首页 > 期刊论文知识库 > 大数据对教育的应用论文参考文献

大数据对教育的应用论文参考文献

发布时间:

大数据对教育的应用论文参考文献

大数据时代下高中数学教学探讨论文

摘要: 大数据时代的到来,为人们的生产生活带来了极大的便利,也为教育教学的创新以及发展带来很大的影响。因此,在大数据时代下,要分析大数据的相关概念,然后对大数据时代下的高中数学教学方式的创新以及应用进行研究,以此来提高高中数学教学的有效性。

关键词: 大数据时代;高中数学;教学方式

信息技术的发展促使了大数据时代的到来,不仅增加了知识获取的途径,也改变了传统的学科教学方式,对促进高中数学教学改革的推进具有重要影响。因此,在大数据时代下,高中数学教师要利用大数据的技术优势,对现存的教学模式进行改革,突出数学教学的时代性,使学生在数学学习中既能够获得相应的知识,还能够树立正确的价值观念,促进高中生数学综合素养的形成,从而促进高中数学学科的健康发展。下面本文将对其进行详细论述。

1大数据相关概念

第一,大数据概念。数据是知识的来源,也是信息的一种记载方式。随着社会的发展和科学的进步,数据数量不断增多,对数据进行记录、测量以及分析的范围也就不断扩大,这标志着人类已经获得越来越多的知识和信息。大数据可以从宏观和微观两个角度去理解,多数学者都是从宏观上对大数据概念进行定义的,即用新的处理模式提高数据出来的执行力,洞察能力以及海量信息的优化能力。大数据具有数据信息量大、种类多种多样、真实性以及实效性强等特点。

第二,大数据分析概念。大数据分析简单来说就是要对大规模的数据进行科学分析,而对这些庞大的数据资源进行分析最根本的目的就是要发现和总结出这些数据中存在的规律以及模式,然后再利用数据的动态性特征去预测事物的未来发展趋势。

2大数据时代下高中数学教学方式的应用

利用大数据转变教师的教学角色

第一,应用大数据技术为教师教学模式的创新提供了机会。大数据时代的到来,传统的教学方法弊端逐渐显现,不仅体现出了与现代社会的不适应,也影响了学生学习积极性的提高。因此,在大数据时代,教师要利用大数据技术开展例如合作探究、个性化教学等多样化的教学方式,丰富课堂教学形式和内容,使学生不再死板地接受学习内容,而教师也能够根据学生的不同阶段开展针对性的.教学活动。教师教学角色和教学模式的转变,强调了学生在课堂中的主体地位,对活跃课堂气氛,提升课堂教学的有效性具有重要作用。例如:在学习“集合”这节课时,教师就可以采用合作探究的教学方式。首先,结合学生的差异性,将学生分成不同的小组,然后设计不同的问题组织学生进行探究,如:①用什么对集合进行表示?可以用一个元素表示集合吗?集合与元素之间有什么关系呢?②集合都有哪些特征呢,结合具体题目进行判断。之后,小组之间对研究结果进行互相交流。再后教师设计突出本节课重点的习题,给学生锻炼的机会。通过这样的教学方式,不同的学生组织到一起集思广益,互相帮助,不仅有利于促进学生思维的发散,还转变了教师的教学角色,提升了课堂学习效率。

第二,应用大数据技术对学生的学习情况进行深入了解。在传统的课堂教学形式下,教师过于侧重学生学习成绩的提升,忽视对学生的了解,导致教学针对性不强,影响教学效果。通常情况下,教师对学生了解是通过考试以及随堂测试的形式进行侧面分析,但这种分析得出的结果并不准确。但在大数据时代,利用大数据技术教师能够对学生的真实情况进行挖掘,然后根据学生之间的个性差异,对学生进行充分的了解,同时教师利用网络技术能够对学生的兴趣点和薄弱点进行准确判断,从而使自己的教学活动与学生的学习需求相吻合,突出数学教学的针对性。

利用大数据发挥学生的主体作用

第一,应用大数据提升学生的学习兴趣。在以往的教学方式下,学生是知识的接受者,部分教师为了提高教学效率甚至一味地向学生进行知识传输,殊不知这种填鸭式的教学方式,不仅无法激发学生的学习兴趣,还会造成学生的抵触情绪,对学习产生厌烦心理,进而影响数学学科教学效率的提升。因此,在大数据时代下,要充分发挥大数据的优势,利用大数据技术去激发学生的学习兴趣,丰富数学课堂的内容,使学生产生主动求知的欲望,能够积极主动地参与到教师组织的教学活动中来。大数据技术的具体应用可以从以下几个方面进行。首先,教师可以利用计算机平台设计预习内容,然后学生能够通过计算机平台自己完成教师布置的习题,教师之后可以借助大数据进行数据分析,这样教师在授课之前就能够找到学生学习的弱点以及难懂点。例如,教师可以利用大数据对学生在“函数”知识中存在的问题进行分析,然后了解到学生易错点和薄弱的地方,之后据此设计相应的课程教案。这样在课堂上学生就能够根据教师针对性的教学设计进行学习,以此来提升课堂教学的有效性。

第二,应用大数据提升学生的学习自主性。学科教学最关键的就是要提高学生的学习积极性,所以在高中数学教学中教师要注重学生自主性的提升。在高中数学教学中,课后知识巩固与习题练习是提高学生学习成绩的重要组成部分,但以往学生通常都是靠手抄错题的形式进行习题纠错和解答的,这种方式取得的效果并不显著,一是浪费了较多的学习时间,二是形式枯燥,学生学习自主性不高,在整理之后查漏补缺效果也不好。所以在此环节可以应用大数据技术为学生的课后自主学习提供平台。在大数据技术的支持下,教师可以将学生之前做好的试卷或者解答过程的问题输入到计算机系统当中,之后学生通过网络进行问题的下载和解答,以便于学生对问题进行查漏补缺。这种方式相比于传统的纠错形式,具有实时性的特征,有利于学生对纠错内容进行更好的掌握。

第三,应用大数据开展分层式的教学形式。目前我国多数高中数学课堂教学采取的都是班级统一上课的教学形式,模式单一固定,缺乏创新性,不仅不利于激发学生的学习积极性,还会影响学生的个性发挥,进而影响学生的潜能的挖掘。“因材施教”是孔子提出的教学思想,所以在大数据环境下,教师要利用大数据技术采取分层式教学的方式,结合每个学生的差异性,开展不同类型的教学活动。每个学生都是独立存在的个体,在思想、能力以及身心发展上都具有差异性,所以针对不同学生的不同特性开展分层教学活动,不仅能够满足学生层次化的学习需求,还能够有效地激发学生的学习兴趣。同时,教师在数学教学中尝试不同的教学方法,应用创新型的教学模式,也能够很好地活跃课堂氛围,调动学生的课堂参与度,从而达到提升学生学习效果的目的。

利用大数据拓宽学生获取知识的途径

大数据时代下,数据量和知识信息不断扩大,学生能够接触和学习到的内容也不断增多,所以教师要利用网络信息技术,在网络上搜集和整理更多的学习资料和信息,然后结合具体的教学目标和学习内容进行这些信息的分析和处理,以此来提高教师的教学效果。而在大数据环境下,学生也能够利用网络技术自行进行数学资源的获取,不断丰富自身的学习的内容,对抽象的数学知识进行简化。另外,在大数据环境下,教师要为学生提供真实、可靠的数据教学服务,引导学生养成善于开发和应用数据的意识和能力,能够根据自身的需要进行数据的获取,这也能够为教师教学互动的开展提供针对性,促进师生间的共同进步。例如:在学习“数列”这节课时,教师可以在课前引导学生利用网络自己进行课前的预习,对数列这节课的知识有个简单的认识,并能够对基本的知识点以及概念进行理解。之后,在课堂上教师可以利用多媒体技术开展具体的教学活动,将教学知识点直观、形象地展现在学生的面前,在课程结束之后,教师组织学生对自己设计的随堂测试问题进行解答,然后对错题进行整理。这种一系列的教学活动,能够提高学生大数据技术的利用与开发能力,对拓宽学生的知识获取途径,提高学生的学习效率具有关键作用。

利用大数据为家长提供教育平台

家庭在学生教育中具有非常重要的作用,家庭是学生的第一所学校,但以往的高中数学教学对家庭教育并不重视,家长没有广泛地参与到学校教育中去,而学校也没有为家长提供更多学习教育的机会,除了每次家长会之外,教师其他时间很少能见到家长,也就很少能参与学生的学习。但大数据时代,网络技术的应用为家长与学校教育的沟通提供了很宽广的平台,家长可以通过固定的软件进行账号的绑定,然后随时对自己家孩子的上课以及课后情况进行了解,进而更好地了解学生近期的表现情况。同时,家长也可以利用这些软件与教师进行交流,对学生的学习和生活情况进行了解,与教师进行充分的沟通和互动。使家长能够更好地配合学校的教育活动,在提高学生数学学习效果的同时,促进学生的健康成长。

3结语

综上所述,大数据时代下数据数量不断增多,网络技术的应用越发广泛,在此种环境下开展高中数学教学活动,不仅有利于创新教师的教学思想和教学方式,也有利于激发学生的学习兴趣,提高学生对数学学科的学习热情,从而达到大数据促进学科教学效果提升的目的。高中数学是一门综合性学科,能够培养学生的逻辑思维和推理能力,同时数学也是一门与人们日常生活密切相关的一门学科。所以在大数据时代,教师要利用好大数据信息,发挥好信息技术在教学中的优势,不断改善自身的教学角色,突出学生的主体地位,拓宽学生获取知识的途径,加强家长与学校的沟通等,使学生在大数据环境下能够养成乐于学习的好习惯和科学的学习方法,推动高中数学教学效果的有效提升,促进学生身心健康成长。

参考文献

[1]孟越飞.大数据背景下的高中数学教学[J].中小学电教(下半月),2018(1):22.

大数据对高校教育的推动作用论文

当代社会互联网发达,信息技术广泛应用与社会各个领域。当然,利用信息技术来推动高校教育发展也是在信息化教育进程之中。信息技术的发展迅速,大数据也就迅速堆积,大数据记录了信息技术发展的脚步,同样有利于信息技术在社会上的有效发展。高校作为发展人才的地方,自然少不了大量数据累积,信息量巨大,大数据对高校教育也就有着非常大的影响,它不仅推动着高校教育的发展,同时也反映着高校教育数据累积的过程,这类数据与外界环境的共享,一起发挥着大数据对高校教育的推动作用。

1大数据 发挥出在高校教育的发展中的推动作用

高校教育在多年的发展中,逐渐适应了信息化的快速发展进程,将高校教育信息化是必然的条件,这对于高校教育的改革和完善具有完全有效的作用。高校教育信息化同样对提高教学质量,引导创新教学模式,发挥着重要作用。高校教育信息化有利于加强校园文化建设,促进教育高水平发展,有利于改善教学方法,发挥教育各项职能,有利于人才培养,有利于信息交流和教学环境改善。高校教育信息化是教育发展和提升的必要条件,大量的信息交流必定会产生众多数据,针对大数据进行数据收集和处理,方便数据检索和查询。高校教育本身就具有信息量大、数据多样,繁琐的鞥、特点,所以很好的利用大数据为高校教育发展做贡献,一定能更好的推动高校教育的发展。大数据在课堂上的应用,能够改变传统的教学模式,发挥信息技术的无限潜能,不管是时间还是空间的阻碍,都能被信息技术所打破,这将有利于学生更好的融入课堂,使学生更适应课堂,从而使理解知识变得容易。大数据的广泛应用,同样适用于科学研究方面,大数据的全面信息的应用对于信息的共享和交流具有关键推进作用,现代信息技术在社会科学中的应用将改善传统的研究方法,这样不但能提升结果的可信度,更能够提升工作效率,再者,大数据在服务人们方面的应用,高校能够更好的掌握社会需求,了解社会对人才的渴求,从而培养适应社会的人才。这样的好处还有能够加强高校和社会的联系,使得高校能够更好地履行社会职能。大数据还有利于高校建设校园文化与文化传承。高校对于优秀民族和世界文化都有责任和义务传播给更多学生,高校作为文化载体,有更好的条件进行文化教育,通过信息技术手段,方便文化沟通,以及技术交流等。

