首页 > 期刊论文知识库 > 时间序列建模分析的论文题目

时间序列建模分析的论文题目

发布时间:

时间序列建模分析的论文题目

时代金融摘 要:关键词:一、 引言一个国家的国民经济有很多因素构成, 省区经济则是我国国民经济的重要组成部分, 很多研究文献都认为中国的省区经济是宏观经济的一个相对独立的研究对象, 因此, 选取省区经济数据进行区域经济的研究, 无疑将是未来几年的研究趋势。而省区经济对我国国民经济的影响, 已从背后走到了台前, 发展较快的省区对我国国民经济的快速增长起到了很大的作用, 而发展相对较慢的省区, 其原因与解决方法也值得我们研究。本文选取华中大省湖北省进行研究, 具有一定的指导和现实意义。湖北省 2006 年 GDP 为 7497 亿元, 人均 GDP13130 元, 达到中等发达国家水平。从省域经济来说, 湖北省是一个较发达的经济实体。另一方面, 湖北省优势的地理位置和众多的人口使之对于我国整体经济的运行起到不可忽视的作用, 对于湖北省 GDP的研究和预测也就从一个侧面反映我国国民经济的走势和未来。尽管湖北省以其重要位置和经济实力在我国国民经济中占据一席之地, 但仍不可避免的面临着建国以来一再的经济波动,从最初的强大势力到如今的挣扎期, 湖北省的经济面临着发展困境。近年来, 湖北省的经济状况一再呈现再次快速发展的趋势, 但是这个趋势能够保持多久却是我们需要考虑的问题。本文选择了时间序列分析的方法进行湖北省区域经济发展的预测。时间序列预测是通过对预测目标自身时间序列的处理来研究其变化趋势的。即通过时间序列的历史数据揭示现象随时间变化的规律, 将这种规律延伸到未来, 从而对该现象的未来作出预测。二、 基本模型、 数据选择以及实证方法( 一) 基本模型ARMA 模型是一种常用的随机时序模型, 由博克斯, 詹金斯创立, 是一种精度较高的时序短期预测方法, 其基本思想是: 某些时间序列是依赖于时间 t 的一组随机变量, 构成该时序的单个序列值虽然具有不确定性, 但整个序列的变化却具有一定的规律性, 可以用相应的数学模型近似描述。通过对该数学模型的分析,能够更本质的认识时间序列的结构与特征, 达到最小方差意义下的最优预测。现实社会中, 我们常常运用 ARMA模型对经济体进行预测和研究, 得到较为满意的效果。但 ARMA模型只适用于平稳的时间序列, 对于如 GDP 等非平稳的时间序列而言, ARMA模型存在一定的缺陷, 因此我们引入一般情况下的 ARMA模型 ( ARIMA模型) 进行实证研究。事实上, ARIMA模型的实质就是差分运算与 ARMA模型的组合。 本文讨论的求和自回归移动平均模型, 简记为 ARIMA ( p, d, q) 模型,是美国统计学家 和 enkins 于 1970 年首次提出, 广泛应用于各类时间序列数据分析, 是一种预测精度相当高的短期预测方法。建立 ARIMA ( p, d, q) 模型计算复杂, 须借助计算机完成。本文介绍 ARIMA ( p, d, q) 模型的建立方法, 并利用Eviews 软件建立湖北省 GDP 变化的 ARIMA ( p, d, q) 预测模型。( 二) 数据选择1.本文所有 GDP 数据来自于由中华人民共和国统计局汇编,中国统计出版社出版的 《新中国五十五年统计数据汇编》 。2.本文的所有数据处理均使用 软件进行。( 三) 实证方法ARMA模型及 ARIMA模型都是在平稳时间序列基础上建立的, 因此时间序列的平稳性是建模的重要前提。任何非平稳时间序列只要通过适当阶数的差分运算或者是对数差分运算就可以实现平稳, 因此可以对差分后或对数差分后的序列进行 ARMA( p, q) 拟合。ARIMA ( p, d, q) 模型的具体建模步骤如下:1.平稳性检验。一般通过时间序列的散点图或折线图对序列进行初步的平稳性判断, 并采用 ADF 单位根检验来精确判断该序列的平稳性。对非平稳的时间序列, 如果存在一定的增长或下降趋势等,则需要对数据取对数或进行差分处理, 然后判断经处理后序列的平稳性。重复以上过程, 直至成为平稳序列。此时差分的次数即为ARIMA ( p, d, q) 模型中的阶数 d。为了保证信息的准确, 应注意避免过度差分。对平稳序列还需要进行纯随机性检验 ( 白噪声检验) 。白噪声序列没有分析的必要, 对于平稳的非白噪声序列则可以进行ARMA ( p, q) 模型的拟合。白噪声检验通常使用 Q 统计量对序列进行卡方检验, 可以以直观的方法直接观测得到结论。拟合。首先计算时间序列样本的自相关系数和偏自相关系的值, 根据自相关系数和偏自相关系数的性质估计自相关阶数 p 和移动平均阶数 q 的值。一般而言, 由于样本的随机性, 样本的相关系数不会呈现出理论截尾的完美情况, 本应截尾的相关系数仍会呈现出小值振荡的情况。又由于平稳时间序列通常都具有短期相性, 随着延迟阶数的增大, 相关系数都会衰减至零值附近作小值波动。根据 Barlett 和 Quenouille 的证明, 样本相关系数近似服从正态分布。一个正态分布的随机变量在任意方向上超出 2σ 的概率约为 。因此可通过自相关和偏自相关估计值序列的直方图来大致判断在 5%的显著水平下模型的自相关系数和偏自相关系数不为零的个数, 进而大致判断序列应选择的具体模型形式。同时对模型中的 p 和 q 两个参数进行多种组合选择, 从 ARMA ( p,q) 模型中选择一个拟和最好的曲线作为最后的方程结果。一般利用 AIC 准则和 SC 准则评判拟合模型的相对优劣。3.模型检验。模型检验主要是检验模型对原时间序列的拟和效果, 检验整个模型对信息的提取是否充分, 即检验残差序列是否为白噪声序列。如果拟合模型通不过检验, 即残差序列不是为白噪声序列, 那么要重新选择模型进行拟合。如残差序列是白噪声序列, 就认为拟合模型是有效的。模型的有效性检验仍然是使谭诗璟ARIMA 模型在湖北省GDP 预测中的应用—— —时间序列分析在中国区域经济增长中的实证分析本文介绍求和自回归移动平均模型 ARIMA ( p, d, q) 的建模方法及 Eviews 实现。广泛求证和搜集从 1952 年到 2006 年以来湖北省 GDP 的相关数据, 运用统计学和计量经济学原理, 从时间序列的定义出发, 结合统计软件 EVIEWS 运用 ARMA建模方法, 将 ARIMA模型应用于湖北省历年 GDP 数据的分析与预测, 得到较为满意的结果。湖北省 区域经济学 ARIMA 时间序列 GDP 预测理论探讨262008/01 总第 360 期图四 取对数后自相关与偏自相关图图三 二阶差分后自相关与偏自相关图用上述 Q 统计量对残差序列进行卡方检验。4.模型预测。根据检验和比较的结果, 使用 Eviews 软件中的forecas t 功能对模型进行预测, 得到原时间序列的将来走势。 对比预测值与实际值, 同样可以以直观的方式得到模型的准确性。三、 实证结果分析GDP 受经济基础、 人口增长、 资源、 科技、 环境等诸多因素的影响, 这些因素之间又有着错综复杂的关系, 运用结构性的因果模型分析和预测 GDP 往往比较困难。我们将历年的 GDP 作为时间序列, 得出其变化规律, 建立预测模型。本文对 1952 至 2006 年的 55 个年度国内生产总值数据进行了分析, 为了对模型的正确性进行一定程度的检验, 现用前 50 个数据参与建模, 并用后五年的数据检验拟合效果。最后进行 2007年与 2008 年的预测。( 一) 数据的平稳化分析与处理1.差分。利用 EViews 软件对原 GDP 序列进行一阶差分得到图二:对该序列采用包含常数项和趋势项的模型进行 ADF 单位根检验。结果如下:由于该序列依然非平稳性, 因此需要再次进行差分, 得到如图三所式的折线图。根据一阶差分时所得 AIC 最小值, 确定滞后阶数为 1。然后对二阶差分进行 ADF 检验:结果表明二阶差分后的序列具有平稳性, 因此 ARIMA ( p, d,q) 的差分阶数 d=2。二阶差分后的自相关与偏自相关图如下:2.对数。利用 EViews 软件, 对原数据取对数:对已经形成的对数序列进行一阶差分, 然后进行 ADF 检验:由上表可见, 现在的对数一阶差分序列是平稳的, 由 AIC 和SC 的最小值可以确定此时的滞后阶数为 2。 因为是进行了一阶差分, 因此认为 ARIMA ( p, d, q) 中 d=1。( 二) ARMA ( p, q) 模型的建立ARMA ( p, q) 模型的识别与定阶可以通过样本的自相关与偏自相关函数的观察获得。图一 1952- 2001 湖北省 GDP 序列图表 1 一阶差分的 ADF 检验ADF t- Statistic 1% level 5% level 10% level AIC 备注0 - - - - 非平稳1 - - - - - - - - - - - - - - - - 表 2 二阶差分的 ADF 检验Lag Length t- Statistic 1% level 5% level 10% level1 (Fixed) - - - - 表 3 对数一阶差分的 ADF 检验ADF t- Statistic 1% level 5% level 10% level AIC SC 备注0 - - - - - - 平稳 1 - - - - - - - - - - - - - - - - - - 图五 对数后一阶差分自相关与偏自相关图理论探讨27时代金融摘 要:关键词:使用 EViews 软件对 AR, MA的取值进行实现, 比较三种情况下方程的 AIC 值和 SC 值:表 4ARMA模型的比较由表 4 可知, 最优情况本应该在 AR ( 1) , MA ( 1) 时取得, 但AR, MA都取 1 时无法实现平稳, 舍去。对于后面两种情况进行比较, 而 P=1 时 AIC 与 SC 值都比较小, 在该种情况下方程如下:综上所述选用 ARIMA ( 1, 1, 0) 模型。( 三) 模型的检验对模型的 Q 统计量进行白噪声检验, 得出残差序列相互独立的概率很大, 故不能拒绝序列相互独立的原假设, 检验通过。模型均值及自相关系数的估计都通过显著性检验, 模型通过残差自相关检验, 可以用来预测。( 四) 模型的预测我们使用时间序列分析的方法对湖北省地方生产总值的年度数据序列建立自回归预测模型, 并利用模型对 2002 到 2006 年的数值进行预测和对照:表 5 ARIMA ( 1, 1, 0) 预测值与实际值的比较由上表可见, 该模型在短期内预测比较准确, 平均绝对误差为 , 但随着预测期的延长, 预测误差可能会出现逐渐增大的情况。下面, 我们对湖北省 2007 年与 2008 年的地方总产值进行预测:在 ARIMA模型的预测中, 湖北省的地方生产将保持增长的势头, 但 2008 年的增长率不如 2007 年, 这一点值得注意。GDP毕竟与很多因素有关, 虽然我们一致认为, 作为我国首次主办奥运的一年, 2008 将是中国经济的高涨期, 但是是否所有的地方产值都将受到奥运的好的影响呢? 也许在 2008 年全国的 GDP 也许确实将有大幅度的提高, 但这有很大一部分是奥运赛场所在地带来的经济效应, 而不是所有地方都能够享有的。正如 GDP 数据显示, 1998 年尽管全国经济依然保持了一个比较好的态势, 但湖北省的经济却因洪水遭受不小的损失。作为一个大省, 湖北省理应对自身的发展承担起更多的责任。总的来说, ARIMA模型从定量的角度反映了一定的问题, 做出了较为精确的预测, 尽管不能完全代表现实, 我们仍能以ARIMA模型为基础, 对将来的发展作出预先解决方案, 进一步提高经济发展, 减少不必要的损失。四、结语时间序列预测法是一种重要的预测方法, 其模型比较简单,对资料的要求比较单一, 在实际中有着广泛的适用性。在应用中,应根据所要解决的问题及问题的特点等方面来综合考虑并选择相对最优的模型。在实际运用中, 由于 GDP 的特殊性, ARIMA模型以自身的特点成为了 GDP 预测上佳选择, 但是预测只是估计量, 真正精确的还是真实值, 当然, ARIMA 模型作为一般情况下的 ARMA 模型, 运用了差分、取对数等等计算方法, 最终得到进行预测的时间序列, 无论是在预测上, 还是在数量经济上, 都是不小的进步, 也为将来的发展做出了很大的贡献。我们通过对湖北省地方总产值的实证分析, 拟合 ARIMA( 1, 1, 0) 模型, 并运用该模型对湖北省的经济进行了小规模的预测,得到了较为满意的拟和结果, 但湖北省 2007 年与 2008 年经济预测中出现的增长率下降的问题值得思考, 究竟是什么原因造成了这样的结果, 同时我们也需要到 2008 年再次进行比较, 以此来再次确定 ARIMA ( 1, 1, 0) 模型在湖北省地方总产值预测中所起到的作用。参考文献:【1】易丹辉 数据分析与 EViews应用 中国统计出版社【2】 Philip Hans Frances 商业和经济预测中的时间序列模型 中国人民大学出版社【3】新中国五十五年统计资料汇编 中国统计出版社【4】赵蕾 陈美英 ARIMA 模型在福建省 GDP 预测中的应用 科技和产业( 2007) 01- 0045- 04【5】 张卫国 以 ARIMA 模型估计 2003 年山东 GDP 增长速度 东岳论丛( 2004) 01- 0079- 03【6】刘盛佳 湖北省区域经济发展分析 华中师范大学学报 ( 2003) 03-0405- 06【7】王丽娜 肖冬荣 基于 ARMA 模型的经济非平稳时间序列的预测分析武汉理工大学学报 2004 年 2 月【8】陈昀 贺远琼 外商直接投资对武汉区域经济的影响分析 科技进步与对策 ( 2006) 03- 0092- 02( 作者单位: 武汉大学经济与管理学院金融工程)AR(1)MA(1) AR(1) MA(1) 备注AIC - - - 最优为 AR(1)MA(1)SC - - - Coefficient Std. Error t- Statistic (1) squared - Mean dependent var R- squared - . dependent var . of regression Akaike info criterion - resid Schwarz criterion - likelihood Durbin-Watson stat AR Roots .59年份 实际值 预测值 相对误差(%) 平均误差(%)2002 - - - - - 年度 GDP 值 增长率(%) — 表 6 ARIMA ( 1, 1, 0) 对湖北省经济的预测一、模糊数学分析方法对企业经营 ( 偿债) 能力评价的适用性影响企业经营 ( 偿债) 和盈利能力的因素或指标很多; 在分析判断时, 对事物的评价 ( 或评估) 常常会涉及多个因素或多个指标。这时就要求根据多丛因素对事物作出综合评价, 而不能只从朱晓琳 曹 娜用应用模糊数学中的隶属度评价企业经营(偿债)能力问题影响企业经营能力的许多因素都具有模糊性, 难以对其确定一个精确量值; 为了使企业经营 ( 偿债) 能力评价能够得到客观合理的结果, 有必要根据一些模糊因素来改进其评价方法, 本文根据模糊数学中隶属度的方法尝试对企业经营 ( 偿债) 能力做出一种有效的评价。隶属度及函数 选取指标构建模型 经营能力评价应用理论探讨28

