基本信息:中文名称2-萘甲基自由基英文名称2-Methylnaphthaleneradical英文别名2-naphtho-methylradical;naphthalen-2-yl-methyl;2-naphthylmethylradical;2-methylnaphthylradical;CAS号7419-61-6合成路线:1.通过2-甲基萘合成2-萘甲基自由基2.通过乙醚、乙醇、异戊烷和2-甲基萘合成2-萘甲基自由基更多路线和参考文献可参考
烷烃:CH4CH3CH3(CH3)C-C(CH3)3C(CH3)4........烯烃:H2C=CH2(CH3)2C=C(CH3)2.......炔烃:HC=-CHCH3C=-CCH3.......还有芳香烃都可以如果碳原子的个数不限的话,还有很多
基本信息中文名称:2-甲基-1,3-丁二烯中文别名:异戊二烯英文名称:Isoprene英文别名:2-Methyl-1,3-butadiene; Isoprene (99%+)CAS号:78-79-5EINECS号:201-143-3分子式:C5H8分子量:物理性质外观与性状:无色、易挥发,刺激性油状液体。熔点(℃):相对密度(水=1):沸点(℃):相对蒸气密度(空气=1):饱和蒸气压(kPa):(℃)闪点(℃):-54爆炸上限%(V/V):引燃温度(℃):220爆炸下限%(V/V):溶解性:不溶于水,溶于苯,易溶于乙醇、乙醚、丙酮等多数有机溶剂。 化学性质可在空气或氧气中燃烧。可与溴水、氯气等发生1,2-加成或1,4-加成反应。 热化学性质 基本热化学性质性质 数值 单位 温度(K) 参考文献 状态 热容Cp J/(mol·K) 50 g J/(mol·K) 100 g J/(mol·K) 150 g J/(mol·K) 200 g J/(mol·K) g J/(mol·K) g J/(mol·K) l J/(mol·K) l J/(mol·K) l J/(mol·K) 300 g J/(mol·K) 400 g J/(mol·K) 500 g J/(mol·K) 600 g J/(mol·K) 700 g J/(mol·K) 800 g J/(mol·K) 900 g J/(mol·K) 1000 g J/(mol·K) 1100 g J/(mol·K) 1200 g J/(mol·K) 1300 g J/(mol·K) 1400 g J/(mol·K) 1500 g 标准焓 kJ/mol g 标准熵 J/(mol·K) g J/(mol·K) l J/(mol·K) l J/(mol·K) l 安托因蒸气压计算式log(P) = A - B/(C+T)其中: Cp = 蒸气压 (bar); T = 温度 (K) 温度范围 A B C 参考文献 状 态 g g 制法 1.脱氢法 异戊烷脱氢制异戊烯,异戊烯再脱氢得异戊二烯,然后经乙腈或N,N-=甲基甲酰胺萃取蒸馏分离出异戊二烯纯品。2.合成法(1)丙烯二聚法 由三步反应组成(2)异丁烯一甲醛法由二步反应组成(3)乙炔一丙酮法由三步反应组成3.乙烯装置副产C5馏分分离异戊二烯,G馏分的产率一般为裂解原料的5%~8%(wt).其中异戊二烯含量为15%~25%。异戊二烯产率为裂解原料的0·5%~。用将通蒸馏法难以得到高纯产品,一般采用萃取蒸馏和共沸蒸馏法,已工业化的萃取蒸馏方法有乙腈法、N,N-二甲基甲酰胺法、N-甲基吡咯烷酮法等。
过程不好写啊,估计要写半天..选CCH2-ClCH3CH3CH31111CH3-C-CH3CH3-C-CH3Cl-CH2-C-CH3CH3-C-CH2-Cl1111CH3CH2-ClCH3CH3这些都叫1-氯-2-甲基丙烷CH31CH3-C-CH3是戊烷的同分异构体.1CH3参考文献:如果有化学问题,联系我,我常挂在新浪网上,我很愿意帮你.