2大数据与高校教育之间的联系

大数据与高校教育之间不只是简单的应用关系,高校也绝不是被动的接受大数据,其实高校与大数据之间是相互依靠,相互促进的,高校教育的发展同时也是大数据的发展,同时,大数据的发展,也同样推动了高校教育的发展进程。大数据可以说是一种工具,一是顺应了高校教育的发展进程,同时也为高校教育发展做出了许多改善与提升。比方说大数据推动了高校对人才培养的进程,有利于高校选拔适合社会的高等人才,挖掘人才潜在价值,更好的为社会服务,也是为人们服务,帮助学生找到自身优势,使得人才发展变得顺利。前面说的,大数据帮助高校建立完善的文化体系,有助于高校进行文化传承,教育形式改革与创新。大数据有助于高校了解社会需求,发展与培养适应社会的全能人才。反过来,高校教育对大数据的发展也具有非常重要的推进作用。高校由于信息量巨大,也有相对完整的记录和完善形式,对于数据的收集等方面也有非常完善的系统,所以高校教育对于大数据的发展也有积极作用。高校通过长时间的数据利用,自然会产生许多有效的数据分类和整理办法,对数据的研究也非常细致和详细,对数据也会进行补充和完善,分析和创新数据记录办法,所以高校教育方面对数据的整理利用工作也会对大数据的发展做出更多贡献。说完了高校教育与大数据之间的相互利用,还应考虑大数据与高校教育之间的共同发展。许多高校在建立了比较完善的大数据处理和利用方式之后,通常会比较频繁的与外界进行数据处理办法和收集方式的交流和共享,大部分的'数据处理工作都是有目的性的,比方说在网上的数据检索工作,都是在先想好需要什么才去网上搜索的,所以对数据的分类整理工作至关重要。高校教育通常分为大体上的文科和理科,那再往下细分还有工科医科师范类商学类等等。不同的数据有不同的处理方式,不同的数据门类之间有时候也是互通的,所以大数据的处理办法和整体思维都是有分别的,也是有联系的,需要研究者长时间的分析和整理。大数据的使用需要专业的认可,不然的话就会造成资源浪费,看来社会上的机构大概也只有高校和研究员具有资格认证大数据的作用了。大数据广泛应用了信息技术和社会科学等多种学科的资源,在保证数据真实可靠地情况下,为更多数据使用者提供良好的数据参考作用。换句话说,高校教育过程中对数据的使用情况直接影响了大数据的利用率,高校对大数据提供了更多的技术支持,同时也限制了大数据的发展,所以大数据与高校教育之间的这种关系影响了两者之间的共同发展。

3大数据在推动高校教育发展过程中遇到的问题

不可否认,大数据在推动高校教育的发展过程做出了很多贡献,但是在大数据推动高校教育的过程中,仍会出现某些问题,阻止了大数据的推动作用,造成大数据没有完全发挥其应有的功能,没有很好的为高校教育做出更大贡献。首先是高校对于大数据的利用率低,主要体现在进行数据搜索和收集过程中,对需求的认识面太过狭隘,导致数据收集工作不完善,收据收集的不完全,在应用过程中就会有困难,造成信息缺失和资源不足,所以究其原因还是数据收集工作者工作中存在纰漏,或者对数据手机方法不正确不规范,造成了数据缺失情况出现。其次出现大数据利用不完全的问题是因为数据运用者技术不规范和操作不当造成数据使用不完全。和传统的数据使用方法相比,现代的利用大数据进行数据检索和使用工作已经如虎添翼,通过科技手段可以毫不费力的从大量的数据库中筛选出自己所需要的数据来进行利用。这不但大大降低了操作难度,同时也节省了很多时间,我们都知道数据挖掘工作复杂而且繁琐,更需要数据挖掘工作者认真细致的到位的工作态度,一点马虎不得。但是通过技术手段,以及先进的互联网技术,可以很好的解决很多工作中可能会出现的问题。但是机器就是机器,永远不可能有人的思维,就算有那也是人给他格外添加的,永远不可能超过人的思维,所以机器所犯的错误可能也会有很多,这就需要人来利用外力对数据采集处理等工作进行监督,一点失误就会造成数据错误,影响数据的使用。

4提升大数据推动高校教育有效性的对策

针对以上几点问题,首先提出的解决办法就是使人们充分认识大数据的作用,这样从根本上让人们建立起对大数据的作用的基本概念,才能仍大数据更好地为人们服务。大数据实在信息大爆炸的现代社会中人们必不可少的一种数据收集处理方式,对于社会的快速发展,必然会伴随数以万计的数据,那么对于这么多眼花缭乱的数据,要想提取出真正对自己有用的数据,就要利用科技手段,建立完整的数据库,方便人们的数据提取和利用。在认识了大数据的作用之后,就要合理的利用好大数据,正确的使用大数据,在大数据使用过程中应当规范使用办法,避免使用者滥用大数据,检索和分类过程也应当认真细致的操作,因为不仅仅是一次失误,之后的每一个步骤都有可能会对数据处理工作造成误解和偏差,造成大数据的错误使用。为了更好的使用大数据,推动大数据对高校教育的发展,高校应建立完善的大数据使用平台,让使用者能够有地方可查,有资源可用,提高大数据的使用率。至于校园内的配置,应当及时维护,对大数据的保管工作也应时常监督和完善,进一步加强数据使用效率,发挥其应有的价值。在人员配置选拔方面,要认真仔细筛选真正有用的人才,对数据进行分类处理和详细整理,更好的帮助校园内数据使用者进行数据使用程序。

5总结

在当下数据大爆炸的时代,能够更好的使用信息的人,将信息为己所用,那么就是发挥了大数据的真正价值。正确看待大数据,合理利用大数据,将大数据与高校教育有机的结合在一起,尽力发挥大数据应有的价值,有利于人们探索未知的知识和学问,有效的利用好大数据,就是发挥了大数据对高校教育的推动作用。

参考文献 :

[1]邱仁宗,黄雯,翟晓梅.大数据技术的伦理问题[J].科学与社会,2014(01).

[2]王成红,陈伟能,张军,宋苏,鲁仁全.大数据技术与应用中的挑战性科学问题[J].中国科学基金,2014(02).

[3]祝智庭,管珏琪.教育变革中的技术力量[J].中国电化教育,2014(01).

大数据意义

现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。[10]阿里巴巴创办人马云来台演讲中就提到,未来的时代将不是IT时代,而是DT的时代,DT就是Data Technology数据科技,显示大数据对于阿里巴巴集团来说举足轻重。[11]

有人把数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是赢得竞争的关键。[12]

大数据的价值体现在以下几个方面:

(1)对大量消费者提供产品或服务的企业可以利用大数据进行精准营销;

(2)做小而美模式的中小微企业可以利用大数据做服务转型;

(3)面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。

不过,“大数据”在经济发展中的巨大意义并不代表其能取代一切对于社会问题的理性思考,科学发展的逻辑不能被湮没在海量数据中。著名经济学家路德维希·冯·米塞斯曾提醒过:“就今日言,有很多人忙碌于资料之无益累积,以致对问题之说明与解决,丧失了其对特殊的经济意义的了解。”这确实是需要警惕的。

在这个快速发展的智能硬件时代,困扰应用开发者的一个重要问题就是如何在功率、覆盖范围、传输速率和成本之间找到那个微妙的平衡点。企业组织利用相关数据和分析可以帮助它们降低成本、提高效率、开发新产品、做出更明智的业务决策等等。例如,通过结合大数据和高性能的分析,下面这些对企业有益的情况都可能会发生:

(1)及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元。

(2)为成千上万的快递车辆规划实时交通路线,躲避拥堵。

(3)分析所有SKU,以利润最大化为目标来定价和清理库存。

(4)根据客户的购买习惯,为其推送他可能感兴趣的优惠信息。

(5)从大量客户中快速识别出金牌客户。

(6)使用点击流分析和数据挖掘来规避欺诈行为。

大数据的应用论文参考文献

大数据论文参考文献回答于2018-09-14现今人们的生活到处充斥着大数据给我们带来的便利,那么大数据论文参考文献有哪些呢?小编为方便大家特意搜集了一些大数据论文参考文献,希望能帮助到大家。大数据论文参考文献一:[1] 陈杰. 本地文件系统数据更新模式研究[D]. 华中科技大学 2014[2] 刘洋. 层次混合存储系统中缓存和预取技术研究[D]. 华中科技大学 2013[3] 李怀阳. 进化存储系统数据组织模式研究[D]. 华中科技大学 2006[4] 邓勇强,朱光喜,刘文明. LDPC码的低复杂度译码算法研究[J]. 计算机科学. 2006(07)[5] 陆承涛. 存储系统性能管理问题的研究[D]. 华中科技大学 2010[6] 罗东健. 大规模存储系统高可靠性关键技术研究[D]. 华中科技大学 2011[7] 王健宗. 云存储服务质量的若干关键问题研究[D]. 华中科技大学 2012[8] 余雪里. 金属氧化物pn异质结对光电响应与气体敏感特性的作用[D]. 华中科技大学 2014[9] 王玮. 基于内容关联密钥的视频版权保护技术研究[D]. 华中科技大学 2014[10] 韩林. 云存储移动终端的固态缓存系统研究[D]. 华中科技大学 2014[11] 田宽. 宫内节育器用Cu/LDPE复合材料的表面改性研究[D]. 华中科技大学 2013[12] 聂雪军. 内容感知存储系统中信息生命周期管理关键技术研究[D]. 华中科技大学 2010[13] 王鹏. 低密度奇偶校验码应用于存储系统的关键技术研究[D]. 华中科技大学 2013[14] 刁莹. 用数学建模方法评价存储系统性能[D]. 哈尔滨工程大学 2013[15] 符青云. 面向大规模流媒体服务的高性能存储系统研究[D]. 电子科技大学 2009[16] 王玉林. 多节点容错存储系统的数据与缓存组织研究

大数据对高校教育的推动作用论文

当代社会互联网发达,信息技术广泛应用与社会各个领域。当然,利用信息技术来推动高校教育发展也是在信息化教育进程之中。信息技术的发展迅速,大数据也就迅速堆积,大数据记录了信息技术发展的脚步,同样有利于信息技术在社会上的有效发展。高校作为发展人才的地方,自然少不了大量数据累积,信息量巨大,大数据对高校教育也就有着非常大的影响,它不仅推动着高校教育的发展,同时也反映着高校教育数据累积的过程,这类数据与外界环境的共享,一起发挥着大数据对高校教育的推动作用。

1大数据 发挥出在高校教育的发展中的推动作用

高校教育在多年的发展中,逐渐适应了信息化的快速发展进程,将高校教育信息化是必然的条件,这对于高校教育的改革和完善具有完全有效的作用。高校教育信息化同样对提高教学质量,引导创新教学模式,发挥着重要作用。高校教育信息化有利于加强校园文化建设,促进教育高水平发展,有利于改善教学方法,发挥教育各项职能,有利于人才培养,有利于信息交流和教学环境改善。高校教育信息化是教育发展和提升的必要条件,大量的信息交流必定会产生众多数据,针对大数据进行数据收集和处理,方便数据检索和查询。高校教育本身就具有信息量大、数据多样,繁琐的鞥、特点,所以很好的利用大数据为高校教育发展做贡献,一定能更好的推动高校教育的发展。大数据在课堂上的应用,能够改变传统的教学模式,发挥信息技术的无限潜能,不管是时间还是空间的阻碍,都能被信息技术所打破,这将有利于学生更好的融入课堂,使学生更适应课堂,从而使理解知识变得容易。大数据的广泛应用,同样适用于科学研究方面,大数据的全面信息的应用对于信息的共享和交流具有关键推进作用,现代信息技术在社会科学中的应用将改善传统的研究方法,这样不但能提升结果的可信度,更能够提升工作效率,再者,大数据在服务人们方面的应用,高校能够更好的掌握社会需求,了解社会对人才的渴求,从而培养适应社会的人才。这样的好处还有能够加强高校和社会的联系,使得高校能够更好地履行社会职能。大数据还有利于高校建设校园文化与文化传承。高校对于优秀民族和世界文化都有责任和义务传播给更多学生,高校作为文化载体,有更好的条件进行文化教育,通过信息技术手段,方便文化沟通,以及技术交流等。

2大数据与高校教育之间的联系

大数据与高校教育之间不只是简单的应用关系,高校也绝不是被动的接受大数据,其实高校与大数据之间是相互依靠,相互促进的,高校教育的发展同时也是大数据的发展,同时,大数据的发展,也同样推动了高校教育的发展进程。大数据可以说是一种工具,一是顺应了高校教育的发展进程,同时也为高校教育发展做出了许多改善与提升。比方说大数据推动了高校对人才培养的进程,有利于高校选拔适合社会的高等人才,挖掘人才潜在价值,更好的为社会服务,也是为人们服务,帮助学生找到自身优势,使得人才发展变得顺利。前面说的,大数据帮助高校建立完善的文化体系,有助于高校进行文化传承,教育形式改革与创新。大数据有助于高校了解社会需求,发展与培养适应社会的全能人才。反过来,高校教育对大数据的发展也具有非常重要的推进作用。高校由于信息量巨大,也有相对完整的记录和完善形式,对于数据的收集等方面也有非常完善的系统,所以高校教育对于大数据的发展也有积极作用。高校通过长时间的数据利用,自然会产生许多有效的数据分类和整理办法,对数据的研究也非常细致和详细,对数据也会进行补充和完善,分析和创新数据记录办法,所以高校教育方面对数据的整理利用工作也会对大数据的发展做出更多贡献。说完了高校教育与大数据之间的相互利用,还应考虑大数据与高校教育之间的共同发展。许多高校在建立了比较完善的大数据处理和利用方式之后,通常会比较频繁的与外界进行数据处理办法和收集方式的交流和共享,大部分的'数据处理工作都是有目的性的,比方说在网上的数据检索工作,都是在先想好需要什么才去网上搜索的,所以对数据的分类整理工作至关重要。高校教育通常分为大体上的文科和理科,那再往下细分还有工科医科师范类商学类等等。不同的数据有不同的处理方式,不同的数据门类之间有时候也是互通的,所以大数据的处理办法和整体思维都是有分别的,也是有联系的,需要研究者长时间的分析和整理。大数据的使用需要专业的认可,不然的话就会造成资源浪费,看来社会上的机构大概也只有高校和研究员具有资格认证大数据的作用了。大数据广泛应用了信息技术和社会科学等多种学科的资源,在保证数据真实可靠地情况下,为更多数据使用者提供良好的数据参考作用。换句话说,高校教育过程中对数据的使用情况直接影响了大数据的利用率,高校对大数据提供了更多的技术支持,同时也限制了大数据的发展,所以大数据与高校教育之间的这种关系影响了两者之间的共同发展。