我了解更多,选择明白这个道理

我给你分享几个统计学与应用这本期刊的题目吧,你参考参考:产业集聚对江苏省制造业全要素生产率的影响研究、基于文献计量分析的企业论文发表情况评价——以宁波市安全生产协会会员为例、基于泰尔指数的城乡收入差距的分析与预测、卡方分布下FSI CUSUM和VSI CUSUM控制图的比较、新冠肺炎疫情对中国旅游业的冲击影响研究——基于修正的TGARCH-M模型

这个不难,我擅长.

时间序列分析的论文模板

那你问的这个是哪个

文段在内容上:以中心、意思相联系(思想感情)来答在结构上:总分总文段在开头:总起全文文段在中间:承上启下文段在结尾:总结全文或照应主题或首尾呼应。

我们用机器学习模型通过对历史数据来学习拟合,从而来对未来进行预测。这次分享我们主要以传统 主要从这三个方面来展开对时序分析 时序分析是一个比较有特点研究领域,这个领域始于对金融业,例如股市趋势预测、投资风险评估。后来有渗透到其他领域,对未来市场预测、动态定价、用电量预测以及在生物医药也有其一席之地。数学定义一般都是比较简短、严谨和抽象的语言来描述一个概念。按时间序列排序的一组随机数变量. 表示一个随机事件的时间序列,简记为 在时序预测中,每一个数据也就是我们看到的数值其实都是一个随机变量的观察值,随机变量服从一定分布。其实我们看到值也可以称为观察值其实是时间随机序列的一个实现,或者叫做实例,所有我们看到历史数据就是随机时间序列一组样本。 其实我们通过分析来把握这个随机时序的性质 因为我们知道每一个点都是服从整体分布。只要我们通过数据得到这些随机时序的性质,也就是掌握随机变量的模样。其实就是一个数理统计过程,也有点类似机器学习中生成模型。 其实上面就简述了时间序列任务总体方案 有了整体方案,我们一步一步按照这些步骤去去做,然后把需要填填上就完成时序预测。 上面内容一看任务的关键步骤就是时间序列分析,那么什么是时间序列分析呢?一句话时间序列分析就是对时间序列进行统计分析。 那么具体分析方法有那些呢?主要有两种,分别是描述性时序分析和统计时序分析。 时间序列分析理论中有两种平稳性定义 所谓严就是说严平稳的所有统计性质都不随时间的变化而变化。这是严平稳性质也是严平稳的定义. 以后我们对于一些概念都可以尝试用数学语言描述一下,也称协方差平稳(covariance stationary)、二阶平稳(second-order stationary)或宽平稳(wide-sense stationary),弱平稳时间序列的一阶矩和二阶矩不随时间的变化而变化。 判断时间序列的平稳性有助随后选择模型,那么的平稳性是时间序列一个重要性质,可以用来给时间序列进行分类。 我们会谈谈严平稳和弱平稳之间的关系,满足严平稳的序列具有弱平稳性,但是严平稳并不能全部涵盖弱平稳。为什么说严平稳并不能全部涵盖弱平稳?这是因为柯西分布是严平稳时间序列,但是不存在二阶矩或一阶矩,所以柯西分布就是不满足弱平稳的严平稳。 当时间序列为正态分布序列,则由二阶矩描述了正态分布的所有统计性质,此时弱平稳的正态序列也是严平稳。 因为在实际中多数时间序列都是弱平稳,所以今天我们也要重点谈谈弱平稳。 如果时间序列 的二阶矩有限 我们看随着时间变化,时间序列的均值是一个常数。 方差同均值一样也是常数,方差是二阶矩 协方差也是二阶矩,不同时刻的点是否有规律性,因为弱平稳的协方差或者准确地说自协方差是一个时间间隔的函数。当时间间隔协方差是相当的,当间隔不相同的时候对应协方差就不相同,当 s 变化 就会变化 其实我们就是在找 和 之间的关系,这里用 s 表示不同的时间间隔,例如 那么也就是说弱平稳时间序列的自协方差只与时滞 s 有关,与时间的起始位置 t 无关。 自协方差 简记为仅与时滞s 相关的一元函数形式 当 时, 就等同于方差 平稳时间序列的自相关系数也可以简记为与时滞 s 相关的一元函数形式 如果一个模型生成时间序列是平稳的,那么就说明该模型是平稳,否则就是非平稳的 这里有一段话大家可以理解一下,AR、MA和ARMA模型都是常用的平稳序列的拟合模型,但并非所有的AR、MA和ARMA模型都是平稳的。 好我们回到线性差分方程,我们重点说一下差分方程两种表达方式,其中我们先说一下什么是滞后算子。 假设已知时间序列 和 有如下关系 其实就是我们不用 来表示 是的y 而表达成为 就是我们在程序中看到 lag 也有用 B 表示的,以此类推 所以用滞后算子表达出多项式典型的 p 阶线性差分方程为今天我们主要说时间序列的一些推导公式,之前看些资料,其中关于时间序列中常用AR模型、MA模型背后推导说的比较深,不易于理解。最近看了一些资料,适当地总结一些。 时间序列虽然简单、但是要是想真正弄懂也需要花费一些功夫,将序列分解为一下形式。这通过加法模型将这些项来表示时间序列,其中趋势项和季节项我们是可以通过模型来拟合,因为他们都是有规律可循的,需要我们能够通过模型学出来GPD 就是一个趋势模型,而且是随着时间而不断成指数增长。 超市的人流,具有周期性,每周的人流在周末人流要相对于周一到周五人要多一些。每天人流下午要相对于上午人流要多一些。那么也就是说明我们对 ,我们之前讨论过时间序列是一个随机过程,也就是 的联合分布,通常我们研究一个联合分布是一个比较复制的问题。 这是我们在统计模型时候,最早的NPL 分析用到链式法则来表示联合概率一种 学习过概都知道条件概率,时序每一个时刻随机变量都是和他之前的随机时间点的概率是相关。这就是联合概率,要计算这个联合概率是需要相当大的计算量。当 a 小于 1 说明模型是稳定,反之说明模型是不稳定,为什么会有这样结论。我们可以结合小球的落地原理来项这个问题。 其实我们非齐次项差分方程 下面是差分方程通解其中 B 也即是滞后算子L,这里用 B 来表示,这里还是再演示一下吧接下来计算特征解,提取左边 可以表示无限变量只和形式,这个大家应该不会陌生,而且 类似 ,所以替换替换等比数列之和。重点相关性研究 和 可以用 计算出来。AR序列相关性是随着负指数衰减,MA(q) 模型是有限相关性, 有限时间序列相关 根据均方差最小原则,来进行预测 也就是我们讨论的AR模型,那么AR模型就可以用于时间序列分析这样时间序列步长间隔相同间分布是一致,这样时间序列才是平稳的时间序列。线性filter这是研究时间序列另一种模型,通过频域来研究时间序列