并不能简单的说随支链增加,熔点升高。熔点是分子开始熔融时,即结晶开始大范围被破坏时的温度。熔点的高低与分子的结晶性能有关。一般说来,分子的结构越简单,对称性越好,越容易结晶。对应的熔点就越大。如果支链太长,结晶不能,熔点反会下降。就这一点来说,熔点:新>正>异沸点是由液体变为气体,破坏的是分子间的作用力。所以分子间作用力越强,沸点越高。这个问题中分子间作用力主要是范德华力,与分子之间的距离有关,支链越少,分子之间距离越短,作用越强。就这一点说:沸点:正>异>新。如果分子间还有氢键,甚至有化学键的连接,就要重新考虑了。比如醇的沸点比对应的烷烃高得多,酸的沸点也比对应的醇的沸点高。而经过交联的聚乙烯等,由于化学键作用太强了,不能形成气态,没有沸点。其实这些只能简单的判断物质的熔点沸点的相对高低,并不一定都适用。
主要成分: 纯品外观与性状: 常温常压下为无色气体,标准状况下为极易挥发的液体。液体密度(℃,): ;气体密度(,25℃): ;相对密度(,25℃,空气=1):比容(℃,):气液容积比(15℃,100kPa): 153L/L饱和蒸气压(kPa): 临界温度(℃): 临界压力(MPa): 临界密度: 238kg/m³引燃温度(℃): ℃熔化热(℃):45129kJ/kg气化热AHv(℃): 比热容(气体,,℃): Cp=(kg·K) Cv=(kg·K) (液体,25℃): (kg·K)比热比(气体,,℃):Cp/Cv=蒸气压(-60℃): (40℃): (100℃): 粘度(气体,,20℃):·s (液体,0℃):·s导热系数(气体,,25℃):(m.K)表面张力(30℃): 折射率(液体,nD,6℃): 爆炸上限%(V/V): 爆炸下限%(V/V): 空气中的燃烧界限: ~当量燃烧火焰温度: 1971℃当量燃烧最大火焰速度:燃烧热: 溶解性: 溶于乙醇等有机溶剂。
沸点看支链,支链越多沸点越低,即正异新熔点看对称性,对称性越高熔点越高,即新正异
36度。正戊烷在常压下,沸点36度,所以当温度升至摄氏36度时变成气体。
不就是企业5S管理嘛
灵芝,又名瑞草,芝草,是我国传统的药食两用的珍贵保健药。祖国医学对灵芝的药效研究源远流长,自古以来被认为有起死回生的功效,是名贵药材中的极品,远在周朝《列子》一书中就有“朽壤之上,有南芝者”。东汉时期的《神农本草经》中载有:“益心气”、“安精魂”、“补肝益气”、“坚筋骨”、“好颜色”等功能。明代李时珍的,《本草纲目》对灵芝做如下描述:“苦、平、无毒。主治心中结,益心气。补中、增智慧、不忘。久食轻身不老。灵芝是担子菌纲,多孔菌科,灵芝属真菌。一般供药用的主要是赤芝(Ganoderma lucidum)和紫芝(Ganoderma japonim)。研究表明,灵芝的组成成分复杂,具有多种有效成分和广泛的生物学作用,能治疗多种疾病。本文就灵芝的有效成分和生物活性特别是灵芝多糖的生物活性及提取方法作一综述。灵芝的有效成分和生物活性 研究证明,灵芝含有多糖、氨基酸、蛋白质、多肽、甾类、有机酸、挥发油、油脂、生物碱、长链烷烃以及我种酶和无机离子。经研究不同品种灵芝,同一品种的不同生长阶段,野生与人工培养灵芝,所含的化学成分不同。灵芝多糖 灵芝多糖(GLP)是灵芝的主要活性成分,其种类很多,主要有葡聚糖、杂聚糖、半乳糖、甘露糖、甘露岩藻半乳聚糖、阿拉伯糖、阿拉伯木质葡聚糖等。灵芝中多糖的含量因灵芝品种、提取方法与多糖的纯度等不同而有较大差异。灵芝多糖目前已分离到的有200多种,其中大部分为B-型的葡聚糖,少数为A-型的葡聚糖,多糖链由三股单糖链构成,是一种螺旋状立体构形物,其立体构形和DNA、RNA相似,螺旋层之间主要以氢键固定定位,分子量从数百到数十万,除一小部分小分子多糖外,大多不溶于高浓度的酒精中,在热水中溶解,大多存在于灵芝细胞壁内壁。