3大数据在推动高校教育发展过程中遇到的问题

不可否认,大数据在推动高校教育的发展过程做出了很多贡献,但是在大数据推动高校教育的过程中,仍会出现某些问题,阻止了大数据的推动作用,造成大数据没有完全发挥其应有的功能,没有很好的为高校教育做出更大贡献。首先是高校对于大数据的利用率低,主要体现在进行数据搜索和收集过程中,对需求的认识面太过狭隘,导致数据收集工作不完善,收据收集的不完全,在应用过程中就会有困难,造成信息缺失和资源不足,所以究其原因还是数据收集工作者工作中存在纰漏,或者对数据手机方法不正确不规范,造成了数据缺失情况出现。其次出现大数据利用不完全的问题是因为数据运用者技术不规范和操作不当造成数据使用不完全。和传统的数据使用方法相比,现代的利用大数据进行数据检索和使用工作已经如虎添翼,通过科技手段可以毫不费力的从大量的数据库中筛选出自己所需要的数据来进行利用。这不但大大降低了操作难度,同时也节省了很多时间,我们都知道数据挖掘工作复杂而且繁琐,更需要数据挖掘工作者认真细致的到位的工作态度,一点马虎不得。但是通过技术手段,以及先进的互联网技术,可以很好的解决很多工作中可能会出现的问题。但是机器就是机器,永远不可能有人的思维,就算有那也是人给他格外添加的,永远不可能超过人的思维,所以机器所犯的错误可能也会有很多,这就需要人来利用外力对数据采集处理等工作进行监督,一点失误就会造成数据错误,影响数据的使用。

4提升大数据推动高校教育有效性的对策

针对以上几点问题,首先提出的解决办法就是使人们充分认识大数据的作用,这样从根本上让人们建立起对大数据的作用的基本概念,才能仍大数据更好地为人们服务。大数据实在信息大爆炸的现代社会中人们必不可少的一种数据收集处理方式,对于社会的快速发展,必然会伴随数以万计的数据,那么对于这么多眼花缭乱的数据,要想提取出真正对自己有用的数据,就要利用科技手段,建立完整的数据库,方便人们的数据提取和利用。在认识了大数据的作用之后,就要合理的利用好大数据,正确的使用大数据,在大数据使用过程中应当规范使用办法,避免使用者滥用大数据,检索和分类过程也应当认真细致的操作,因为不仅仅是一次失误,之后的每一个步骤都有可能会对数据处理工作造成误解和偏差,造成大数据的错误使用。为了更好的使用大数据,推动大数据对高校教育的发展,高校应建立完善的大数据使用平台,让使用者能够有地方可查,有资源可用,提高大数据的使用率。至于校园内的配置,应当及时维护,对大数据的保管工作也应时常监督和完善,进一步加强数据使用效率,发挥其应有的价值。在人员配置选拔方面,要认真仔细筛选真正有用的人才,对数据进行分类处理和详细整理,更好的帮助校园内数据使用者进行数据使用程序。

5总结

在当下数据大爆炸的时代,能够更好的使用信息的人,将信息为己所用,那么就是发挥了大数据的真正价值。正确看待大数据,合理利用大数据,将大数据与高校教育有机的结合在一起,尽力发挥大数据应有的价值,有利于人们探索未知的知识和学问,有效的利用好大数据,就是发挥了大数据对高校教育的推动作用。

参考文献 :

[1]邱仁宗,黄雯,翟晓梅.大数据技术的伦理问题[J].科学与社会,2014(01).

[2]王成红,陈伟能,张军,宋苏,鲁仁全.大数据技术与应用中的挑战性科学问题[J].中国科学基金,2014(02).

[3]祝智庭,管珏琪.教育变革中的技术力量[J].中国电化教育,2014(01).

大数据意义

现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。[10]阿里巴巴创办人马云来台演讲中就提到,未来的时代将不是IT时代,而是DT的时代,DT就是Data Technology数据科技,显示大数据对于阿里巴巴集团来说举足轻重。[11]

有人把数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是赢得竞争的关键。[12]

大数据的价值体现在以下几个方面:

(1)对大量消费者提供产品或服务的企业可以利用大数据进行精准营销;

(2)做小而美模式的中小微企业可以利用大数据做服务转型;

(3)面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。

不过,“大数据”在经济发展中的巨大意义并不代表其能取代一切对于社会问题的理性思考,科学发展的逻辑不能被湮没在海量数据中。著名经济学家路德维希·冯·米塞斯曾提醒过:“就今日言,有很多人忙碌于资料之无益累积,以致对问题之说明与解决,丧失了其对特殊的经济意义的了解。”这确实是需要警惕的。

在这个快速发展的智能硬件时代,困扰应用开发者的一个重要问题就是如何在功率、覆盖范围、传输速率和成本之间找到那个微妙的平衡点。企业组织利用相关数据和分析可以帮助它们降低成本、提高效率、开发新产品、做出更明智的业务决策等等。例如,通过结合大数据和高性能的分析,下面这些对企业有益的情况都可能会发生:

(1)及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元。

(2)为成千上万的快递车辆规划实时交通路线,躲避拥堵。

(3)分析所有SKU,以利润最大化为目标来定价和清理库存。

(4)根据客户的购买习惯,为其推送他可能感兴趣的优惠信息。

(5)从大量客户中快速识别出金牌客户。

(6)使用点击流分析和数据挖掘来规避欺诈行为。

网络安全与大数据技术应用探讨论文

摘要: 随着互联网技术的高速发展与普及,现如今互联网技术已经广泛应用于人们工作与生活之中,这给人们带来了前所未有的便利,但与此同时各种网络安全问题也随之显现。基于此,本文主要介绍了大数据技术在网络安全领域中的具体应用,希望在网络系统安全方面进行研究的同时,能够为互联网事业的持续发展提供可行的理论参考。

关键词: 网络安全;大数据技术;应用分析

前言

随着近年来互联网技术的不断深入,网络安全事故也随之频频发生。出于对网络信息安全的重视,我国于2014年成立了国家安全委员会,正式将网络安全提升为国家战略部署,这同时也表示我国网络信息安全形势不容乐观,网络攻击事件处于高发状态。木马僵尸病毒、恶意勒索软件、分布式拒绝服务攻击、窃取用户敏感信息等各类网络攻击事件的数量都处于世界前列。时有发生的移动恶意程序、APT、DDOS、木马病毒等网络攻击不仅会严重阻碍网络带宽、降低网络速度、并且对电信运营商的企业声誉也会产生一定影响。根据大量数据表明,仅仅依靠传统的网络防范措施已经无法应对新一代的网络威胁,而通过精确的检测分析从而在早期预警,已经成为现阶段网络安全能力的关键所在。

1网络安全问题分析

网络安全问题不仅涉及公民隐私与信息安全,更关乎国事安全,例如雅虎的信息泄露,导致至少五亿条用户信息被窃;美国棱镜门与希拉里邮件门等等事件都使得网络安全问题进一步升级、扩大。随着互联网构架日益复杂,网络安全分析的数据量也在与日俱增,在由TB级向PB级迈进的过程,不仅数据来源丰富、内容更加细化,数据分析所需维度也更为广泛。伴随着现阶段网络性能的增长,数据源发送速率更快,对安全信息采集的速度要求也就越高,版本更新延时等导致的Odav等漏洞日渐增多,网络攻击的影响范围也就进一步扩大;例如APT此类有组织、有目标且长期潜伏渗透的多阶段组合式攻击更加难以防范,唯有分析更多种类的安全信息并融合多种手段进行检测抵御。在传统技术架构中,大多使用结构化数据库来进行数据存储,但由于数据存储的成本过高,系统往往会将原始数据进行标准化处理后再进行存储,如此易导致数据的丢失与失真以及历史数据难以保存而造成的追踪溯源困难;同时对于嘈杂的大型、非结构化数据集的执行分析以及复杂查询效率很低,导致数据的实时性及准确性难以保证,安全运营效率不高,因此传统网络安全技术已经难以满足现阶段网络安全分析的新要求。大数据技术这一概念最初由维克托.迈尔.舍恩伯格与肯尼斯.库克耶在2008年出版的《大数据时代》一书中提出的,大数据是指不采用随机分析法,而是对所有的数据进行综合分析处理。大数据技术作为现阶段信息架构发展的趋势之首,其独有的高速、多样、种类繁多以及价值密度低等特点,近年来被广泛应用于互联网的多个领域中。大数据的战略意义在于能够掌握庞大的数据信息,使海量的原始安全信息的存储与分析得以实现、分布式数据库相比传统数据库的存储成本得以降低,并且数据易于在低廉硬件上的水平扩展,极大地降低了安全投入成本;并且伴随着数据挖掘能力的大幅提高,安全信息的采集与检测响应速度更加快捷,异构及海量数据存储的支持打造了多维度、多阶段关联分析的基础,提升了分析的深度与广度。对于网络安全防御而言,通过对不同来源的数据进行综合管理、处理、分析、优化,可实现在海量数据中极速锁定目标数据,并将分析结果实时反馈,对于现阶段网络安全防御而言至关重要。

2大数据在网络安全中的应用

将大数据运用到网络安全分析中,不仅能够实现数据的优化与处理,还能够对日志与访问行为进行综合处理,从而提高事件处理效率。大数据技术在网络安全分析的效果可从以下几点具体分析:

数据采集效率

大数据技术可对数据进行分布式地采集,能够实现数百兆/秒的采集速度,使得数据采集速率得到了极大的提高,这也为后续的关联分析奠定了基础。

数据的存储

在网络安全分析系统中,原始数据的存储是至关重要的,大数据技术能够针对不同数据类型进行不同的数据采集,还能够主动利用不同的方式来提高数据查询的效率,比如在对日志信息进行查询时适合采用列式的存储方式,而对于分析与处理标准化的数据,则适合采用分布式的模式进行预处理,在数据处理后可将结果存放在列式存储中;或者也可以在系统中建立起MapReduce的查询模块,在进行查询的时候可直接将指令放在指定的节点,完成处理后再对各个节点进行整理,如此能够确保查询的速度与反应速度。

实时数据的分析与后续数据的处理

在对实时数据的分析中,可以采用关联分析算法或CEP技术进行分析,如此能够实现对数据的采集、分析、处理的综合过程,实现了更高速度以及更高效率的处理;而对于统计结果以及数据的处理,由于这种处理对时效性要求不高,因此可以采用各种数据处理技术或是利用离线处理的方式,从而能够更好地完成系统风险、攻击方面的分析。

关于复杂数据的分析

在针对不同来源、不同类型的复杂数据进行分析时,大数据技术都能够更好的完成数据的分析与查询,并且能够有效完成复杂数据与安全隐患、恶意攻击等方面的处理,当网络系统中出现了恶意破坏、攻击行为,可采用大数据技术从流量、DNS的角度出发,通过多方面的数据信息分析实现全方位的防范、抵御。

3基于大数据技术构建网络系统安全分析

在网络安全系统中引入大数据技术,主要涉及以下三个模块:

数据源模块

网络安全系统中的`数据及数据源会随着互联网技术的进步而倍增技术能够通过分布式采集器的形式,对系统中的软硬件进行信息采集,除了防火墙、检测系统等软件,对设备硬件的要求也在提高,比如对服务器、存储器的检查与维护工作。

数据采集模块

大数据技术可将数据进行对立分析,从而构建起分布式的数据基础,能够做到原始数据从出现到删除都做出一定说明,真正实现数据的访问、追溯功能,尤其是对数据量与日俱增的今天而言,分布式数据存储能够更好地实现提高数据库的稳定性。

数据分析模块

对网络安全系统的运营来说,用户的业务系统就是安全的最终保障对象,大数据分析能够在用户数据产生之初,及时进行分析、反馈,从而能够让网络用户得到更加私人化的服务体验。而对于用户而言,得其所想也会对网络系统以及大数据技术更加的信任,对于个人的安全隐私信息在系统上存储的疑虑也会大幅降低。当前网络与信息安全领域正在面临着全新的挑战,企业、组织、个人用户每天都会产生大量的安全数据,现有的安全分析技术已经难以满足高效率、精确化的安全分析所需。而大数据技术灵活、海量、快速、低成本、高容量等特有的网络安全分析能力,已经成为现阶段业界趋势所向。而对互联网企业来说,实现对数据的深度“加工处理”,则是实现数据增值的关键所在,对商业运营而言是至关重要的。

4结语

在当下时代,信息数据已经渗透到各个行业及业务领域中,成为重要的社会生产因素。正因如此,互联网数据产生的数量也在与日倍增中,这给网络安全分析工作带来了一定难度与压力,而大数据技术则能够很好的完善这一问题。在网络系统中应用大数据技术不仅能够满足人们对数据处理时所要求的高效性与精准性,并且能够在此基础上构建一套相对完善的防范预警系统,这对维护网络系统的安全起着非常关键的作用,相信大数据技术日后能够得到更加广泛的应用。

参考文献:

[1]鲁宛生.浅谈网络安全分析中大数据技术的应用[J].数码世界,2017.

