875年获博士学位。1877年,莱顿大学聘请他为理论物理学教授,当时劳伦兹年23岁。他在莱顿大学任教长达35年。1911-1927年间劳伦兹多次担任索尔维会议主席。在国际物理学界有崇高的名望。 劳伦兹在物理学上最重要的贡献是发展了古典电子论。1878年,他发表了光与物质相互作用的论文,把以太与普通的物质区别开来,认为以太是静止的,无所不在,而普通物质的分子则都含有带电的谐振子;在这个基础上,他导出了分子折射率的公式(即劳伦兹-洛伦茨公式)。l892年,他开始发表电子论的文章,他认为一切物质的分子都含有电子,阴极射线的粒子就是电子,电子是很小的有质量的刚性球体,电子对於以太是完全透明的,以太与物质的相互作用归结为以太与物质中的电子的相互作用。在这个基础上,1895年他提出了著名的劳伦兹力公式。另外,l892年他研究过地球穿过静止以太所产生的效应,为了叙述迈克耳逊-莫雷实验的结果,他独立地提出了长度收缩的假说,认为相对於以太运动的物体,其运动方向上的长度缩短了。1895年,他发表了长度收缩的准确公式,即在运动方向上,长度收缩因子为 。l899年,劳伦兹讨论了惯性系之间坐标和时间的变换问题,并得出电子质量与速度有关的结论。1904年,他发表了著名的劳伦兹变换公式和质量与速度的关系式,并指出光速是物体相对於以太运动速度的极限。 此外,劳伦兹在古典物理学的许多领域裏都有很深的造诣,在热力学、物质分子运动论和重力理论等方面,都有过贡献。劳伦兹受到爱因斯坦、薛丁格和其他很多物理学家的尊敬,爱因斯坦就曾说过,他一生中受劳伦兹的影响最大。

  • 索引序列
  • 论文查重效应
  • 论文查重固定效应控制变量
  • 光电效应及其应用毕业论文
  • 塞曼效应毕业论文
  • 塞曼效应论文题目
  • 返回顶部