液体培养的发酵液和固体培养基中有灵芝菌丝分泌的胞外多糖。胞内多糖胞外多糖都是有效多糖。灵芝多糖大多为异多糖,即除含有葡萄糖外,大多还含有少量阿拉伯糖、木糖、岩藻糖、鼠李糖、半乳糖、甘露糖等其它单糖。单糖间糖苷键连接有(1à3),(1à4),(1à6)数种。多数有分枝,部分多糖含有肽链,多糖分枝密度高或含有采访链的其药理活性一般也比较高。灵芝多糖结构中含有较多的糖苷键可能是使其具有强烈药理活性的原因。灵芝多糖是灵芝中最有效的成分之一,因此,也特别受到医学科技工作者的重视,研究报导也最多,现知灵芝多糖有广泛的药理活性,能提高机体免疫力,能提高机体耐缺氧能力,消除自由基,抑制肿瘤,抗放射,提高肝脏、骨髓、血液合成DNA、RNA、蛋白质能力,延长寿命等。灵芝的多种药理活性大多和灵芝多糖有关。灵芝酸 灵芝酸(Ganodenic acid)是灵芝的另一主要活性成分。灵芝酸是一种三萜类物质,基本构造为数个异戊烯首尾相连构成,大部分为30个碳原子、部分为27个碳原子。灵芝酸有四环三萜和五环三萜二类。各种灵芝中已分离到的灵芝酸已达100多种。灵芝酸是灵芝的苦味成分的主要来源,可以作为鉴定灵芝品种的依据之一。灵芝酸在不同种的娄芝中或同一品种培养基培养的及不同生长阶段的子实体中,其含量是不同的,所以其苦味程度也有所不同,一般味苦的娄芝其灵芝酸含量往往较高。日本对灵芝商品及灵芝制成品的灵芝酸含量十分重视,认为灵芝酸含量高,灵芝产品质量就好。灵芝酸有强烈的药理活性,有止痛、镇静、抑制组织胺释放、解毒、保肝、毒杀肿瘤细胞等功能,是灵芝的主要有效成分之一。灵芝酸能抑制大鼠巨细胞释入组织胺,抑制血管紧张肽转化酶的活性,降低血压,灵芝酸还能抑制大鼠肝细胞从24,25-二氢羊毛甾醇合成胆固醇,可以用来防治动脉粥样硬化和心脏病。Jorgel等从赤芝提取的几种灵芝酸具有细胞毒性,能杀伤体外培养的肝癌细胞。各种元素 灵芝中含有多种元素。不同品种灵芝中元素的种类和含量略有差异,人工培养的灵芝与野生灵活子中的元素种类和含量也不一致。等离子体发射光谱分析(IPC)结果表明:灵芝浸膏中含有25种元素,其中Ca,Mg,P,Fe,Zn,Cu,Ni,Co,Cr,Mo,Li,B,V,Sn,Ge,Sr,Ti,Se等19种为人体必需或有益的常量或微量元素,原子吸收光谱分析(AAS)结果表明:灵芝浸膏粉中含有丰富的钙(2330ppm)、镁(2440ppm)、磷(45000ppm)、及铁(390ppm)、锰(156ppm)、锌()、锗()等,这些元素为人体正常生长发育所必需或在人体内起重要的保健作用。已知,Fe,Ca,Zn,Mn等有养血益肝、补肾之功效;Zn,Cu,Mn,Li等微量元素与活血化淤、益气安神等功效有关;微量元素Ti对预防心血管系统疾病起重要作用;此外,Ge,Se,Mn,Cu,Mo,Cr,Ni,等微量元素与人本抗衰老、抗癌等密切相关。在灵芝的菌丝体和发酵液中,磷的含量相当丰富,磷具有镇静安神的作用,灵芝对神经衰弱和顽固失眠的疗效与磷的作用有着密切关系。文献报道,担子菌纲多孔菌中有机锗的含量高达800—2000mg/kg,它有抑制多种肿瘤的生长,调节免疫功能等作用,因此有人认为灵芝中的有机锗有某种生理活性。但文献报道灵芝中的有机锗含量差异很大,不同产地的野生灵芝,人工培养与野生灵芝的有机锗含量均不相同。野生灵芝中有机锗的含量一般都很低,有的甚至不能检出。有一日本作者报道,不同地区和生长阶段的灵芝,有机锗含量为13—78ug/kg,而水提物中未检出。这证明,灵芝水提物的生物学作用与锗无关。中国医学科学院药物牵研究所有人将有机锗加入深层发酵培养菌丝体的培养液中,可使菌丝体中有机锗的含量显著增高。