[2]王帅,汪来富,金华敏等.网络安全分析中的大数据技术应用[J].电信科学,2015.

[3]孙玉.浅谈网络安全分析中的大数据技术应用[J].网络安全技术与应用,2017.

关于大数据应用的论文参考文献

《大数据技术对财务管理的影响》

摘 要:大数据可以快速帮助财务部门建立财务分析工具,而不是单纯做账。大数据应该不仅仅局限于本单位的微观数据,更为重要的关注其他单位的宏观数据。大数据技术不仅带来了企事业单位财务数据搜集的便利和挑战,而且也衍生出了诸多关于单位人员个人信息保密等问题的积极探索。本文主要研究大数据技术(meta-data或big data)对企业或事业单位财务管理的影响,以期为财务数据管理的安全性提供一种分析的依据和保障。

关键词:大数据;财务管理;科学技术;知识进步

数据是一个中性概念。人类自古以来几千年的辉煌变迁,无外乎就是数据的搜集和使用过程而已。纵观古今中外的人际交流与合作,充满着尔虞我诈和勾心斗角,那么他们在争什么呢?实际上是在争夺信息资源;历史上品相繁多的战争,实际上不是在维持什么所谓的正义和和平,抑或为了人间的正道,而是在争夺数据的使用权;“熙熙攘攘皆为利往、攘攘熙熙皆为利来”的世俗变迁逻辑已经让位于数据游戏的哲学法则。人类自英国产业革命以来所陆续发明的技术,尽管被人们美其名曰“第四次科技革命的前沿技术”,实际上不过就是“0”和“1”两个数字的嬉戏而已。正如有学者指出的,汽车技术、生命科学技术、基因技术、原子能技术、宇宙航天技术、纳米技术、电子计算机技术,看起来美轮美奂,实则隐含着杀机,那就是由于人们把技术当成了目的后,导致了“技术专制”后的“技术腐败”和“技术灾难”。人类一方面在懒惰基因的诱惑下,发明了诸多所谓的机械装置,中国叫“机巧”;另一方面又在勤奋的文化下,发明了诸多抑制懒惰的制度和机制。本来想寻求节俭,结果却越来越奢侈;本来想节约,结果却越来越浪费;本来想善良,结果却越来越邪恶;本来想美好,结果却越来越丑陋。正如拉美特里所说:“人是什么?一半是天使,一半是野兽。当人拼命想成为天使的时候,其实他会逐渐变成野兽;当人想极力崇拜野兽的时候,结果会逐渐接近天使。”我们不是在宣讲宿命的技术,我们只是在预测技术的宿命。本文主要研究大数据技术(meta-data或big data)对企业或事业单位财务管理的影响,以期为财务数据管理的安全性提供一种分析的依据和保障。

一、大数据技术加大了财务数据收集的难度

财务数据的收集是一个复杂的系统工程,国际上一般采用相对性原则,即首先利用不完全统计学的知识对数据进行初步的计算,接着对粗糙的数据进行系统的罗列,最后对类型化的数据进行明分梳理。使用者如果想进入该数据库,就必须拥有注册的用户名和密码。由于国际上对于网络数据的监督均采取了实名注册的模式,所以一旦该用户进入到核心数据库之后想窃取数据,一般都会暴露自己的bug地址源,网管可以循着这一唯一性存留,通过云计算迅速找到该网络终端的IP地址,于是根据人机互动原理,再加上各种网吧所安装的监控平台,可以迅速找到数据库的剽窃者。如果按照上述数据变迁逻辑,那么财务数据的收集似乎变得易如反掌,而事实并非如此。因为:①数据的量化指标受制于云计算服务器的安全性。当云服务器受到不可抗力的打击,如地震、水患、瘟疫、鼠疫、火灾、原子能泄露或各种人为破坏的作用,数据会呈现离散型散落。这时的数据丢失会演变成数字灾难;②各种数据版权的拥有者之间很难实现无缝隙对接。比如在经过不同服务器的不同数据流之间,很难实现现实意义上的自由流通。正如专家所指出的,教育服务器的事业单位的人员数据、行政部门人事管理部门的保密性数据、军事单位的军事数据、医疗卫生事业的数据、工商注册数据、外事数据等在无法克服实际权力的分割陷阱之前,很难实现资源的共享,这时对数据的所谓搜集都会演化为“不完全抽样”的数字假象。由此而衍生的数据库充其量只是一部分无用的质料而已。

二、大数据技术影响了财务数据分析的准确性

对于搞财务管理的人来说,财务数据的收集只是有效实现资源配置的先决条件,真正有价值的或者说最为关键的环节是对财务数据的分析。所谓“财务数据分析”是指专业的会计人员或审计人员对纷繁复杂的单位人力资源信息进行“去魅”的过程。所谓“去魅”就是指去粗取精、去伪存真、由此及彼、由表及里、内外互联,彼此沟通、跨级交流、跨界合作。在较为严格的学术意义上,分析的难度广泛存在与财务工作人员的日常生活中。大数据技术尽管为数据的搜集提供了方便法门,但同时加大了财务人员的工作量和工作难度。原先只是在算盘或者草稿纸上就可以轻松解决的数据计算,现在只能借助于计算机和云图建模。对于一些借助于政治权力因素或者经济利益因素,抑或是借助于自身的人际关系因素上升到财务管理部门的职工来说,更大的挑战开始了。他们不知道如何进行数据流的图谱分析,不知道基于计算机软件技术的集成线路技术的跌级分类,不知道基于非线性配置的液压传动技术的模板冲压技术,不知道逆向网络模型来解决外部常态财务变量的可篡改问题。由于技术不过硬,导致了领导安排的任务不能在规定的时间内完成,即时仓促做完的案例,也会因为数据分析技术的落后而授人以柄,有的脾气不好的领导可能会大发雷霆;脾气好的领导只是强压着内心的怒火,那种以静制动的魄力和安静更是摄魂夺魄。所以说数据分析难度的增加不是由于财务人员的良心或善根缺失,在很大程度上是由于技术的进步和大数据理念给我们带来的尖锐挑战。对于普通的没有家庭和社会背景的财务管理人员来说,能做的或者说唯一可做的就是尊重历史发展的周期律,敬畏生生不息的科学革命,认真领会行政首长的战略意图,提升自己的数据分析技术,升华在自身的“硬实力”。否则觊觎于领导的良心发现和疏忽大意,期望技术的静止或者倒退,抑或是在违法犯罪之后天真的认为可以相安无事,可能都只会落得“恢恢乎如丧家之犬”的境遇。

三、大数据技术给财务人事管理带来了挑战

一个单位的财务人事管理牵扯到方方面面的问题,其意义不可小视。一般来讲,单位在遴选财务管理部门管理人员的时候,大多从德才绩行四个方面全面权衡。然而这种“四有标准”却隐含着潜在的危机和不可避免的长远威胁,这其中的缘由就在于人性的复杂性和不可猜度性。历史和现实一再告诉人们,单纯看眼前的表现和话语的华丽,不仅不能对人才的素质进行准确的评价,而且还会导致官员的远期腐败和隐性腐败。对于中国的腐败,国人大多重视了制度和道德的缘起,却往往忽视了财务管理的因素。试想如果财务管理人员牢牢践行“焦裕禄精神”,不对任何政治权力开绿灯,国有资产又如何流出国库而了无人知晓呢?事实上,中国的所有腐败,不论是国有资产的国外流失抑或是国内流失,都在很大程度上与财务人员有关,可能有些管理人员会强调那不是自己的责任,出纳签字是领导的授意,会计支出费用那是长官的意思清晰表示。实际上,处于权力非法授予的签字、盖章、取现、流转和变相洗钱都是违法的,甚至是犯罪的。间接故意也是应当追究责任的。值得高兴的是,伴随着数字模拟技术的演进,财务管理中的腐败现象和人事管理科学化问题得到了极大的改善,相关领导伸手向财务要钱的行为,不仅会受到数据进入权限的限制,而且还会受到跟数据存留的监控,只要给予单位科技人员以足够的权限,想查找任何一笔资金的走向就变得非常简单,而且对于每一笔资金的经手者的信息也会了如指掌。这在一定程度上减少了只会指挥、不懂电脑的首长的孵化几率。

四、大数据技术加大了单位信息保密的难度

IMA(美国注册会计师协会)研发副总裁Raef・Lawson博士曾经指出:“客观上讲,大数据技术的正面效用是非常明显的,但一个不容回避的事实是大数据技术为财务信息的安全性提出了越来越严峻的挑战。我们已经注意到,在欧洲大陆、美洲大陆已经存在基于数据泄露而产生的各种抗议活动,这些活动牵扯到美国的数据窃听丑闻、俄罗斯对军事数据的强制性战友举动、以色列数据专家出卖阿拉伯世界经济数据的案件、在东方的中国香港一部分利用数据的窃取而发家致富的顶尖级黑客专家。”在数据集成的拓扑领域,大数据技术的保密性挑战肇始于蚁群算法的先天性缺陷。本来数据流的控制是依靠各种所谓的交易密码,实际上这些安全密码只是数据的另一种分类和组合而已。在数据的非线性组合和线路的真空组装模式下,任何密码都只是阻挡了技术侏儒的暂时性举动,而没有超出技术本身的惰性存在。当一个hacker掌握了源代码的介质性接洽技术之后,所剩下的就是信息和数据的搜集了,只要有足够的数据源,信息的户的几乎是轻而易举的。

2003年,北京的一家名为飞塔公司的防火墙安全软件在中关村科技城闪亮上市。该安全控制软件的开发者随机开发了一款名曰MAZE天网的软件,并且采用了“以其之矛攻其之盾”的攻防策略。测试的结果是尽管maze的源代码采用了24进制蝶形加密技术,但 FortiGate防火墙技术仍然能够阻挡住善意木马对电脑终端用户信息的剽窃和非法利用。FortiWeb已经通过全球权威的ICSA认证,可以阻断如跨站脚本、SQL注入、缓冲区溢出、远程文件包含、拒绝服务,同时防止敏感数据库外泄,为企事业单位Web应用提供了专业级的应用安全防护。飞塔公司之所以耗费人力和物力去开发这一新型的换代产品,就在于大数据时代对单位信息保密性的冲击。试想,如果一个单位连职工最起码的个人信息都不能安全存储的话,那么财务管理的科学性和人本性将从何谈起?只能说,即使在人权保护意识相对薄弱的法治环境里,我们也应该尽量提升自己的保密意识,加强对个人信息的保护和合理运用。