时间序列分析论文模板

在水文年鉴里找,或者是一些气象局对外公布的数据.如果就需要100个你可以找相关文章,100个不多,一般文章里都有!

SPSS软件是“统计产品与服务解决方案”软件,是数据统计分析的一个重要的工具。下文是我为大家整理的关于spss统计分析论文的 范文 ,欢迎大家阅读参考!

统计分析软件SPSS的特点和应用分析

【摘要】通过文献资料法,介绍了统计分析软件SPSS的特点,并通过实例:用非参数检验中的两个独立样本的检验(Test for Two Independent Sample)进行分析,对该软件的应用做了详细的介绍,旨在为学习SPSS软件的人们提供参考。

【关键词】统计分析软件;SPSS;独立样本;非参数检验

一、前言

统计分析软件SPSS是一款统计产品与服务解决方案的软件,其全称为“统计产品与服务解决方案(Statistical Product and Service Solutions)”。该软件是一款在统计中应用很广的统计分析软件,目前在各专业 毕业 论文经常可以看到它的身影,其应用范围广、方便快捷等特点吸引着众多的 爱好 者。本文通过对统计分析软件SPSS的功特点进行介绍,通过举例用非参数检验中的两个独立样本的检验(Test for Two Independent Sample)进行分析,对该软件的操作用做了详细的介绍,为学习SPSS软件的人们提供参考。

二、SPSS软件的特点

(一)操作简便

SPSS软件的界面非常友好,除了数据录入及部分命令程序等少数输入工作需要键盘键入外,大多数操作可通过鼠标拖曳、点击“菜单”、“按钮”和“对话框”来完成。

(二)编程方便

具有第四代语言的特点,告诉系统要做什么,无需告诉怎样做。只要了解统计分析的原理,无需通晓统计 方法 的各种算法,即可得到需要的统计分析结果。对于常见的统计方法,SPSS的命令语句、子命令及选择项的选择绝大部分由“对话框”的操作完成。因此,用户无需花大量时间记忆大量的命令、过程、选择项。

(三)功能强大

具有完整的数据输入、编辑、统计分析、报表、图形制作等功能。自带11种类型136个函数。SPSS提供了从简单的统计描述到复杂的多因素统计分析方法,比如数据的探索性分析、统计描述、列联表分析、二维相关、秩相关、偏相关、方差分析、非参数检验、多元回归、生存分析、协方差分析、判别分析、因子分析、聚类分析、非线性回归、Logistic回归等。

(四)全面的数据接口

能够读取及输出多种格式的文件。比如由dBASE、FoxBASE、FoxPRO产生的*.dbf文件,文本编辑器软件生成的ASCⅡ数据文件, Excel 的*.xls文件等均可转换成可供分析的SPSS数据文件。能够把SPSS的图形转换为7种图形文件。结果可保存为*.txt,word,PPT及html格式的文件。

(五)灵活的功能模块组合

SPSS for Windows软件分为若干功能模块。用户可以根据自己的分析需要和计算机的实际配置情况灵活选择。

(六)针对性强

SPSS针对初学者、熟练者及精通者都比较适用。并且现在很多群体只需要掌握简单的操作分析,大多青睐于SPSS,像薛薇的《基于SPSS的数据分析》一书也较适用于初学者。而那些熟练或精通者也较喜欢SPSS,因为他们可以通过编程来实现更强大的功能。

三、实例分析――两个独立样本的检验(Test for Two Independent Sample)

例题:为了调查甲、乙两地土壤对 种植 同一种西瓜有没有影响,从这两个产地分别随机抽取同种的8只和7只西瓜,称重后得重量(市斤)如下:

甲(斤):、、、、、、、

乙(斤):、、、、、、

问:根据样本数据检验两地的土壤对种植西瓜在重量上是否有显著差异?

解:建立假设 H0:甲乙两地的西瓜重量没有显著差异;

H1:甲乙两地的西瓜重量有没有显著差异。

然后根据上面给出的数据建立数据文件,注意数据文件中有一个表示重量数据的变量和一个表示地区分组的变量。最后在数据编辑窗口进行检验。检验的具 体操 作过程如下:

第一步:单击Analyze Nonparametric Test 2 Independent Sample,打开Two-Independent-Sample对话框(见图1)。

第二步:选择检验的变量进入检验框中,选择分组变量进入Grouping Variable框中,单击Define Group键,打开Define Group对话框,将分组变量值分别键入两个框中,单击Continue返回主对话框(见图2):

第三步:在Test Type栏中,确定检验方法。

SPSS中提供了四种检验方式,几种检验方法侧重点不同,但都是先把两样本数据混合排序,再从不同的角度分析并检验两个独立总体的分布是否有显著的差异。有时这几种检验结果可能不一样,所以要结合数据的探索分析考察数据的分布状况作出结论。本文选择了常用的Mann-Whitney U曼―惠特尼检验和Kolmogorov-Smirnov Z K-S检验。

第四步:选择输出的结果形式及缺失值处理方式;

第五步:单击OK,得输出结果。

所以,以上两种检验结论是一致的。也就是说在两地种植的同一种西瓜地重量没有显著差异。

参考文献

[1]杜志渊.常用统计分析方法―SPSS应用[M].山东人民出版社,2011.

[2]刘宁元.运用SPSS对高职专业课程成绩进行相关分析[J].电脑与电信,2007(3).

[3]井海立.SPSS在数学试卷统计分析中的应用[J].科技信息(学术版),2006(10).

试谈SPSS软件在考试数据统计分析中的应用

摘要: SPSS软件是数据统计分析的一个重要的工具。本文作者利用SPSS软件对考试数据的相关性、检验假设进行了统计分析,介绍了使用SPSS进行统计分析的一般方法和步骤,文中的方法对考试研究人员具有一定的指导意义。

关键词: SPSS软件 考试数据 统计分析 操作步骤

1. 引言

一份好的试卷须有好的测量指标来表明它的优良程度,试题有难度和区分度指标,试卷有效度和信度指标,这些是评价考试最主要的测量指标,但是仅有这些指标不足以反映一份试卷的实际测量效果,考试研究人员希望从考生的试卷统计分析中获取更多的信息来评价一份试卷。在计算机未普及的年代,考试成绩统计主要依靠人工阅卷,考试数据无法电子化存储,对考试数据分析统计难以实现。随着计算机的普及和信息化的推广,各种分析数据的软件应运而生,这些软件中汇集了统计学和测量学的分析工具,使得应用电子信息技术分析统计考试成绩数据成为可能,这些统计信息可以为教研部门、考试行政部门进行行政决策等提供非常重要的帮助。在众多的统计分析软件当中,SPSS是应用最多、影响最广泛的分析工具之一。在本文中,我们以SPSS软件为工具,对 教育 招生考试成绩的数据进行统计分析,分析主要着重于考试数据的相关性、假设检验等几个方面。