作者简介:田惠东(1967- ),女,汉族,河北定兴人,副高级会计师,本科学历,研究方向:财务管理,单位:保定市第一医院

在大数据环境下,计算机信息处理技术也面临新的挑战,要求计算机信息处理技术必须不断的更新发展,以能够对当前的计算机信息处理需求满足。下面是我给大家推荐的计算机与大数据的相关论文,希望大家喜欢!计算机与大数据的相关论文篇一 浅谈“大数据”时代的计算机信息处理技术 [摘 要]在大数据环境下,计算机信息处理技术也面临新的挑战,要求计算机信息处理技术必须不断的更新发展,以能够对当前的计算机信息处理需求满足。本文重点分析大数据时代的计算机信息处理技术。 [关键词]大数据时代;计算机;信息处理技术 在科学技术迅速发展的当前,大数据时代已经到来,大数据时代已经占领了整个环境,它对计算机的信息处理技术产生了很大的影响。计算机在短短的几年内,从稀少到普及,使人们的生活有了翻天覆地的变化,计算机的快速发展和应用使人们走进了大数据时代,这就要求对计算机信息处理技术应用时,则也就需要在之前基础上对技术实施创新,优化结构处理,从而让计算机数据更符合当前时代发展。 一、大数据时代信息及其传播特点 自从“大数据”时代的到来,人们的信息接收量有明显加大,在信息传播中也出现传播速度快、数据量大以及多样化等特点。其中数据量大是目前信息最显著的特点,随着时间的不断变化计算机信息处理量也有显著加大,只能够用海量还对当前信息数量之大形容;传播速度快也是当前信息的主要特点,计算机在信息传播中传播途径相当广泛,传播速度也相当惊人,1s内可以完成整个信息传播任务,具有较高传播效率。在传播信息过程中,还需要实施一定的信息处理,在此过程中则需要应用相应的信息处理工具,实现对信息的专门处理,随着目前信息处理任务的不断加强,信息处理工具也有不断的进行创新[1];信息多样化,则也就是目前数据具有多种类型,在庞大的数据库中,信息以不同的类型存在着,其中包括有文字、图片、视频等等。这些信息类型的格式也在不断发生着变化,从而进一步提高了计算机信息处理难度。目前计算机的处理能力、打印能力等各项能力均有显著提升,尤其是当前软件技术的迅速发展,进一步提高了计算机应用便利性。微电子技术的发展促进了微型计算机的应用发展,进一步强化了计算机应用管理条件。 大数据信息不但具有较大容量,同时相对于传统数据来讲进一步增强了信息间关联性,同时关联结构也越来越复杂,导致在进行信息处理中需要面临新的难度。在 网络技术 发展中重点集中在传输结构发展上,在这种情况下计算机必须要首先实现网络传输结构的开放性设定,从而打破之前计算机信息处理中,硬件所具有的限制作用。因为在当前计算机网络发展中还存在一定的不足,在完成云计算机网络构建之后,才能够在信息处理过程中,真正的实现收放自如[2]。 二、大数据时代的计算机信息处理技术 (一)数据收集和传播技术 现在人们通过电脑也就可以接收到不同的信息类型,但是在进行信息发布之前,工作人员必须要根据需要采用信息处理技术实施相应的信息处理。计算机采用信息处理技术实施信息处理,此过程具有一定复杂性,首先需要进行数据收集,在将相关有效信息收集之后首先对这些信息实施初步分析,完成信息的初级操作处理,总体上来说信息处理主要包括:分类、分析以及整理。只有将这三步操作全部都完成之后,才能够把这些信息完整的在计算机网络上进行传播,让用户依照自己的实际需求筛选满足自己需求的信息,借助于计算机传播特点将信息数据的阅读价值有效的实现。 (二)信息存储技术 在目前计算机网络中出现了很多视频和虚拟网页等内容,随着人们信息接收量的不断加大,对信息储存空间也有较大需求,这也就是对计算机信息存储技术提供了一个新的要求。在数据存储过程中,已经出现一系列存储空间无法满足当前存储要求,因此必须要对当前计算机存储技术实施创新发展。一般来讲计算机数据存储空间可以对当前用户关于不同信息的存储需求满足,但是也有一部分用户对于计算机存储具有较高要求,在这种情况下也就必须要提高计算机数据存储性能[3],从而为计算机存储效率提供有效保障。因此可以在大数据存储特点上完成计算机信息新存储方式,不但可以有效的满足用户信息存储需求,同时还可以有效的保障普通储存空间不会出现被大数据消耗问题。 (三)信息安全技术 大量数据信息在计算机技术发展过程中的出现,导致有一部分信息内容已经出现和之前信息形式的偏移,构建出一些新的计算机信息关联结构,同时具有非常强大的数据关联性,从而也就导致在计算机信息处理中出现了新的问题,一旦在信息处理过程中某个信息出现问题,也就会导致与之关联紧密的数据出现问题。在实施相应的计算机信息管理的时候,也不像之前一样直接在单一数据信息之上建立,必须要实现整个数据库中所有将数据的统一安全管理。从一些角度分析,这种模式可以对计算机信息处理技术水平有显著提升,并且也为计算机信息处理技术发展指明了方向,但是因为在计算机硬件中存在一定的性能不足,也就导致在大数据信息安全管理中具有一定难度。想要为数据安全提供有效保障,就必须要注重数据安全技术管理技术的发展。加强当前信息安全体系建设,另外也必须要对计算机信息管理人员专业水平进行培养,提高管理人员专业素质和专业能力,从而更好的满足当前网络信息管理体系发展需求,同时也要加强关于安全技术的全面深入研究工作[4]。目前在大数据时代下计算机信息安全管理技术发展还不够成熟,对于大量的信息还不能够实施全面的安全性检测,因此在未来计算机信息技术研究中安全管理属于重点方向。但是因为目前还没有构建完善的计算机安全信息管理体系,因此首先应该强化关于计算机重点信息的安全管理,这些信息一旦发生泄漏,就有可能会导致出现非常严重的损失。目前来看,这种 方法 具有一定可行性。 (四)信息加工、传输技术 在实施计算机信息数据处理和传输过程中,首先需要完成数据采集,同时还要实时监控数据信息源,在数据库中将采集来的各种信息数据进行存储,所有数据信息的第一步均是完成采集。其次才能够对这些采集来的信息进行加工处理,通常来说也就是各种分类及加工。最后把已经处理好的信息,通过数据传送系统完整的传输到客户端,为用户阅读提供便利。 结语: 在大数据时代下,计算机信息处理技术也存在一定的发展难度,从目前专业方面来看,还存在一些问题无法解决,但是这些难题均蕴含着信息技术发展的重要机遇。在当前计算机硬件中,想要完成计算机更新也存在一定的难度,但是目前计算机未来的发展方向依旧是云计算网络,把网络数据和计算机硬件数据两者分开,也就有助于实现云计算机网络的有效转化。随着科学技术的不断发展相信在未来的某一天定能够进入到计算机信息处理的高速发展阶段。 参考文献 [1] 冯潇婧.“大数据”时代背景下计算机信息处理技术的分析[J].计算机光盘软件与应用,2014,(05):105+107. [2] 詹少强.基于“大数据”时代剖析计算机信息处理技术[J].网络安全技术与应用,2014,(08):49-50. [3] 曹婷.在信息网络下计算机信息处理技术的安全性[J].民营科技,2014, (12):89CNKI [4] 申鹏.“大数据”时代的计算机信息处理技术初探[J].计算机光盘软件与应用,2014,(21):109-110 计算机与大数据的相关论文篇二 试谈计算机软件技术在大数据时代的应用 摘要:大数据的爆炸式增长在大容量、多样性和高增速方面,全面考验着现代企业的数据处理和分析能力;同时,也为企业带来了获取更丰富、更深入和更准确地洞察市场行为的大量机会。对企业而言,能够从大数据中获得全新价值的消息是令人振奋的。然而,如何从大数据中发掘出“真金白银”则是一个现实的挑战。这就要求采用一套全新的、对企业决策具有深远影响的解决方案。 关键词:计算机 大数据时代 容量 准确 价值 影响 方案 1 概述 自从计算机出现以后,传统的计算工作已经逐步被淘汰出去,为了在新的竞争与挑战中取得胜利,许多网络公司开始致力于数据存储与数据库的研究,为互联网用户提供各种服务。随着云时代的来临,大数据已经开始被人们广泛关注。一般来讲,大数据指的是这样的一种现象:互联网在不断运营过程中逐步壮大,产生的数据越来越多,甚至已经达到了10亿T。大数据时代的到来给计算机信息处理技术带来了更多的机遇和挑战,随着科技的发展,计算机信息处理技术一定会越来越完善,为我们提供更大的方便。 大数据是IT行业在云计算和物联网之后的又一次技术变革,在企业的管理、国家的治理和人们的生活方式等领域都造成了巨大的影响。大数据将网民与消费的界限和企业之间的界限变得模糊,在这里,数据才是最核心的资产,对于企业的运营模式、组织结构以及 文化 塑造中起着很大的作用。所有的企业在大数据时代都将面对战略、组织、文化、公共关系和人才培养等许多方面的挑战,但是也会迎来很大的机遇,因为只是作为一种共享的公共网络资源,其层次化和商业化不但会为其自身发展带来新的契机,而且良好的服务品质更会让其充分具有独创性和专用性的鲜明特点。所以,知识层次化和商业化势必会开启知识创造的崭新时代。可见,这是一个竞争与机遇并存的时代。 2 大数据时代的数据整合应用 自从2013年,大数据应用带来令人瞩目的成绩,不仅国内外的产业界与科技界,还有各国政府部门都在积极布局、制定战略规划。更多的机构和企业都准备好了迎接大数据时代的到来,大数据的内涵应是数据的资产化和服务化,而挖掘数据的内在价值是研究大数据技术的最终目标。在应用数据快速增长的背景下,为了降低成本获得更好的能效,越来越趋向专用化的系统架构和数据处理技术逐渐摆脱传统的通用技术体系。如何解决“通用”和“专用”体系和技术的取舍,以及如何解决数据资产化和价值挖掘问题。 企业数据的应用内容涵盖数据获取与清理、传输、存储、计算、挖掘、展现、开发平台与应用市场等方面,覆盖了数据生产的全生命周期。除了Hadoop版本系统YARN,以及Spark等新型系统架构介绍外,还将探讨研究流式计算(Storm,Samza,Puma,S4等)、实时计算(Dremel,Impala,Drill)、图计算(Pregel,Hama,Graphlab)、NoSQL、NewSQL和BigSQL等的最新进展。在大数据时代,借力计算机智能(MI)技术,通过更透明、更可用的数据,企业可以释放更多蕴含在数据中的价值。实时、有效的一线质量数据可以更好地帮助企业提高产品品质、降低生产成本。企业领导者也可根据真实可靠的数据制订正确战略经营决策,让企业真正实现高度的计算机智能决策办公,下面我们从通信和商业运营两个方面进行阐述。 通信行业:XO Communications通过使用IBM SPSS预测分析软件,减少了将近一半的客户流失率。XO现在可以预测客户的行为,发现行为趋势,并找出存在缺陷的环节,从而帮助公司及时采取 措施 ,保留客户。此外,IBM新的Netezza网络分析加速器,将通过提供单个端到端网络、服务、客户分析视图的可扩展平台,帮助通信企业制定更科学、合理决策。电信业者透过数以千万计的客户资料,能分析出多种使用者行为和趋势,卖给需要的企业,这是全新的资料经济。中国移动通过大数据分析,对 企业运营 的全业务进行针对性的监控、预警、跟踪。系统在第一时间自动捕捉市场变化,再以最快捷的方式推送给指定负责人,使他在最短时间内获知市场行情。 商业运营:辛辛那提动物园使用了Cognos,为iPad提供了单一视图查看管理即时访问的游客和商务信息的服务。借此,动物园可以获得新的收入来源和提高营收,并根据这些信息及时调整营销政策。数据收集和分析工具能够帮助银行设立最佳网点,确定最好的网点位置,帮助这个银行更好地运作业务,推动业务的成长。 3 企业信息解决方案在大数据时代的应用 企业信息管理软件广泛应用于解决欺诈侦测、雇员流动、客户获取与维持、网络销售、市场细分、风险分析、亲和性分析、客户满意度、破产预测和投资组合分析等多样化问题。根据大数据时代的企业挖掘的特征,提出了数据挖掘的SEMMA方法论――在SAS/EM环境中,数据挖掘过程被划分为Sample、Explore、Modify、Model、Assess这五个阶段,简记为SEMMA: Sample 抽取一些代表性的样本数据集(通常为训练集、验证集和测试集)。样本容量的选择标准为:包含足够的重要信息,同时也要便于分析操作。该步骤涉及的处理工具为:数据导入、合并、粘贴、过滤以及统计抽样方法。 Explore 通过考察关联性、趋势性以及异常值的方式来探索数据,增进对于数据的认识。该步骤涉及的工具为:统计 报告 、视图探索、变量选择以及变量聚类等方法。 Modify 以模型选择为目标,通过创建、选择以及转换变量的方式来修改数据集。该步骤涉及工具为:变量转换、缺失处理、重新编码以及数据分箱等。 Model 为了获得可靠的预测结果,我们需要借助于分析工具来训练统计模型或者机器学习模型。该步骤涉及技术为:线性及逻辑回归、决策树、神经网络、偏最小二乘法、LARS及LASSO、K近邻法以及其他用户(包括非SAS用户)的模型算法。 Assess 评估数据挖掘结果的有效性和可靠性。涉及技术为:比较模型及计算新的拟合统计量、临界分析、决策支持、报告生成、评分代码管理等。数据挖掘者可能不会使用全部SEMMA分析步骤。然而,在获得满意结果之前,可能需要多次重复其中部分或者全部步骤。 在完成SEMMA步骤后,可将从优选模型中获取的评分公式应用于(可能不含目标变量的)新数据。将优选公式应用于新数据,这是大多数数据挖掘问题的目标。此外,先进的可视化工具使得用户能在多维直方图中快速、轻松地查阅大量数据并以图形化方式比较模拟结果。SAS/EM包括了一些非同寻常的工具,比如:能用来产生数据挖掘流程图的完整评分代码(SAS、C以及Java代码)的工具,以及交换式进行新数据评分计算和考察执行结果的工具。 如果您将优选模型注册进入SAS元数据服务器,便可以让SAS/EG和SAS/DI Studio的用户分享您的模型,从而将优选模型的评分代码整合进入 工作报告 和生产流程之中。SAS模型管理系统,通过提供了开发、测试和生产系列环境的项目管理结构,进一步补充了数据挖掘过程,实现了与SAS/EM的无缝联接。 在SAS/EM环境中,您可以从SEMMA工具栏上拖放节点进入工作区的工艺流程图中,这种流程图驱动着整个数据挖掘过程。SAS/EM的图形用户界面(GUI)是按照这样的思路来设计的:一方面,掌握少量统计知识的商务分析者可以浏览数据挖掘过程的技术方法;另一方面,具备数量分析技术的专家可以用微调方式深入探索每一个分析节点。 4 结束语 在近十年时间里,数据采集、存储和数据分析技术飞速发展,大大降低了数据储存和处理的成本,一个大数据时代逐渐展现在我们的面前。大数据革新性地将海量数据处理变为可能,并且大幅降低了成本,使得越来越多跨专业学科的人投入到大数据的开发应用中来。 参考文献: [1]薛志文.浅析计算机网络技术及其发展趋势[J].信息与电脑,2009. [2]张帆,朱国仲.计算机网络技术发展综述[J].光盘技术,2007. [3]孙雅珍.计算机网络技术及其应用[J].东北水利水电,1994. [4]史萍.计算机网络技术的发展及展望[J].五邑大学学报,1999. [5]桑新民.步入信息时代的学习理论与实践[M].中央广播大学出版社,2000. [6]张浩,郭灿.数据可视化技术应用趋势与分类研究[J].软件导刊. [7]王丹.数字城市与城市地理信息产业化――机遇与挑战[J].遥感信息,2000(02). [8]杨凤霞.浅析 Excel 2000对数据的安全管理[J].湖北商业高等专科学校学报,2001(01). 计算机与大数据的相关论文篇三 浅谈利用大数据推进计算机审计的策略 [摘要]社会发展以及时代更新,在该种环境背景下大数据风潮席卷全球,尤其是在进入新时期之后数据方面处理技术更加成熟,各领域行业对此也给予了较高的关注,针对当前计算机审计(英文简称CAT)而言要想加速其发展脚步并将其质量拔高就需要结合大数据,依托于大数据实现长足发展,本文基于此就大数据于CAT影响进行着手分析,之后探讨依托于大数据良好推进CAT,以期为后续关于CAT方面研究提供理论上参考依据。 [关键词]大数据 计算机审计 影响 前言:相较于网络时代而言大数据风潮一方面提供了共享化以及开放化、深层次性资源,另一方面也促使信息管理具备精准性以及高效性,走进新时期CAT应该融合于大数据风潮中,相应CAT人员也需要积极应对大数据带了的机遇和挑战,正面CAT工作,进而促使CAT紧跟时代脚步。 一、初探大数据于CAT影响 影响之机遇 大数据于CAT影响体现在为CAT带来了较大发展机遇,具体来讲,信息技术的更新以及其质量的提升促使数据方面处理技术受到了众多领域行业的喜爱,当前在数据技术推广普及阶段中呈现三大变化趋势:其一是大众工作生活中涉及的数据开始由以往的样本数据实际转化为全数据。其二是全数据产生促使不同数据间具备复杂内部关系,而该种复杂关系从很大程度上也推动工作效率以及数据精准性日渐提升,尤其是数据间转化关系等更为清晰明了。其三是大众在当前处理数据环节中更加关注数据之间关系研究,相较于以往仅仅关注数据因果有了较大进步。基于上述三大变化趋势,也深刻的代表着大众对于数据处理的态度改变,尤其是在当下海量数据生成背景下,人工审计具备较强滞后性,只有依托于大数据并发挥其优势才能真正满足大众需求,而这也是大数据对CAT带来的重要发展机遇,更是促进CAT在新时期得以稳定发展重要手段。 影响之挑战 大数据于CAT影响还体现在为CAT带来一定挑战,具体来讲,审计评估实际工作质量优劣依托于其中数据质量,数据具备的高质量则集中在可靠真实以及内容详细和相应信息准确三方面,而在CAT实际工作环节中常常由于外界环境以及人为因素导致数据质量较低,如数据方面人为随意修改删除等等,而这些均是大数据环境背景下需要严格把控的重点工作内容。 二、探析依托于大数据良好推进CAT措施 数据质量的有效保障 依托于大数据良好推进CAT措施集中在数据质量有效保障上,对数据质量予以有效保障需要从两方面入手,其一是把控电子数据有效存储,简单来讲就是信息存储,对电子信息进行定期检查,监督数据实际传输,对信息系统予以有效确认以及评估和相应的测试等等,进而将不合理数据及时发现并找出信息系统不可靠不准确地方;其二是把控电子数据采集,通常电子数据具备多样化采集方式,如将审计单位相应数据库直接连接采集库进而实现数据采集,该种直接采集需要备份初始传输数据,避免数据采集之后相关人员随意修改,更加可以与审计单位进行数据采集真实性 承诺书 签订等等,最终通过电子数据方面采集以及存储两大内容把控促使数据质量更高,从而推动CAT发展。 公共数据平台的建立 依托于大数据良好推进CAT措施还集中在公共数据平台的建立,建立公共化分析平台一方面能够将所有采集的相关数据予以集中化管理存储,更能够予以多角度全方面有效分析;另一方面也能够推动CAT作业相关标准予以良好执行。如果将分析模型看作是CAT作业标准以及相应的核心技术,则公共分析平台则是标准执行和相应技术实现关键载体。依托于公共数据平台不仅能够将基础的CAT工作实现便捷化以及统一化,而且深层次的实质研究有利于CAT数据处理的高速性以及高效性,最终为推动CAT发展起到重要影响作用。 审计人员的强化培训 依托于大数据良好推进CAT措施除了集中在上述两方面之外,还集中在审计人员的强化培训上,具体来讲,培训重点关注审计工作于计算机上的具 体操 作以及操作重点难点,可以构建统一培训平台,在该培训平台中予以多元化资料的分享,聘请高技能丰富 经验 人士予以平台授课,提供专业技能知识沟通互动等等机会,最终通过强化培训提升审计人员综合素质,更加推动CAT未来发展。 三、结论 综上分析可知,当前大数据环境背景下CAT需要将日常工作予以不断调整,依托于大数据促使审计人员得以素质提升,并利用公共数据平台建立和相应的数据质量保障促使CAT工作更加高效,而本文对依托于大数据良好推进CAT进行研究旨在为未来CAT优化发展献出自己的一份研究力量。 猜你喜欢: 1. 人工智能与大数据论文 2. 大数据和人工智能论文 3. 计算机大数据论文参考 4. 计算机有关大数据的应用论文 5. 有关大数据应用的论文