2. SPSS分析软件简介

“SPSS统计分析软件”的英文名称为“Statistical Package for the Social Science”,中文名称为“社会科学统计软件包”,它是世界著名的统计分析软件之一,在自然科学、社会科学的各个领域均有非常广泛的应用。SPSS是一个组合式软件包,它集数据整理、分析于一身,主要功能包括数据管理、统计分析、图表分析、输出管理等,该软件的统计分析过程包括描述性统计、均值比较、一般线性模型、相关分析、回归分析、对数线性模型、聚类分析、数据简化、生存分析、时间序列分析、多重响应等几大类。

下面我们利用SPSS软件对考试数据的相关性、检验假设进行统计分析,介绍使用SPSS进行统计分析的一般方法和步骤。

3. 相关性分析

教育考试中,考试结果的信度,试题的区分度,每个题目得分与试卷总分的关系,以及题目之间的关系,等等,都是考试研究的重要内容,最主要的研究方法就是数据的相关性分析。在众多的教育考试数据的相关性分析方法中,Pearson相关系数法、Spearman相关系数法和Cronbach α信度系数法是比较常用的几种方法。

Pearson相关系数法计算公式:

式中x为第i个考生第j题的得分,y为第i个考生第k题的得分,为第j题的平均分,为第k题的平均分,n为测试样本量。该公式既可以计算两个连续变量之间的相关性,又可以计算一个双歧变量与一个连续变量之间的相关性。

Spearman相关系数法计算公式:

r=1-(2)

式中D为两个变量的秩序之差,n为样本容量。

Cronbach a信度系数法计算公式:

α= 1-(3)

式中n为试题数,s为第i题的标准差,s为总分的标准差。该公式实际上就是将考试中所有试题间相关系数的平均值(又称内部一致性)作为α信度系数。

对于给定的一组考生成绩数据,利用SPSS统计分析软件可以非常容易地定量分析考生某学科试卷总分和该学科某道题的相关性,以及各个题目之间的相关性。我们以Pearson相关系数分析为例,利用SPSS软件进行统计分析。

数据统计分析的对象是某省高考数学6道解答题的得分情况(不是整张试卷),数据源于该省的高考数据成绩。研究的目的是测量6道解答题每两个题目之间的相关性。

我们以SPSS 版本的软件为例,介绍利用SPSS进行数据统计分析的步骤(以Pearson相关系数法为例):

(1)将考试数据导入SPSS软件,在SPSS数据窗口中,顺序点击【Analyze】→【Correlate】→【Bivariate...】,系统弹出变量相关系数设置对话框。

(2)在该对话框中,将待计算的变量从左侧的变量列表中导入到右侧的“Variables”变量列表中,在本例中导入t1、t2、t3、t4、t5、t6共6个变量(t1―t6是6道解答题的变量名称)。在“Correlation Coefficients”相关系数选项中,选取“Pearson”复选框。

(3)在该对话框的“Test of Significance”设置区域,可以点选“Two-tailed”选项或者“One-tailed”,我们采用系统默认值。

(4)对话框中的 其它 选项取软件系统的默认值,点击【OK】,开始相关系数计算,系统弹出新的窗体输出运算的结果。本次输出的情况如下:

上表的统计结果可用于题目之间相关性的分析。表中的大部分题目的相关系数都比较适中,但题目T4和题目T5之间的相关程度远高于其它几个题目,我们可以确信这两者之间一定存在着比其他题目之间更紧密的关系,这是我们通过分析获取的重要信息,该信息表明这两个题目之间的相关性高于其他几个题目之间的相关性,这在大规模考试中是不应该出现的,需要在以后的命题考试中加以改进。

Spearman相关系数分析方法和上述分析方法类似,只需要在上述SPSS操作的第二个骤中选取“Pearson”复选框,程序就会按Pearson相关系数法进行统计分析,如果同时选中“Spearman”和“Pearson”复选框,程序将会同时计算按两种分析方法统计分析的数据,并会以不同的图表进行显示,而Cronbach a信度系数法计算方法与上述方法略有不同,其操作步骤如下:

(1)在SPSS数据窗口中,顺序点击【Analyze】→【Scale】→【Reliability Analysis...】,系统弹出“Reliability Analysis”信度分析设置对话框。

(2)将待计算的变量从左列的变量列表中导入到右侧的“items”变量中,在左下列的“model”选择项的下拉列表中确保选中“Alpha”(信度系数),点击“Statistics”选择项可以进行更为详细的参数设置,我们采用系统的默认值即可。

(3)参数设置完毕之后,点击【OK】,软件开始相关系数计算并输出运算结果。

4. 选择题的选项分析

在目前的教育招生考试中选择题是一种较常见的题型,考试研究人员关注较多的是对选择题基本特征、测量功能及其优缺点的理论探讨[1][2],对选择题干扰项的设计及其施测后的实际效果关注甚少,事实上施测后对题目各选项的有效性作出判断可为评价试题质量提供重要参考依据。我们利用统计中χ检验假设,对试卷中常见的选择题选择项进行统计分析。

教育考试的单项选择项一般设置为4个,其中仅有1个选择项是正确的。命题人员在设计选择项时,应当也必然对每道题目所有的选择项(正确选择项和干扰选择项)的考生作答情况作出预测,对考生作答的分布情况作出预估。考试结束后,研究人员应该对实测的情况与命题教师预测的情况进行对比分析,以检验考试效果是否达到了预测的目标。这和χ拟合度检验的思想具有一致性,因此可以尝试使用χ检验假设进行分析。

我们依据文献[3][4]的方法来介绍χ检验假设在考试数据分析中应用的基本原理,设变量E是命题者对某道试题的期望值,E=nP,n为样本容量,P为期望的相对频率,引入以下统计量:∑(O-E)/E,其中O为观察频数。

本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文

我们需要进行的假设检验是:零假设H:选项的实测分布与期望分布相同;非零假设H:选项的实测分布与期望分布不同。

检验假设的思想:拟合度检验的统计量在确定的某种显著性水平下如果零假设是真,则检验统计量∑(O-E)/E呈近似χ分布,其自由度为研究变量的可能值减1;如果实测分布与期望的分布相当吻合,就不排除零假设,否则就排除零假设;最后对检验假设的结果进行解释。

数据分析的目的是判断考生实际的应答结果(实测数据)与命题期望的选择概率(期望数据)是否一致。我们随机抽取某省5542个高考考生的数学有效数据构成分析样本,利用SPSS进行统计分析。

SPSS数据统计分析的步骤如下:

(1)将考试数据导入SPSS软件,依次点击【Analyze】→【Nonparametric Tests】→【Chi-Square...】,弹出“Chi-Square Tests”对话框。

(2)将变量列表中待分析的题目序号导入到“Test Variables List”(检验变量列表)中,本例中题目的序号为t7。

(3)将对选择试题的每个选项的期望值依次输入到“Expected Values”所属的方框,具体操作方法是选中单选框“Values”,输入具体的期望数值,点击“Add”按钮,依次重复上述的步骤直至所有的选项的期望值输入完毕。

(4)点击【OK】,输出软件运算结果。

我们需要进行的假设检验,H:选项的实测分布与期望分布相同;H:选项的实测分布与期望分布不同。

假设检验的显著性水平为α=,χ=∑(O-E)/E,自由度为df=4-1=3,查χ分布表或利用相关软件可得P=,由于P>α,因此不能拒绝零假设,即选项的实测分布与期望分布相同。因此,检验结果在显著性水平时,没有足够的证据拒绝零假设,即可认为本题选项的实测分布与期望分布相同,也就是说本题的实际测试效果与命题教师预测的效果是一致的,命题教师准确地估计了考生的实际水平,这是分析获得的很重要的结论。

5. 结语

SPSS软件在考试数据统计分析中应用广泛,但大部分是集中在试题难度、均值、方差统计、考试数据的图表显示等几个方面,本文从一个新的角度利用SPSS软件对考试数据的相关性、检验假设等几个方面进行了尝试性统计分析,介绍了使用SPSS进行统计分析的一般方法和步骤。从上述分析来看,软件操作步骤和统计分析过程十分简单、快捷,对于测量学和统计学基础不太好的数据分析统计人员来说,只要遵循一定的操作步骤,就可以进行分析。

参考文献:

[1]王孝玲.教育测量(修订版)[M].上海:华东师范大学出版社,2006.

[2]雷新勇.大规模教育考试:命题与评价[M].上海:华东师范大学出版社,2006.

[3]李伟明,冯伯麟,余仁胜.考试的统计分析方法[M].北京:高等教育出版社,1990.

[4]雷新勇.考试数据的统计分析和解释[M].上海:华东师范大学出版社,2007.

猜你喜欢:

1. 统计学数据分析论文

2. spss统计分析实习心得

3. 统计学学年论文

4. 统计学分析论文

统计年鉴或者(中华人民共和国国家统计局网站),

时间序列分析课程论文题目

经济学是研究人类社会在各个发展阶段上的各种经济活动和各种相应的经济关系及其运行、发展的规律的学科。那么经济学专业的论文选题怎么选呢?下面我给大家带来2021经济学论文题目有哪些_经济学专业论文选题题目,希望能帮助到大家!