1.[期刊论文]数据科学与大数据技术专业的教材建设探索期刊:《新闻文化建设》 | 2021 年第 002 期摘要:随着大数据时代的到来,信息技术蓬勃发展,国家大力推进大数据产业的发展,鼓励高校设立数据科学和数据工程相关专业。在趋势的推动下,许多高校成立了数据科学与大数据技术专业。本文通过研究数据科学与大数据技术专业的发展现状,探索新专业下人才培养的课程设置及教材建设等问题,同时介绍高等教育出版社在数据科学与大数据技术专业教材建设方面的研发成果。关键词:数据科学与大数据技术专业;课程设置;教材建设链接:.[期刊论文]数据科学与大数据技术专业课程体系探索期刊:《科教文汇》 | 2021 年第 002 期摘要:该文阐述了数据科学与大数据专业的设置必要性、专业的培养目标和知识能力结构,最后探索了数据科学与大数据专业的技术性课程体系设置方法.希望该文内容对数据科学与大数据技术专业的培养方案制订和课程体系构造具有一定的指导意义和参考价值.关键词:数据科学;大数据技术;课程体系链接:.[期刊论文]数据科学与大数据技术专业实验实践教学探析期刊:《长春大学学报(自然科学版)》 | 2021 年第 001 期摘要:近些年各种信息数据呈爆炸式增长,在这种背景下,国家在2015年印发了关于大数据技术人才培养的相关文件,每年多个高校的大数据相关专业获批.数据量的增长对数据处理的要求越来越高,各行业涉及信息数据的范围越来越广,对大数据专业人才的需求越来越多.为了应对社会需求,如何科学地规划数据科学与大数据专业的本科教育,尤其在当前注重实践操作的背景下,如何制定适合的实验实践教学方案,更好满足社会需求.关键词:数据科学;大数据;实践教学链接:

关于大数据应用论文参考文献

《大数据技术原理与应用—概念、存储、处理、分析与应用》。hadoop参考文献有《大数据技术原理与应用—概念、存储、处理、分析与应用》,Hadoop是一个开源的框架,可编写和运行分布式应用处理大规模数据。

网络安全与大数据技术应用探讨论文

摘要: 随着互联网技术的高速发展与普及,现如今互联网技术已经广泛应用于人们工作与生活之中,这给人们带来了前所未有的便利,但与此同时各种网络安全问题也随之显现。基于此,本文主要介绍了大数据技术在网络安全领域中的具体应用,希望在网络系统安全方面进行研究的同时,能够为互联网事业的持续发展提供可行的理论参考。

关键词: 网络安全;大数据技术;应用分析

前言

随着近年来互联网技术的不断深入,网络安全事故也随之频频发生。出于对网络信息安全的重视,我国于2014年成立了国家安全委员会,正式将网络安全提升为国家战略部署,这同时也表示我国网络信息安全形势不容乐观,网络攻击事件处于高发状态。木马僵尸病毒、恶意勒索软件、分布式拒绝服务攻击、窃取用户敏感信息等各类网络攻击事件的数量都处于世界前列。时有发生的移动恶意程序、APT、DDOS、木马病毒等网络攻击不仅会严重阻碍网络带宽、降低网络速度、并且对电信运营商的企业声誉也会产生一定影响。根据大量数据表明,仅仅依靠传统的网络防范措施已经无法应对新一代的网络威胁,而通过精确的检测分析从而在早期预警,已经成为现阶段网络安全能力的关键所在。

1网络安全问题分析

网络安全问题不仅涉及公民隐私与信息安全,更关乎国事安全,例如雅虎的信息泄露,导致至少五亿条用户信息被窃;美国棱镜门与希拉里邮件门等等事件都使得网络安全问题进一步升级、扩大。随着互联网构架日益复杂,网络安全分析的数据量也在与日俱增,在由TB级向PB级迈进的过程,不仅数据来源丰富、内容更加细化,数据分析所需维度也更为广泛。伴随着现阶段网络性能的增长,数据源发送速率更快,对安全信息采集的速度要求也就越高,版本更新延时等导致的Odav等漏洞日渐增多,网络攻击的影响范围也就进一步扩大;例如APT此类有组织、有目标且长期潜伏渗透的多阶段组合式攻击更加难以防范,唯有分析更多种类的安全信息并融合多种手段进行检测抵御。在传统技术架构中,大多使用结构化数据库来进行数据存储,但由于数据存储的成本过高,系统往往会将原始数据进行标准化处理后再进行存储,如此易导致数据的丢失与失真以及历史数据难以保存而造成的追踪溯源困难;同时对于嘈杂的大型、非结构化数据集的执行分析以及复杂查询效率很低,导致数据的实时性及准确性难以保证,安全运营效率不高,因此传统网络安全技术已经难以满足现阶段网络安全分析的新要求。大数据技术这一概念最初由维克托.迈尔.舍恩伯格与肯尼斯.库克耶在2008年出版的《大数据时代》一书中提出的,大数据是指不采用随机分析法,而是对所有的数据进行综合分析处理。大数据技术作为现阶段信息架构发展的趋势之首,其独有的高速、多样、种类繁多以及价值密度低等特点,近年来被广泛应用于互联网的多个领域中。大数据的战略意义在于能够掌握庞大的数据信息,使海量的原始安全信息的存储与分析得以实现、分布式数据库相比传统数据库的存储成本得以降低,并且数据易于在低廉硬件上的水平扩展,极大地降低了安全投入成本;并且伴随着数据挖掘能力的大幅提高,安全信息的采集与检测响应速度更加快捷,异构及海量数据存储的支持打造了多维度、多阶段关联分析的基础,提升了分析的深度与广度。对于网络安全防御而言,通过对不同来源的数据进行综合管理、处理、分析、优化,可实现在海量数据中极速锁定目标数据,并将分析结果实时反馈,对于现阶段网络安全防御而言至关重要。

2大数据在网络安全中的应用

将大数据运用到网络安全分析中,不仅能够实现数据的优化与处理,还能够对日志与访问行为进行综合处理,从而提高事件处理效率。大数据技术在网络安全分析的效果可从以下几点具体分析:

数据采集效率

大数据技术可对数据进行分布式地采集,能够实现数百兆/秒的采集速度,使得数据采集速率得到了极大的提高,这也为后续的关联分析奠定了基础。

数据的存储

在网络安全分析系统中,原始数据的存储是至关重要的,大数据技术能够针对不同数据类型进行不同的数据采集,还能够主动利用不同的方式来提高数据查询的效率,比如在对日志信息进行查询时适合采用列式的存储方式,而对于分析与处理标准化的数据,则适合采用分布式的模式进行预处理,在数据处理后可将结果存放在列式存储中;或者也可以在系统中建立起MapReduce的查询模块,在进行查询的时候可直接将指令放在指定的节点,完成处理后再对各个节点进行整理,如此能够确保查询的速度与反应速度。

实时数据的分析与后续数据的处理

在对实时数据的分析中,可以采用关联分析算法或CEP技术进行分析,如此能够实现对数据的采集、分析、处理的综合过程,实现了更高速度以及更高效率的处理;而对于统计结果以及数据的处理,由于这种处理对时效性要求不高,因此可以采用各种数据处理技术或是利用离线处理的方式,从而能够更好地完成系统风险、攻击方面的分析。

关于复杂数据的分析

在针对不同来源、不同类型的复杂数据进行分析时,大数据技术都能够更好的完成数据的分析与查询,并且能够有效完成复杂数据与安全隐患、恶意攻击等方面的处理,当网络系统中出现了恶意破坏、攻击行为,可采用大数据技术从流量、DNS的角度出发,通过多方面的数据信息分析实现全方位的防范、抵御。

3基于大数据技术构建网络系统安全分析

在网络安全系统中引入大数据技术,主要涉及以下三个模块:

数据源模块

网络安全系统中的`数据及数据源会随着互联网技术的进步而倍增技术能够通过分布式采集器的形式,对系统中的软硬件进行信息采集,除了防火墙、检测系统等软件,对设备硬件的要求也在提高,比如对服务器、存储器的检查与维护工作。

数据采集模块

大数据技术可将数据进行对立分析,从而构建起分布式的数据基础,能够做到原始数据从出现到删除都做出一定说明,真正实现数据的访问、追溯功能,尤其是对数据量与日俱增的今天而言,分布式数据存储能够更好地实现提高数据库的稳定性。

数据分析模块

对网络安全系统的运营来说,用户的业务系统就是安全的最终保障对象,大数据分析能够在用户数据产生之初,及时进行分析、反馈,从而能够让网络用户得到更加私人化的服务体验。而对于用户而言,得其所想也会对网络系统以及大数据技术更加的信任,对于个人的安全隐私信息在系统上存储的疑虑也会大幅降低。当前网络与信息安全领域正在面临着全新的挑战,企业、组织、个人用户每天都会产生大量的安全数据,现有的安全分析技术已经难以满足高效率、精确化的安全分析所需。而大数据技术灵活、海量、快速、低成本、高容量等特有的网络安全分析能力,已经成为现阶段业界趋势所向。而对互联网企业来说,实现对数据的深度“加工处理”,则是实现数据增值的关键所在,对商业运营而言是至关重要的。

4结语

在当下时代,信息数据已经渗透到各个行业及业务领域中,成为重要的社会生产因素。正因如此,互联网数据产生的数量也在与日倍增中,这给网络安全分析工作带来了一定难度与压力,而大数据技术则能够很好的完善这一问题。在网络系统中应用大数据技术不仅能够满足人们对数据处理时所要求的高效性与精准性,并且能够在此基础上构建一套相对完善的防范预警系统,这对维护网络系统的安全起着非常关键的作用,相信大数据技术日后能够得到更加广泛的应用。

参考文献:

[1]鲁宛生.浅谈网络安全分析中大数据技术的应用[J].数码世界,2017.

[2]王帅,汪来富,金华敏等.网络安全分析中的大数据技术应用[J].电信科学,2015.

[3]孙玉.浅谈网络安全分析中的大数据技术应用[J].网络安全技术与应用,2017.

1.[期刊论文]数据科学与大数据技术专业的教材建设探索期刊:《新闻文化建设》 | 2021 年第 002 期摘要:随着大数据时代的到来,信息技术蓬勃发展,国家大力推进大数据产业的发展,鼓励高校设立数据科学和数据工程相关专业。在趋势的推动下,许多高校成立了数据科学与大数据技术专业。本文通过研究数据科学与大数据技术专业的发展现状,探索新专业下人才培养的课程设置及教材建设等问题,同时介绍高等教育出版社在数据科学与大数据技术专业教材建设方面的研发成果。关键词:数据科学与大数据技术专业;课程设置;教材建设链接:.[期刊论文]数据科学与大数据技术专业课程体系探索期刊:《科教文汇》 | 2021 年第 002 期摘要:该文阐述了数据科学与大数据专业的设置必要性、专业的培养目标和知识能力结构,最后探索了数据科学与大数据专业的技术性课程体系设置方法.希望该文内容对数据科学与大数据技术专业的培养方案制订和课程体系构造具有一定的指导意义和参考价值.关键词:数据科学;大数据技术;课程体系链接:.[期刊论文]数据科学与大数据技术专业实验实践教学探析期刊:《长春大学学报(自然科学版)》 | 2021 年第 001 期摘要:近些年各种信息数据呈爆炸式增长,在这种背景下,国家在2015年印发了关于大数据技术人才培养的相关文件,每年多个高校的大数据相关专业获批.数据量的增长对数据处理的要求越来越高,各行业涉及信息数据的范围越来越广,对大数据专业人才的需求越来越多.为了应对社会需求,如何科学地规划数据科学与大数据专业的本科教育,尤其在当前注重实践操作的背景下,如何制定适合的实验实践教学方案,更好满足社会需求.关键词:数据科学;大数据;实践教学链接:

大数据工程中应用论文参考文献

网络安全与大数据技术应用探讨论文

摘要: 随着互联网技术的高速发展与普及,现如今互联网技术已经广泛应用于人们工作与生活之中,这给人们带来了前所未有的便利,但与此同时各种网络安全问题也随之显现。基于此,本文主要介绍了大数据技术在网络安全领域中的具体应用,希望在网络系统安全方面进行研究的同时,能够为互联网事业的持续发展提供可行的理论参考。

关键词: 网络安全;大数据技术;应用分析

前言

随着近年来互联网技术的不断深入,网络安全事故也随之频频发生。出于对网络信息安全的重视,我国于2014年成立了国家安全委员会,正式将网络安全提升为国家战略部署,这同时也表示我国网络信息安全形势不容乐观,网络攻击事件处于高发状态。木马僵尸病毒、恶意勒索软件、分布式拒绝服务攻击、窃取用户敏感信息等各类网络攻击事件的数量都处于世界前列。时有发生的移动恶意程序、APT、DDOS、木马病毒等网络攻击不仅会严重阻碍网络带宽、降低网络速度、并且对电信运营商的企业声誉也会产生一定影响。根据大量数据表明,仅仅依靠传统的网络防范措施已经无法应对新一代的网络威胁,而通过精确的检测分析从而在早期预警,已经成为现阶段网络安全能力的关键所在。

1网络安全问题分析

网络安全问题不仅涉及公民隐私与信息安全,更关乎国事安全,例如雅虎的信息泄露,导致至少五亿条用户信息被窃;美国棱镜门与希拉里邮件门等等事件都使得网络安全问题进一步升级、扩大。随着互联网构架日益复杂,网络安全分析的数据量也在与日俱增,在由TB级向PB级迈进的过程,不仅数据来源丰富、内容更加细化,数据分析所需维度也更为广泛。伴随着现阶段网络性能的增长,数据源发送速率更快,对安全信息采集的速度要求也就越高,版本更新延时等导致的Odav等漏洞日渐增多,网络攻击的影响范围也就进一步扩大;例如APT此类有组织、有目标且长期潜伏渗透的多阶段组合式攻击更加难以防范,唯有分析更多种类的安全信息并融合多种手段进行检测抵御。在传统技术架构中,大多使用结构化数据库来进行数据存储,但由于数据存储的成本过高,系统往往会将原始数据进行标准化处理后再进行存储,如此易导致数据的丢失与失真以及历史数据难以保存而造成的追踪溯源困难;同时对于嘈杂的大型、非结构化数据集的执行分析以及复杂查询效率很低,导致数据的实时性及准确性难以保证,安全运营效率不高,因此传统网络安全技术已经难以满足现阶段网络安全分析的新要求。大数据技术这一概念最初由维克托.迈尔.舍恩伯格与肯尼斯.库克耶在2008年出版的《大数据时代》一书中提出的,大数据是指不采用随机分析法,而是对所有的数据进行综合分析处理。大数据技术作为现阶段信息架构发展的趋势之首,其独有的高速、多样、种类繁多以及价值密度低等特点,近年来被广泛应用于互联网的多个领域中。大数据的战略意义在于能够掌握庞大的数据信息,使海量的原始安全信息的存储与分析得以实现、分布式数据库相比传统数据库的存储成本得以降低,并且数据易于在低廉硬件上的水平扩展,极大地降低了安全投入成本;并且伴随着数据挖掘能力的大幅提高,安全信息的采集与检测响应速度更加快捷,异构及海量数据存储的支持打造了多维度、多阶段关联分析的基础,提升了分析的深度与广度。对于网络安全防御而言,通过对不同来源的数据进行综合管理、处理、分析、优化,可实现在海量数据中极速锁定目标数据,并将分析结果实时反馈,对于现阶段网络安全防御而言至关重要。

2大数据在网络安全中的应用

将大数据运用到网络安全分析中,不仅能够实现数据的优化与处理,还能够对日志与访问行为进行综合处理,从而提高事件处理效率。大数据技术在网络安全分析的效果可从以下几点具体分析:

数据采集效率

大数据技术可对数据进行分布式地采集,能够实现数百兆/秒的采集速度,使得数据采集速率得到了极大的提高,这也为后续的关联分析奠定了基础。

数据的存储

在网络安全分析系统中,原始数据的存储是至关重要的,大数据技术能够针对不同数据类型进行不同的数据采集,还能够主动利用不同的方式来提高数据查询的效率,比如在对日志信息进行查询时适合采用列式的存储方式,而对于分析与处理标准化的数据,则适合采用分布式的模式进行预处理,在数据处理后可将结果存放在列式存储中;或者也可以在系统中建立起MapReduce的查询模块,在进行查询的时候可直接将指令放在指定的节点,完成处理后再对各个节点进行整理,如此能够确保查询的速度与反应速度。

实时数据的分析与后续数据的处理

在对实时数据的分析中,可以采用关联分析算法或CEP技术进行分析,如此能够实现对数据的采集、分析、处理的综合过程,实现了更高速度以及更高效率的处理;而对于统计结果以及数据的处理,由于这种处理对时效性要求不高,因此可以采用各种数据处理技术或是利用离线处理的方式,从而能够更好地完成系统风险、攻击方面的分析。

关于复杂数据的分析

在针对不同来源、不同类型的复杂数据进行分析时,大数据技术都能够更好的完成数据的分析与查询,并且能够有效完成复杂数据与安全隐患、恶意攻击等方面的处理,当网络系统中出现了恶意破坏、攻击行为,可采用大数据技术从流量、DNS的角度出发,通过多方面的数据信息分析实现全方位的防范、抵御。

3基于大数据技术构建网络系统安全分析

在网络安全系统中引入大数据技术,主要涉及以下三个模块:

数据源模块

网络安全系统中的`数据及数据源会随着互联网技术的进步而倍增技术能够通过分布式采集器的形式,对系统中的软硬件进行信息采集,除了防火墙、检测系统等软件,对设备硬件的要求也在提高,比如对服务器、存储器的检查与维护工作。

数据采集模块

大数据技术可将数据进行对立分析,从而构建起分布式的数据基础,能够做到原始数据从出现到删除都做出一定说明,真正实现数据的访问、追溯功能,尤其是对数据量与日俱增的今天而言,分布式数据存储能够更好地实现提高数据库的稳定性。

数据分析模块

对网络安全系统的运营来说,用户的业务系统就是安全的最终保障对象,大数据分析能够在用户数据产生之初,及时进行分析、反馈,从而能够让网络用户得到更加私人化的服务体验。而对于用户而言,得其所想也会对网络系统以及大数据技术更加的信任,对于个人的安全隐私信息在系统上存储的疑虑也会大幅降低。当前网络与信息安全领域正在面临着全新的挑战,企业、组织、个人用户每天都会产生大量的安全数据,现有的安全分析技术已经难以满足高效率、精确化的安全分析所需。而大数据技术灵活、海量、快速、低成本、高容量等特有的网络安全分析能力,已经成为现阶段业界趋势所向。而对互联网企业来说,实现对数据的深度“加工处理”,则是实现数据增值的关键所在,对商业运营而言是至关重要的。

4结语

在当下时代,信息数据已经渗透到各个行业及业务领域中,成为重要的社会生产因素。正因如此,互联网数据产生的数量也在与日倍增中,这给网络安全分析工作带来了一定难度与压力,而大数据技术则能够很好的完善这一问题。在网络系统中应用大数据技术不仅能够满足人们对数据处理时所要求的高效性与精准性,并且能够在此基础上构建一套相对完善的防范预警系统,这对维护网络系统的安全起着非常关键的作用,相信大数据技术日后能够得到更加广泛的应用。

参考文献:

[1]鲁宛生.浅谈网络安全分析中大数据技术的应用[J].数码世界,2017.

[2]王帅,汪来富,金华敏等.网络安全分析中的大数据技术应用[J].电信科学,2015.

[3]孙玉.浅谈网络安全分析中的大数据技术应用[J].网络安全技术与应用,2017.

1.[期刊论文]数据科学与大数据技术专业的教材建设探索期刊:《新闻文化建设》 | 2021 年第 002 期摘要:随着大数据时代的到来,信息技术蓬勃发展,国家大力推进大数据产业的发展,鼓励高校设立数据科学和数据工程相关专业。在趋势的推动下,许多高校成立了数据科学与大数据技术专业。本文通过研究数据科学与大数据技术专业的发展现状,探索新专业下人才培养的课程设置及教材建设等问题,同时介绍高等教育出版社在数据科学与大数据技术专业教材建设方面的研发成果。关键词:数据科学与大数据技术专业;课程设置;教材建设链接:.[期刊论文]数据科学与大数据技术专业课程体系探索期刊:《科教文汇》 | 2021 年第 002 期摘要:该文阐述了数据科学与大数据专业的设置必要性、专业的培养目标和知识能力结构,最后探索了数据科学与大数据专业的技术性课程体系设置方法.希望该文内容对数据科学与大数据技术专业的培养方案制订和课程体系构造具有一定的指导意义和参考价值.关键词:数据科学;大数据技术;课程体系链接:.[期刊论文]数据科学与大数据技术专业实验实践教学探析期刊:《长春大学学报(自然科学版)》 | 2021 年第 001 期摘要:近些年各种信息数据呈爆炸式增长,在这种背景下,国家在2015年印发了关于大数据技术人才培养的相关文件,每年多个高校的大数据相关专业获批.数据量的增长对数据处理的要求越来越高,各行业涉及信息数据的范围越来越广,对大数据专业人才的需求越来越多.为了应对社会需求,如何科学地规划数据科学与大数据专业的本科教育,尤其在当前注重实践操作的背景下,如何制定适合的实验实践教学方案,更好满足社会需求.关键词:数据科学;大数据;实践教学链接:

《大数据技术对财务管理的影响》

摘 要:大数据可以快速帮助财务部门建立财务分析工具,而不是单纯做账。大数据应该不仅仅局限于本单位的微观数据,更为重要的关注其他单位的宏观数据。大数据技术不仅带来了企事业单位财务数据搜集的便利和挑战,而且也衍生出了诸多关于单位人员个人信息保密等问题的积极探索。本文主要研究大数据技术(meta-data或big data)对企业或事业单位财务管理的影响,以期为财务数据管理的安全性提供一种分析的依据和保障。

关键词:大数据;财务管理;科学技术;知识进步

数据是一个中性概念。人类自古以来几千年的辉煌变迁,无外乎就是数据的搜集和使用过程而已。纵观古今中外的人际交流与合作,充满着尔虞我诈和勾心斗角,那么他们在争什么呢?实际上是在争夺信息资源;历史上品相繁多的战争,实际上不是在维持什么所谓的正义和和平,抑或为了人间的正道,而是在争夺数据的使用权;“熙熙攘攘皆为利往、攘攘熙熙皆为利来”的世俗变迁逻辑已经让位于数据游戏的哲学法则。人类自英国产业革命以来所陆续发明的技术,尽管被人们美其名曰“第四次科技革命的前沿技术”,实际上不过就是“0”和“1”两个数字的嬉戏而已。正如有学者指出的,汽车技术、生命科学技术、基因技术、原子能技术、宇宙航天技术、纳米技术、电子计算机技术,看起来美轮美奂,实则隐含着杀机,那就是由于人们把技术当成了目的后,导致了“技术专制”后的“技术腐败”和“技术灾难”。人类一方面在懒惰基因的诱惑下,发明了诸多所谓的机械装置,中国叫“机巧”;另一方面又在勤奋的文化下,发明了诸多抑制懒惰的制度和机制。本来想寻求节俭,结果却越来越奢侈;本来想节约,结果却越来越浪费;本来想善良,结果却越来越邪恶;本来想美好,结果却越来越丑陋。正如拉美特里所说:“人是什么?一半是天使,一半是野兽。当人拼命想成为天使的时候,其实他会逐渐变成野兽;当人想极力崇拜野兽的时候,结果会逐渐接近天使。”我们不是在宣讲宿命的技术,我们只是在预测技术的宿命。本文主要研究大数据技术(meta-data或big data)对企业或事业单位财务管理的影响,以期为财务数据管理的安全性提供一种分析的依据和保障。

一、大数据技术加大了财务数据收集的难度

财务数据的收集是一个复杂的系统工程,国际上一般采用相对性原则,即首先利用不完全统计学的知识对数据进行初步的计算,接着对粗糙的数据进行系统的罗列,最后对类型化的数据进行明分梳理。使用者如果想进入该数据库,就必须拥有注册的用户名和密码。由于国际上对于网络数据的监督均采取了实名注册的模式,所以一旦该用户进入到核心数据库之后想窃取数据,一般都会暴露自己的bug地址源,网管可以循着这一唯一性存留,通过云计算迅速找到该网络终端的IP地址,于是根据人机互动原理,再加上各种网吧所安装的监控平台,可以迅速找到数据库的剽窃者。如果按照上述数据变迁逻辑,那么财务数据的收集似乎变得易如反掌,而事实并非如此。因为:①数据的量化指标受制于云计算服务器的安全性。当云服务器受到不可抗力的打击,如地震、水患、瘟疫、鼠疫、火灾、原子能泄露或各种人为破坏的作用,数据会呈现离散型散落。这时的数据丢失会演变成数字灾难;②各种数据版权的拥有者之间很难实现无缝隙对接。比如在经过不同服务器的不同数据流之间,很难实现现实意义上的自由流通。正如专家所指出的,教育服务器的事业单位的人员数据、行政部门人事管理部门的保密性数据、军事单位的军事数据、医疗卫生事业的数据、工商注册数据、外事数据等在无法克服实际权力的分割陷阱之前,很难实现资源的共享,这时对数据的所谓搜集都会演化为“不完全抽样”的数字假象。由此而衍生的数据库充其量只是一部分无用的质料而已。

二、大数据技术影响了财务数据分析的准确性

对于搞财务管理的人来说,财务数据的收集只是有效实现资源配置的先决条件,真正有价值的或者说最为关键的环节是对财务数据的分析。所谓“财务数据分析”是指专业的会计人员或审计人员对纷繁复杂的单位人力资源信息进行“去魅”的过程。所谓“去魅”就是指去粗取精、去伪存真、由此及彼、由表及里、内外互联,彼此沟通、跨级交流、跨界合作。在较为严格的学术意义上,分析的难度广泛存在与财务工作人员的日常生活中。大数据技术尽管为数据的搜集提供了方便法门,但同时加大了财务人员的工作量和工作难度。原先只是在算盘或者草稿纸上就可以轻松解决的数据计算,现在只能借助于计算机和云图建模。对于一些借助于政治权力因素或者经济利益因素,抑或是借助于自身的人际关系因素上升到财务管理部门的职工来说,更大的挑战开始了。他们不知道如何进行数据流的图谱分析,不知道基于计算机软件技术的集成线路技术的跌级分类,不知道基于非线性配置的液压传动技术的模板冲压技术,不知道逆向网络模型来解决外部常态财务变量的可篡改问题。由于技术不过硬,导致了领导安排的任务不能在规定的时间内完成,即时仓促做完的案例,也会因为数据分析技术的落后而授人以柄,有的脾气不好的领导可能会大发雷霆;脾气好的领导只是强压着内心的怒火,那种以静制动的魄力和安静更是摄魂夺魄。所以说数据分析难度的增加不是由于财务人员的良心或善根缺失,在很大程度上是由于技术的进步和大数据理念给我们带来的尖锐挑战。对于普通的没有家庭和社会背景的财务管理人员来说,能做的或者说唯一可做的就是尊重历史发展的周期律,敬畏生生不息的科学革命,认真领会行政首长的战略意图,提升自己的数据分析技术,升华在自身的“硬实力”。否则觊觎于领导的良心发现和疏忽大意,期望技术的静止或者倒退,抑或是在违法犯罪之后天真的认为可以相安无事,可能都只会落得“恢恢乎如丧家之犬”的境遇。

三、大数据技术给财务人事管理带来了挑战

一个单位的财务人事管理牵扯到方方面面的问题,其意义不可小视。一般来讲,单位在遴选财务管理部门管理人员的时候,大多从德才绩行四个方面全面权衡。然而这种“四有标准”却隐含着潜在的危机和不可避免的长远威胁,这其中的缘由就在于人性的复杂性和不可猜度性。历史和现实一再告诉人们,单纯看眼前的表现和话语的华丽,不仅不能对人才的素质进行准确的评价,而且还会导致官员的远期腐败和隐性腐败。对于中国的腐败,国人大多重视了制度和道德的缘起,却往往忽视了财务管理的因素。试想如果财务管理人员牢牢践行“焦裕禄精神”,不对任何政治权力开绿灯,国有资产又如何流出国库而了无人知晓呢?事实上,中国的所有腐败,不论是国有资产的国外流失抑或是国内流失,都在很大程度上与财务人员有关,可能有些管理人员会强调那不是自己的责任,出纳签字是领导的授意,会计支出费用那是长官的意思清晰表示。实际上,处于权力非法授予的签字、盖章、取现、流转和变相洗钱都是违法的,甚至是犯罪的。间接故意也是应当追究责任的。值得高兴的是,伴随着数字模拟技术的演进,财务管理中的腐败现象和人事管理科学化问题得到了极大的改善,相关领导伸手向财务要钱的行为,不仅会受到数据进入权限的限制,而且还会受到跟数据存留的监控,只要给予单位科技人员以足够的权限,想查找任何一笔资金的走向就变得非常简单,而且对于每一笔资金的经手者的信息也会了如指掌。这在一定程度上减少了只会指挥、不懂电脑的首长的孵化几率。

四、大数据技术加大了单位信息保密的难度

IMA(美国注册会计师协会)研发副总裁Raef・Lawson博士曾经指出:“客观上讲,大数据技术的正面效用是非常明显的,但一个不容回避的事实是大数据技术为财务信息的安全性提出了越来越严峻的挑战。我们已经注意到,在欧洲大陆、美洲大陆已经存在基于数据泄露而产生的各种抗议活动,这些活动牵扯到美国的数据窃听丑闻、俄罗斯对军事数据的强制性战友举动、以色列数据专家出卖阿拉伯世界经济数据的案件、在东方的中国香港一部分利用数据的窃取而发家致富的顶尖级黑客专家。”在数据集成的拓扑领域,大数据技术的保密性挑战肇始于蚁群算法的先天性缺陷。本来数据流的控制是依靠各种所谓的交易密码,实际上这些安全密码只是数据的另一种分类和组合而已。在数据的非线性组合和线路的真空组装模式下,任何密码都只是阻挡了技术侏儒的暂时性举动,而没有超出技术本身的惰性存在。当一个hacker掌握了源代码的介质性接洽技术之后,所剩下的就是信息和数据的搜集了,只要有足够的数据源,信息的户的几乎是轻而易举的。

2003年,北京的一家名为飞塔公司的防火墙安全软件在中关村科技城闪亮上市。该安全控制软件的开发者随机开发了一款名曰MAZE天网的软件,并且采用了“以其之矛攻其之盾”的攻防策略。测试的结果是尽管maze的源代码采用了24进制蝶形加密技术,但 FortiGate防火墙技术仍然能够阻挡住善意木马对电脑终端用户信息的剽窃和非法利用。FortiWeb已经通过全球权威的ICSA认证,可以阻断如跨站脚本、SQL注入、缓冲区溢出、远程文件包含、拒绝服务,同时防止敏感数据库外泄,为企事业单位Web应用提供了专业级的应用安全防护。飞塔公司之所以耗费人力和物力去开发这一新型的换代产品,就在于大数据时代对单位信息保密性的冲击。试想,如果一个单位连职工最起码的个人信息都不能安全存储的话,那么财务管理的科学性和人本性将从何谈起?只能说,即使在人权保护意识相对薄弱的法治环境里,我们也应该尽量提升自己的保密意识,加强对个人信息的保护和合理运用。

作者简介:田惠东(1967- ),女,汉族,河北定兴人,副高级会计师,本科学历,研究方向:财务管理,单位:保定市第一医院

  • 索引序列
  • 大数据对教育的应用论文参考文献
  • 大数据的应用论文参考文献
  • 关于大数据应用的论文参考文献
  • 关于大数据应用论文参考文献
  • 大数据工程中应用论文参考文献
  • 返回顶部