经济学博士论文题目

1、基于绿色GDP投入产出模型架构研究

2、中国住户生产核算理论与 方法 研究

3、成长型企业无形资产统计问题研究

4、中国社会核算矩阵编制与模型研究

5、政府统计数据质量评估方法及其应用研究

6、人口老龄化对我国GDP及其构成的影响

7、环境价值核算方法及应用研究

8、经济核算原理在现代制造业定量研究中的应用

9、中国服务业的全要素生产率研究

10、我国GDP中劳动报酬份额的下降

11、经济福利核算的理论及其指标研究

12、宏观金融运行异常的统计监测研究

13、国民经济核算及其总体模式研究

14、国民经济核算方法论研究

15、可持续发展指标体系建构及其应用研究

16、供应链违约风险的研究

17、对我国国民经济核算理论与方法问题研究

18、Markov算子的渐近行为与经济系统的几个问题

19、非完全竞争市场的宏观经济优化模型

20、效用、风险与纳什均衡选择

21、粮食、农业制度供给中的博弈与实证

22、理解经济变迁的过程

23、海洋经济核算体系与核算方法研究

24、区域环境价值核算的方法与应用研究

25、基于环境因素的全要素生产率和国民收入核算研究

26、浙江省城乡收入差距统计研究

27、现代企业统计理论体系创新研究

28、ICT对国民经济的贡献研究

29、资本存量与资本服务核算研究

30、地区GDP核算及数据衔接问题研究

31、资源环境经济综合核算与绿色GDP的建立

32、基于可持续发展的中国能源核算研究

33、消费型中间消耗的概念及测算

34、时间序列分析方法研究及其在陕西省GDP预测中的应用

35、物流配送选址优化模型的研究

36、供应计划问题的遗传算法求解

37、基于景气指数的宏观经济监测预警系统研究

38、 企业管理 创新数量分析中的线性优化逆问题

39、技术能力成长决策中的实物期权方法研究

40、资产定价标准的讨论和模拟

41、投资者认知收益度量模型及系统设计

42、基于水环境的杭州市绿色GDP核算的GIS表征

43、人力资本与全要素生产率

44、湖南省宏观经济景气指数的编制与应用研究

45、森林资源核算及纳入国民经济核算体系研究

46、疏浚企业挖泥船生产统计系统优化分析

47、过程神经网络在GDP预测中的应用研究

48、四川调查总队系统职工工作满意度调查研究

49、基于线性回归和神经网络的预测模型在国民经济数据中的应用

50、国民经济核算体系中环保指标设计研究

微观经济学论文题目

1、我国绿化工程监理微观环境分析

2、知识产权对微观经济的作用机理研究

3、外生驱动互联网消费增长的微观空间计量研究

4、房地产市场反周期宏观调控政策绩效的微观探析

5、劳动力成本上升对现代服务业企业升级的影响研究--基于微观企业财务层面以信息技术产业为例

6、宏微观因素对商业银行信贷风险影响的实证分析

7、经济责任审计促进经济增长的微观途径--基于“中国之谜”中政府官员的作用

8、中级微观经济学混合教学模式探索与实践

9、基于半鞅过程的中国股市随机波动、跳跃和微观结构噪声统计特征研究

10、中国经济发展新常态的宏观表象和微观基础

11、货币政策、所有制差异与商业信用再配置--兼论新常态背景下供给侧治理的微观路径

12、微观权力、自我技术与组织公民行为-- 人力资源管理 的后现代分析

13、增值税转型对我国微观经济的影响

14、商业性小额信贷机构市场定位微观制度因素分析--以某村镇银行和某小额贷款公司为例

15、城乡关系重构下乡村人口城镇化微观进程研究--基于家庭流动人口的视角

16、微观商业视角下的微信经济

17、应用型人才培养模式下独立学院微观经济学教学改革研究

18、微观开放性视角下创造力的多层次影响机制探究

19、农户劳动力资源配置的微观决策

20、微观经济与企业管理探讨

21、民营企业对外直接投资对企业内就业的影响--基于温州微观企业数据的实证研究

22、房产税、房价与住房供给结构--基于上海、重庆微观数据的分析

23、基于微观经济学方法的网格资源分配管理模型研究

24、森林转型的微观机制--以重庆市山区为例

25、我国纺织业企业创新与生产率关系的微观测度

26、人的自由全面发展视域下资源配置的微观机制

27、基于微观企业数据的产业空间集聚特征分析--以杭州市区为例

28、从微观管理视角浅析高校国有资产管理中的问题

29、“双创”背景下非正规就业对劳动力市场影响的微观分析--基于马克思劳动力价值理论视角

30、我国众筹融资的微观机理及宏观效应

31、金融市场微观结构理论综述

32、利率调控对房地产营销市场波动的微观作用机制探究

33、中国对外并购的绩效研究--基于制造业上市企业的微观分析

34、我国服务贸易出口的影响因素分析--来自微观企业层面的证据

35、市场微观结构下高频交易流动性--基于我国商品期货市场的实证研究

36、工商行政管理在宏观控制与微观搞活中的职能与作用

37、典型平原农区土地非农化对乡村发展影响的微观机理

38、贫困地区特色农业规模经营意愿的影响因素研究--微观农户视角的分析

39、中国政策性银行全要素生产率测度及影响因素研究--基于宏观与微观解构

40、中国产业结构升级的新视角--微观产品质量角度

41、新疆农民专业合作社微观运行障碍调研与政府责任分析--以吉木萨尔县为例

42、制造业可持续发展的微观经济分析--基于价格机制与制度结构的视角

43、微观视角下煤炭上市公司资本结构影响因素实证研究

44、优化农业科技创新风险投资微观运行机制的策略研究

45、低碳经济政策失灵的原因分析及应对 措施 --基于微观经济个体的视角

46、税制改革推动国家治理能力提升的微观作用机理研究--基于增值税转型对企业投资行为的影响

47、论宏观调控与微观自主的辩证平衡

48、基于微观动力视角我国上市公司市值管理绩效评价的研究

49、宏观经济政策与微观企业行为--拓展会计与财务研究新领域

50、以“供给管理”激发微观活力实现经济发展动力转型

宏观经济学论文题目与选题参考

1、“互联网+”重塑中国宏观经济

2、20_年宏观经济形势讨究和政策的观点综述

3、20_年世界经济形势回顾讨究与展望

4、20_年玩具市场跨越式发展的契机论议与挑战

5、20_年中国成品油市场讨究

6、财政分权与中国经济增长

7、城乡一体化理论研究

8、从诺贝尔经济学奖看现代宏观经济学的发展

9、当前国民经济运行中应注意的几个问题及建议

10、当前经济形势下扩大内需的困难与措施研究

11、当前社会人文效应与经济效应的互相影响

12、当前收入分配存在问题的思考

13、地方财政支出的产业结构效应研究

14、电信业漫谈之供给与需求

15、对欧洲宏观经济体制的批评

16、房地产的宏观经济学说

17、房地产动摇对经济增长的影响

18、房地产行业走势对中国宏观经济的影响分析

19、复合式通胀压力下浅探宏观经济政策选择

20、高校扩招的经济影响

21、公共财政政策与可持续发展(或技术创新)

22、供给学派的起源与美国实践

23、关于金融稳定与货币政策的一点思考

24、关于凯恩斯主义与货币主义对大萧条成因解释的分析

25、贵州省城镇失业问题研究

26、国家宏观调控的内涵与手段研究

27、哈耶克对经济周期的研究及其方法论特点

28、宏观行为经济学的新发展及其应用

29、宏观经济剖析和政策前瞻

30、宏观经济形势分析与数据解说

31、宏观经济学的创新与调控方向的转变探讨

32、宏观经济学视角下经济增长理论和政策

33、宏观经济学中的管理理念与措施应用分析

34、宏观经济学中的经济理论研究

35、宏观经济学中的长期与短期分析

36、宏观经济学中金融市场影响经济的分析

37、宏观经济政策应稳步微调

38、后危机阶段中国宏观经济政策的趋向

39、后危机时代安徽省财政宏观调控政策研究

40、互联网改变就业的宏观经济学机理

41、汇率理论的演变评述与人民币国际化借鉴

42、货币国际化 经验 与人民币国际化研究

43、技术创新对社会经济发展贡献率探究

44、减税的思考与超越--简评蒙代尔税收思想

45、金融冲击对全要素生产率的影响分析

46、金融市场与宏观经济的联系

47、金融危机下的浙江制造业面临的困境研究

48、经济发展与社会(伦理、幸福、价值等)关系的分析

49、经济韧性问题研究进展

2021经济学论文题目有哪些相关 文章 :

★ 优秀论文题目大全2021

★ 大学生论文题目参考2021

★ 大学生论文题目大全2021

★ 优秀论文题目2021

2021毕业论文题目怎么定

★ 2021政治小论文范文5篇

★ 国际经济学专业毕业论文选题最全题目(2)

★ 国际经济论文题目大全

★ 经济学理论论文

★ 经济学论文

可以的,我就写过了。议论文是以议论为主要表达方式,通过摆事实,讲道理,直接表达作者的观点和主张的常用文体。它不同于记叙文以形象生动的记叙来间接地表达作者的思想感情,也不同于说明文侧重介绍或解释事物的形状、性质、成因、功能等。总之,论文是以理服人的文章,记叙文和说明文则是以事感人,以知授人的文章。议论是作者对客观事物进行分析、评论、说服,以表明自己的见解、主张、态度的表达方式,通常由论点 、论据、论证三部分构成。论文题目分为论题,论点,寓意型。论题型为作者观点但以简洁为主,所以中心论点一般不能直接抄论题,论点型,论点型一般没有观点倾向性,例如:君子之交淡如水。寓意型一般与论题论点并存且不能直接作为中心论点要还原本意。

力求题目的字数要少,用词需要精选。至于多少字算是合乎要求,并无统一的'硬性'规定,一般希望一篇论文题目不要超出20个字,不过,不能由于一味追求字数少而影响题目对内容的恰当反映,在遇到两者确有矛时,宁可多用几个字也要力求表达明确。常见了繁琐题名如:'关于钢水中所含化学成分的快速分析方法的研究'。在这类题目中,像'关于'、'研究'等词汇如若舍之,并不影响表达。既是论文,总包含有研究及关于什么方面的研究,所以,上述题目便可精炼为:'钢水化学成分的快速分析法'。这样一改,字数便从原21个安减少为12个字,读起来觉得干净利落、简短明了。若简短题名不足以显示论文内容或反映出属于系列研究的性质,则可利用正、副标题的方法解决,以加副标题来补充说明特定的实验材料,方法及内容等信息,使标题成为既充实准确又不流于笼统和一般化。如?quot;(主标题)有源位错群的动力学特性--(副标题)用电子计算机模拟有源位错群的滑移特性'。

学术堂最新整理了二十条好写的统计学毕业论文题目:排队模型在收费站排队系统中的应用2.财政收入影响因素的研究3.城市发展对二氧化碳排放的影响4.高技术产业产值影响因素的研究5.关于和谐社会统计指标的初步研究研究我国产业结构的区域差异对经济的影响7.基于单因素序列相关面板数据的实证分析8.基于空间面板数据的中国FDI统计分析9.基于排队论在杭州公交站点停车位的优化及实证分析10.基于统计方法的股票投资价值分析11.某某市2019年工业发展状况的统计分析12.近30年31省市城镇居民恩格尔系数的统计分析13.近30年31省市农村居民恩格尔系数的统计分析14.近三十年中国经济发展趋势的实证分析15.林业科技对经济的贡献率美联储量化16.宽松政策对中国经济影响的统计17.分析排队论简介及其应用18.我国财政收入总额影响因素分析19.我国城市竞争力的综合评价与实证分析20.我国城乡居民收入差距统计分析一以某某省为例

时间序列实证分析论文模板

SPSS软件是“统计产品与服务解决方案”软件,是数据统计分析的一个重要的工具。下文是我为大家整理的关于spss统计分析论文的 范文 ,欢迎大家阅读参考!

统计分析软件SPSS的特点和应用分析

【摘要】通过文献资料法,介绍了统计分析软件SPSS的特点,并通过实例:用非参数检验中的两个独立样本的检验(Test for Two Independent Sample)进行分析,对该软件的应用做了详细的介绍,旨在为学习SPSS软件的人们提供参考。

【关键词】统计分析软件;SPSS;独立样本;非参数检验

一、前言

统计分析软件SPSS是一款统计产品与服务解决方案的软件,其全称为“统计产品与服务解决方案(Statistical Product and Service Solutions)”。该软件是一款在统计中应用很广的统计分析软件,目前在各专业 毕业 论文经常可以看到它的身影,其应用范围广、方便快捷等特点吸引着众多的 爱好 者。本文通过对统计分析软件SPSS的功特点进行介绍,通过举例用非参数检验中的两个独立样本的检验(Test for Two Independent Sample)进行分析,对该软件的操作用做了详细的介绍,为学习SPSS软件的人们提供参考。

二、SPSS软件的特点

(一)操作简便

SPSS软件的界面非常友好,除了数据录入及部分命令程序等少数输入工作需要键盘键入外,大多数操作可通过鼠标拖曳、点击“菜单”、“按钮”和“对话框”来完成。

(二)编程方便

具有第四代语言的特点,告诉系统要做什么,无需告诉怎样做。只要了解统计分析的原理,无需通晓统计 方法 的各种算法,即可得到需要的统计分析结果。对于常见的统计方法,SPSS的命令语句、子命令及选择项的选择绝大部分由“对话框”的操作完成。因此,用户无需花大量时间记忆大量的命令、过程、选择项。

(三)功能强大

具有完整的数据输入、编辑、统计分析、报表、图形制作等功能。自带11种类型136个函数。SPSS提供了从简单的统计描述到复杂的多因素统计分析方法,比如数据的探索性分析、统计描述、列联表分析、二维相关、秩相关、偏相关、方差分析、非参数检验、多元回归、生存分析、协方差分析、判别分析、因子分析、聚类分析、非线性回归、Logistic回归等。

(四)全面的数据接口

能够读取及输出多种格式的文件。比如由dBASE、FoxBASE、FoxPRO产生的*.dbf文件,文本编辑器软件生成的ASCⅡ数据文件, Excel 的*.xls文件等均可转换成可供分析的SPSS数据文件。能够把SPSS的图形转换为7种图形文件。结果可保存为*.txt,word,PPT及html格式的文件。

(五)灵活的功能模块组合

SPSS for Windows软件分为若干功能模块。用户可以根据自己的分析需要和计算机的实际配置情况灵活选择。

(六)针对性强

SPSS针对初学者、熟练者及精通者都比较适用。并且现在很多群体只需要掌握简单的操作分析,大多青睐于SPSS,像薛薇的《基于SPSS的数据分析》一书也较适用于初学者。而那些熟练或精通者也较喜欢SPSS,因为他们可以通过编程来实现更强大的功能。

三、实例分析――两个独立样本的检验(Test for Two Independent Sample)

例题:为了调查甲、乙两地土壤对 种植 同一种西瓜有没有影响,从这两个产地分别随机抽取同种的8只和7只西瓜,称重后得重量(市斤)如下:

甲(斤):、、、、、、、

乙(斤):、、、、、、

问:根据样本数据检验两地的土壤对种植西瓜在重量上是否有显著差异?

解:建立假设 H0:甲乙两地的西瓜重量没有显著差异;

H1:甲乙两地的西瓜重量有没有显著差异。

然后根据上面给出的数据建立数据文件,注意数据文件中有一个表示重量数据的变量和一个表示地区分组的变量。最后在数据编辑窗口进行检验。检验的具 体操 作过程如下:

第一步:单击Analyze Nonparametric Test 2 Independent Sample,打开Two-Independent-Sample对话框(见图1)。

第二步:选择检验的变量进入检验框中,选择分组变量进入Grouping Variable框中,单击Define Group键,打开Define Group对话框,将分组变量值分别键入两个框中,单击Continue返回主对话框(见图2):

第三步:在Test Type栏中,确定检验方法。

SPSS中提供了四种检验方式,几种检验方法侧重点不同,但都是先把两样本数据混合排序,再从不同的角度分析并检验两个独立总体的分布是否有显著的差异。有时这几种检验结果可能不一样,所以要结合数据的探索分析考察数据的分布状况作出结论。本文选择了常用的Mann-Whitney U曼―惠特尼检验和Kolmogorov-Smirnov Z K-S检验。

第四步:选择输出的结果形式及缺失值处理方式;

第五步:单击OK,得输出结果。

所以,以上两种检验结论是一致的。也就是说在两地种植的同一种西瓜地重量没有显著差异。

参考文献

[1]杜志渊.常用统计分析方法―SPSS应用[M].山东人民出版社,2011.

[2]刘宁元.运用SPSS对高职专业课程成绩进行相关分析[J].电脑与电信,2007(3).

[3]井海立.SPSS在数学试卷统计分析中的应用[J].科技信息(学术版),2006(10).

试谈SPSS软件在考试数据统计分析中的应用

摘要: SPSS软件是数据统计分析的一个重要的工具。本文作者利用SPSS软件对考试数据的相关性、检验假设进行了统计分析,介绍了使用SPSS进行统计分析的一般方法和步骤,文中的方法对考试研究人员具有一定的指导意义。

关键词: SPSS软件 考试数据 统计分析 操作步骤

1. 引言

一份好的试卷须有好的测量指标来表明它的优良程度,试题有难度和区分度指标,试卷有效度和信度指标,这些是评价考试最主要的测量指标,但是仅有这些指标不足以反映一份试卷的实际测量效果,考试研究人员希望从考生的试卷统计分析中获取更多的信息来评价一份试卷。在计算机未普及的年代,考试成绩统计主要依靠人工阅卷,考试数据无法电子化存储,对考试数据分析统计难以实现。随着计算机的普及和信息化的推广,各种分析数据的软件应运而生,这些软件中汇集了统计学和测量学的分析工具,使得应用电子信息技术分析统计考试成绩数据成为可能,这些统计信息可以为教研部门、考试行政部门进行行政决策等提供非常重要的帮助。在众多的统计分析软件当中,SPSS是应用最多、影响最广泛的分析工具之一。在本文中,我们以SPSS软件为工具,对 教育 招生考试成绩的数据进行统计分析,分析主要着重于考试数据的相关性、假设检验等几个方面。

2. SPSS分析软件简介

“SPSS统计分析软件”的英文名称为“Statistical Package for the Social Science”,中文名称为“社会科学统计软件包”,它是世界著名的统计分析软件之一,在自然科学、社会科学的各个领域均有非常广泛的应用。SPSS是一个组合式软件包,它集数据整理、分析于一身,主要功能包括数据管理、统计分析、图表分析、输出管理等,该软件的统计分析过程包括描述性统计、均值比较、一般线性模型、相关分析、回归分析、对数线性模型、聚类分析、数据简化、生存分析、时间序列分析、多重响应等几大类。

下面我们利用SPSS软件对考试数据的相关性、检验假设进行统计分析,介绍使用SPSS进行统计分析的一般方法和步骤。

3. 相关性分析

教育考试中,考试结果的信度,试题的区分度,每个题目得分与试卷总分的关系,以及题目之间的关系,等等,都是考试研究的重要内容,最主要的研究方法就是数据的相关性分析。在众多的教育考试数据的相关性分析方法中,Pearson相关系数法、Spearman相关系数法和Cronbach α信度系数法是比较常用的几种方法。

Pearson相关系数法计算公式:

式中x为第i个考生第j题的得分,y为第i个考生第k题的得分,为第j题的平均分,为第k题的平均分,n为测试样本量。该公式既可以计算两个连续变量之间的相关性,又可以计算一个双歧变量与一个连续变量之间的相关性。

Spearman相关系数法计算公式:

r=1-(2)

式中D为两个变量的秩序之差,n为样本容量。

Cronbach a信度系数法计算公式:

α= 1-(3)

式中n为试题数,s为第i题的标准差,s为总分的标准差。该公式实际上就是将考试中所有试题间相关系数的平均值(又称内部一致性)作为α信度系数。

对于给定的一组考生成绩数据,利用SPSS统计分析软件可以非常容易地定量分析考生某学科试卷总分和该学科某道题的相关性,以及各个题目之间的相关性。我们以Pearson相关系数分析为例,利用SPSS软件进行统计分析。

数据统计分析的对象是某省高考数学6道解答题的得分情况(不是整张试卷),数据源于该省的高考数据成绩。研究的目的是测量6道解答题每两个题目之间的相关性。

我们以SPSS 版本的软件为例,介绍利用SPSS进行数据统计分析的步骤(以Pearson相关系数法为例):

(1)将考试数据导入SPSS软件,在SPSS数据窗口中,顺序点击【Analyze】→【Correlate】→【Bivariate...】,系统弹出变量相关系数设置对话框。

(2)在该对话框中,将待计算的变量从左侧的变量列表中导入到右侧的“Variables”变量列表中,在本例中导入t1、t2、t3、t4、t5、t6共6个变量(t1―t6是6道解答题的变量名称)。在“Correlation Coefficients”相关系数选项中,选取“Pearson”复选框。

(3)在该对话框的“Test of Significance”设置区域,可以点选“Two-tailed”选项或者“One-tailed”,我们采用系统默认值。

(4)对话框中的 其它 选项取软件系统的默认值,点击【OK】,开始相关系数计算,系统弹出新的窗体输出运算的结果。本次输出的情况如下:

上表的统计结果可用于题目之间相关性的分析。表中的大部分题目的相关系数都比较适中,但题目T4和题目T5之间的相关程度远高于其它几个题目,我们可以确信这两者之间一定存在着比其他题目之间更紧密的关系,这是我们通过分析获取的重要信息,该信息表明这两个题目之间的相关性高于其他几个题目之间的相关性,这在大规模考试中是不应该出现的,需要在以后的命题考试中加以改进。

Spearman相关系数分析方法和上述分析方法类似,只需要在上述SPSS操作的第二个骤中选取“Pearson”复选框,程序就会按Pearson相关系数法进行统计分析,如果同时选中“Spearman”和“Pearson”复选框,程序将会同时计算按两种分析方法统计分析的数据,并会以不同的图表进行显示,而Cronbach a信度系数法计算方法与上述方法略有不同,其操作步骤如下:

(1)在SPSS数据窗口中,顺序点击【Analyze】→【Scale】→【Reliability Analysis...】,系统弹出“Reliability Analysis”信度分析设置对话框。

(2)将待计算的变量从左列的变量列表中导入到右侧的“items”变量中,在左下列的“model”选择项的下拉列表中确保选中“Alpha”(信度系数),点击“Statistics”选择项可以进行更为详细的参数设置,我们采用系统的默认值即可。

(3)参数设置完毕之后,点击【OK】,软件开始相关系数计算并输出运算结果。

4. 选择题的选项分析

在目前的教育招生考试中选择题是一种较常见的题型,考试研究人员关注较多的是对选择题基本特征、测量功能及其优缺点的理论探讨[1][2],对选择题干扰项的设计及其施测后的实际效果关注甚少,事实上施测后对题目各选项的有效性作出判断可为评价试题质量提供重要参考依据。我们利用统计中χ检验假设,对试卷中常见的选择题选择项进行统计分析。

教育考试的单项选择项一般设置为4个,其中仅有1个选择项是正确的。命题人员在设计选择项时,应当也必然对每道题目所有的选择项(正确选择项和干扰选择项)的考生作答情况作出预测,对考生作答的分布情况作出预估。考试结束后,研究人员应该对实测的情况与命题教师预测的情况进行对比分析,以检验考试效果是否达到了预测的目标。这和χ拟合度检验的思想具有一致性,因此可以尝试使用χ检验假设进行分析。

我们依据文献[3][4]的方法来介绍χ检验假设在考试数据分析中应用的基本原理,设变量E是命题者对某道试题的期望值,E=nP,n为样本容量,P为期望的相对频率,引入以下统计量:∑(O-E)/E,其中O为观察频数。

本文为全文原貌 未安装PDF浏览器用户请先下载安装 原版全文

我们需要进行的假设检验是:零假设H:选项的实测分布与期望分布相同;非零假设H:选项的实测分布与期望分布不同。

检验假设的思想:拟合度检验的统计量在确定的某种显著性水平下如果零假设是真,则检验统计量∑(O-E)/E呈近似χ分布,其自由度为研究变量的可能值减1;如果实测分布与期望的分布相当吻合,就不排除零假设,否则就排除零假设;最后对检验假设的结果进行解释。

数据分析的目的是判断考生实际的应答结果(实测数据)与命题期望的选择概率(期望数据)是否一致。我们随机抽取某省5542个高考考生的数学有效数据构成分析样本,利用SPSS进行统计分析。

SPSS数据统计分析的步骤如下:

(1)将考试数据导入SPSS软件,依次点击【Analyze】→【Nonparametric Tests】→【Chi-Square...】,弹出“Chi-Square Tests”对话框。

(2)将变量列表中待分析的题目序号导入到“Test Variables List”(检验变量列表)中,本例中题目的序号为t7。

(3)将对选择试题的每个选项的期望值依次输入到“Expected Values”所属的方框,具体操作方法是选中单选框“Values”,输入具体的期望数值,点击“Add”按钮,依次重复上述的步骤直至所有的选项的期望值输入完毕。

(4)点击【OK】,输出软件运算结果。

我们需要进行的假设检验,H:选项的实测分布与期望分布相同;H:选项的实测分布与期望分布不同。

假设检验的显著性水平为α=,χ=∑(O-E)/E,自由度为df=4-1=3,查χ分布表或利用相关软件可得P=,由于P>α,因此不能拒绝零假设,即选项的实测分布与期望分布相同。因此,检验结果在显著性水平时,没有足够的证据拒绝零假设,即可认为本题选项的实测分布与期望分布相同,也就是说本题的实际测试效果与命题教师预测的效果是一致的,命题教师准确地估计了考生的实际水平,这是分析获得的很重要的结论。

5. 结语

SPSS软件在考试数据统计分析中应用广泛,但大部分是集中在试题难度、均值、方差统计、考试数据的图表显示等几个方面,本文从一个新的角度利用SPSS软件对考试数据的相关性、检验假设等几个方面进行了尝试性统计分析,介绍了使用SPSS进行统计分析的一般方法和步骤。从上述分析来看,软件操作步骤和统计分析过程十分简单、快捷,对于测量学和统计学基础不太好的数据分析统计人员来说,只要遵循一定的操作步骤,就可以进行分析。

参考文献:

[1]王孝玲.教育测量(修订版)[M].上海:华东师范大学出版社,2006.

[2]雷新勇.大规模教育考试:命题与评价[M].上海:华东师范大学出版社,2006.

[3]李伟明,冯伯麟,余仁胜.考试的统计分析方法[M].北京:高等教育出版社,1990.

[4]雷新勇.考试数据的统计分析和解释[M].上海:华东师范大学出版社,2007.

猜你喜欢:

1. 统计学数据分析论文

2. spss统计分析实习心得

3. 统计学学年论文

4. 统计学分析论文

去知网下载,不过是要钱的,用手机冲10块钱就行了,估计就一块钱的样子,但一次最少只能冲10元

分析篇周守亮 我国房地产价格波动对消费的影响分析 —基于 VAR 模型的实证研究 —— 房地产价格的波动会直接 内容提要: 房地产业价格波动会对消费行为产生影响, 进而波及到 期和未来的消费。因此, 影响消费者尤其是租赁房屋者的购买房地产商品 我国整体宏观经济。 本文首先分析了房地产业价格波动影响消费的内在 从而影响其储蓄和预算决策, 结果便是会 机制; 其次, VAR 模型框架下, 在 通过脉冲响应函数和方差分解的方法, 的决策, 说明房地产业价格波动对消费具有显著的负影响,而且这种影响迅速, 直接导致居民消费行为的变化。 3.成本效应。 房地产价格的上升会带来显著的 并集中在短期; 最后, 提出了稳定房地产价格的对策。 成本效应, 进而影响到居民消费。因为, 对于租房 关键词: 房地产价格 消费 传导机制 VAR 模型 者而言,房地产价格的上升一般是与租金的上涨 作为国民经济支柱产业之一的房地产业, 在我国经济增 从 但是, 近年来房价上涨过快等一系列问题, 紧密联系的,这样就直接导致租房者的生活成本的上升, 长中的贡献很大。 由于房地产价格的上涨, 社区物业费, 装 而会使其减少消费。 阻碍了我国宏观经济的健康发展。 尤其是 2009 年, 房地产业 修费, 停车费等水涨船高, 居民维持居住的消费支出的增加, “地王” 频出, 从而推动相关地块的地价, 房价快速上升。 如 中 房地产价格的上升会导致企 进而使得生活成本增加。另外, 何遏制房价过快上涨, 已经成为政府和百姓最关心的热点问 业的运营成本的增加, 这里所说的运营成本包括员工生活成 题之一。房地产市场的健康稳定, 不仅仅是一个行业的发展 本增加导致的企业面对的工资上涨的压力和上涨的租金和 房地产的消费能带动其 问题, 更关系到国计民生, 百姓福利。 使用费用, 从而影响企业的经济行为。 他各行业的发展, 这种乘数效应会拉动内需, 从而维持我国 4.流动性约束效应。我国大多数居民, 都是通过贷款的 经济持续、 快速、 稳定的发展。因此, 研究房地产价格波动与 方式购买商品房。居民商品房抵押贷款是我国大多数商业 消费的关系尤为重要。 银行收入的重要来源。如果中央政府不对信贷额度进行调 控, 贷款购房这种使银行与居民获得双赢的行为会创造出大 一、 房地产价格波动对消费影响的内在机制 量的货币, 对市场的流动性造成巨大的冲击。 流动性的过剩, 房地产价格波动会通过各种渠道影响我国宏观经济, 其 自 必然导致通货膨胀。当居民敏感意识到 CPI 上涨的时候, 中消费是重要渠道之一。 房地产价格波动对消费影响的内在 同样, 如果房 然会收紧腰包减少消费, 而去购买保值的商品。 机制主要有如下几点: 地产价格飞涨超出人们的理性预期, 银行会对风险进行严格 1.财富效应。 房地产价格的波动会对供给者产生财富效 管理, 对房地产商品的价值进行重新评估。融资渠道的收紧 应, 具体包括实现的财富效应和潜在的财富效应。前者指所 会降低企业及居民的当期甚至未来消费预期,增加流动性 有者因为房地产价格的上涨而出售其住宅或利用其价值的 约束。 上升进行了再融资, 此时房地产价格的上升直接推动了实际 财富的增加, 扩大了当期的消费水平。后者是指所有者虽然 二、 房地产业价格波动对消费影响的实证分析 没有变现, 即房地产商品所有者即使在房地产价格上升时没 1.变量的选取和数据说明。本文的被解释变量为社会消 有出售或是进行再融资, 但是这种由于房地产价格上升带来 费品零售总额变动率 LSRt①, 由于居民的消费主要受到消费 大的潜在的价值上升使居民感受到了财富的增加, 从而扩大 者的收入和财富水平的影响, 因此, 本文的解释变量除了选 了边际消费倾向。 而且, 由于房地产价格的上涨, 居民也会对 择商品房平均销售价格变动率 FQt②以外,还选取城市人均可 未来的产生一个良好的预期, 增加当期消费。 支配收入变动率 SRRt③,以 1995 年第一季度至 2008 年第四 2.预算约束效应。相对而言, 房地产价格的波动会对需 季度的数据为样本, 来分析房地产价格波动对消费的影响。 求者产生预算约束效应。我国近年来人口流动量巨大, 截至 2.模型建立。建立计量模型之前, 必须先检验数据的平 2008 年底就有 3 亿人之多。从各个地方涌入城市的人群当 稳性, 如果数据是平稳的, 则可以直接进行最小二乘估计; 如 中, 大部分对房地产品具有刚性需求。 对于租房者来说, 房地 果数据非平稳, 则需检验各变量之间是否存在协整关系。结 产价格的迅速上升会增加出租房屋的机会成本, 从而引起租 果表明各变量的是非平稳的, 而对序列的一阶差分以后是平 金的上升, 进而使得这些租房者会减少当期消费。而这种效 协整检验主要用于分析变量之间是否具有长期均衡关 应对于想买房子的居民影响更大。对于房屋的潜在消费者, 稳的。 系, 其基本思想是: 如果两个 (或两个以上) 的时间序列是非 房地产价格的上涨, 会增加还款压力, 从而使买房者减少当 ①它用社会消费品零售总额除以上年同期数值以后减去 1 以后再乘以 100 来代表。②它用商品住宅销售价格指数 (上年同期 =100 减 100 ) 来代表。③它用城市人均可支配收入除以上年同期数值以后减去 1 以后再乘以 100 来代表。 57 PRICE : THEORY & PRACTICE 平稳的, 但它们的某种线性组合却表现出平稳性, 则这些变 量之间存在长期稳定性, 即协整关系。由于本文建立的系统 包含两个以上的时间序列,所以本文采用 Johansen 检验方 法。根据赤池信息准则 (AIC 和施瓦茨准则 ) 确定由 ) (SC , LSRt、 t、 t 组成的 VAR 模型的最大滞后期 K 为 3,所以 FQ SRR 协整选择滞后期为 3。以上协整检验结果表明 LSRt、 t、 FQ 序列存在 1 个协整关系,因此各序列存在长期的均衡 SRRt 关系, 并且可以得到一下协整向量: · 分析预测 · 1 , ) 在整个 10 期的方差分解中, 社会消费品零售总额变动率 自身的滞后影响最大, 这说明社会消费品零售总额变动率有 很强的惯性, 并且衰减比较缓慢。这主要是消费包括了很大 一部分的生活必需品的消费。 在收入和房价波动两个自变量 当中, 收入波动的对消费影响增加最快, 从第 2 期的 0.486% 增加到 5.26%,而房价波动对消费波动的方差贡献相对稳 定, 2.5%左右。 为表 1 社会消费品零售总额波动的方差分解表 从各变量之间的协整关系我们可以看出, 城市人均可支 配收入的波动对社会消费品零售总额波动有正的影响, 而房 地产价格的波动对社会消费品零售总额的波动有负的影响。 当城市人均可支配收入的增长率上升 1 个百分点时, 社会消 费品零售总额增长率上涨 3.057 个百分点; 而当房地产价格 增长率上升 1 个百分点时, 社会消费品零售总额下降 1.211 并 个百分点。这说明我国居民的消费主要是受收入的影响, 且弹性系数大于 1; 而房地产价格的波动对消费行为的影响 也非常明显, 当房价上涨过快时, 居民为了购买房子而节衣 缩食, 减少当前的消费支出, 且这种减少当前的消费而增加 未来消费的挤出效应要大于房价的增长而带来的财富效应 和成本效应。 3.利用 VAR 模型进行房地产价格影响的动态分析。脉 冲响应函数可以衡量来自随机扰动项的一个标准冲击对内 生变量当前和未来取值的影响, 通过对解释变量的方差进行 分解, 提供在每一解释变量的方差中, 其他解释变量所能解 释的比例,从而了解随机信息对模型内生变量的相对重要 性。 脉冲响应函数的结果依赖于各变量进入 VAR 的顺序。 收 入的波动是消费变动的先导因素, 而房价的波动对消费的影 响要通过一套复杂的传导机制,所以设置各变量进入 VAR 的 顺序为:LSRt、 t、 t 分别给 LSRt、 t、 t 一个标准差大 SRR FQ SRR FQ 小的冲击,得到关于社会消费品零售总额变动率的一个脉冲 (图 1 , ) 社会消费品 响应函数图。从脉冲响应图中可以看出④ 社会消费 零售总额变动率 LSRt 房地产价格波动的动态过程。 品零售总额的波动对房地产价格的波动有负向的响应, 且响 应速度比较块, 几乎在第 2 个季度就达到了最大值, 并且衰 减的速度也比较慢, 一直延续到 7 期之后。房地产价格的波 动不会对消费造成长期的影响, 主要是因为居民已经将房地 产价格的波动消化, 并且理性预期房地产价格的未来波动。 为了深入了解各变量信息对消费波动的相对重要性, 本 文对房价指数进行方差分解。从方差分解的结果看出 (表 三、 结论与对策建议根据实证研究结果, 房地产价格波动分别与消费之间具 房地产价格的上涨会迅速降低居民消费 有长期的均衡关系。 支出, 从而有悖于我国目前扩大内需, 维持经济稳定增长的 基本方针。因此, 控制房价的过快上涨也是扩大内需的一种 房屋的消费会刺激和带动其他行业的发展。因 途径。另外, 此, 房地产价格的稳定对拉动内需的作用巨大, 对于目前稳 定房地产价格的对策建议如下: 1.增加保障性住房的供给。 保障性住房的增加, 一方面会 促进商品房市场的竞争, 降低均衡价格; 另一方面会迅速释放 居民对住房的潜在需求。住房需求的实现,能够刺激其他消 费, 从而扩大内需, 带动我国国民经济持续、 稳定的发展。 2.影响投资预期。房地产品具有普通商品和投资品的双 重特性。 由于投资者对于房地产价格上涨和未来通货膨胀的 预期, 选择房地产投资。 因此, 政府和央行应采取稳健的货币 政策和财政政策, 影响汇率, 利率和通货膨胀的预期, 进而改 变资源配置, 降低投资者对房地产业的投资热情。 3.抑制投机性消费。在中央各部委通力合作和地方政府 积极配合下, 通过贷款利率和税率的变化, 对自住性消费和 投机性消费进行差别化。 完善商品房预售制度。 规范发展二 手房市场, 倡导住房租赁消费, 盘活住房租赁市场。 4.整顿和规范房地产市场秩序, 严格房地产企业市场准 入和退出的条件。完善我国土地拍卖和收入管理办法, 抑制 土地价格的过快上涨。 依法查处闲置、 囤积土地房源, 捂盘惜 售, 哄抬房价等违法违规行为。 参考文献: 〔1〕张红.房地产经济学〔M〕.北京: 清华大学出版社,2005 〔2〕梁云芳,高铁梅,贺书平.房地产市场与国民经济协调 发展的实证分析〔J〕.中国社会科学,2006(3) 〔3〕杨朝军,廖士光,孙洁.房地产业与国民经济协调发展 的国际经验及启示〔J〕.统计研究,2006(6) 〔4〕王先柱.VAR 模型框架下房地产业与经济增长关系的 实证检验〔J〕.经济问题,2007(7) 〔5〕陈秀梅,韩和林,赵元兵.我国房地产价格波动对经济 —兼论我国房地产宏观调控〔J〕.价格理论与实 的影响分析—— 践,2009(8) (作者单位: 东北财经大学 ) 图 1 消费对房价的脉冲响应 58 ④在图中, 横轴表示冲击作用的滞后期间数 (单位: 季度 , ) 纵轴表示社会消费品零售总额变动率, 实线表示分别表示社会消费品零售总额变 动率 LSRt 对 FQt 的冲击的响应程度。

  • 索引序列
  • 时间序列建模分析的论文题目
  • 时间序列分析的论文模板
  • 时间序列分析论文模板
  • 时间序列分析课程论文题目
  • 时间序列实证分析论文模板
  • 返回顶部