由此可见,对于人工培养的灵芝,无论是子实体还是菌丝体,都可以根据人们的需要认为的在培养基中加入某种成分,而使灵芝中该成分的含量显著提高。生物碱 灵芝腺苷是一种活性很强的物质,是灵芝的主要有效成分之一。灵芝含有腺嘌呤和腺嘌呤核苷,尿嘧啶和尿嘧啶核苷。灵芝有多种腺苷衍生物,都有较强的药理活性,能降低血液黏度,抑制体内血小板聚集,能提高血液供氧能力和加速血液微循环,提高血液对心、脑的供氧能力。Akira Shimizu 等报道,腺嘌呤核苷是赤芝水提取物抑制血小板凝集的有效成分。动物实验表明,尿嘧啶和尿嘧啶核苷对实验性肌强直症小鼠血清醛缩酶有降低作用。紫芝中含有五种生物碱,一种为Y-三甲胺基丁酸,在窒息性缺氧模型中,有提高存活时间的作用,并能使离体豚鼠心脏冠状动脉流量增加。其它 灵芝中含有少量蛋白质、多肽、氨基酸。赤芝孢子内脂A有降胆固醇的作用。赤芝孢子酸A有降转氨酶作用。灵芝、紫兰、薄树芝中的薄醇醚,灵芝孢子中的孢醚,可使部分切除肝脏的小鼠的肝脏再生能力增强。灵芝纤维能降胆固醇,预防动脉粥样硬化、便秘、糖尿病、高血压、脑血栓等。余竟光等从薄盖灵芝深层发酵菌丝体中分离到4种呋喃衍生物。药理实验表明其中5-羟甲基呋喃甲醛有抑制血小板聚集的作用。曾惜春等从当归分离得5-羟甲基呋喃甲醛,认为可能是扩张冠状动脉、提高小鼠心肌摄取铷的有效物质。此外,灵芝还含有多种长链脂肪酸、长链烷烃、甾类及多种酶类等,这些成分是否参与某处生理活性尚不清楚。灵芝多糖的生物活性 调节免疫 灵芝对免疫系统的影响是双向的:对抗病的特异性和非特异性免疫能力,灵芝有促进作用,而对致病的过敏反应,则有抑制作用。从两个不同角度加强了机体保持稳态、抵抗疾病的能力。此种双向作用的详细机制尚待阐明。但已可认为,调整免疫功能,抑制过敏反应也是扶正培本作用的重要内容。灵芝对支气管哮喘等与过敏有关的疾病有效,提示它可能有抑制过敏反应的作用。雷林生等控讨了GLP 对免疫抑制剂和抗肿瘤药引起的免疫作用的拮抗作用。结果表明,GLP 的拮抗作用的强度取决于这些药物的免疫抑致作用的程度,只有这些药物轻度抑致免疫反应时,GLP 才具有完全拮抗作用。灵芝多糖对T细胞的影响灵芝多糖在体外直接活化脾淋巴细胞,但活化水平较低,远不如ConA或PHA的作用强,使活性E-玫瑰花结形成率增高。灵芝多糖体外协助ConA诱导的脾淋巴细胞转化,促进活化T细胞的增殖,其程度远远高于单用ConA和灵芝多糖T细胞增殖的和。但超过一定剂量时,这种促进作用消失,甚至显示出抑制作用。灵芝多糖对不同品系小鼠脾细胞的活化与增殖作用相似,对C3H、C57BL/6J、LACA、swiss等品系的小鼠脾细胞,均有显著的协同ConA诱导其转化的作用。体内给药,同样能明显促进ConA对小鼠脾淋巴细胞的活化增殖。灵芝多糖在体外能显著促进ConA诱导Th细胞产生淋巴因子IL-2和Y-IFN,但单独刺激小鼠脾细胞,只有微弱的活化作用。灵芝多糖超过一定浓度时,可Th细胞产生IL-2。其浓度比引直脾细胞拉殖抑制的浓度更低。灵芝多糖对荷S180肿瘤的小鼠IL-2活性亦有促进作用。赤芝和树舌多糖在体外能明显对抗氢化可的松和环磷酰胺对ConA诱导脾淋巴细胞转化增殖的抑制。体内给药能荷S180肿瘤小鼠的IL-2和-IFN活性降低。灵芝多糖对正常成年鼠和免疫功能衰退的老龄鼠显示出相同的活性。从赤芝提取的三种灵芝多糖能显著促进正常ConA诱导正常成年鼠和免疫功能衰退的老龄鼠的脾淋巴细胞增殖,使老龄鼠的脾淋巴细胞增殖接近正常成年鼠,显示出抗衰老的作用。平盖灵芝(树舌)多糖能显著增强甲基化的细菌a-淀粉酶和不完全的福氏佐剂(M-BaA-IF)引起的迟发性过敏反映,这一作用是由于此药能激活非特异性的具有扩大细胞免疫效应的T细胞所致,灵芝多糖成分BN3 C与 ConA 合用,可显著提高小鼠脾脏T细胞增殖,并部分对抗环磷酰胺对脾细胞增殖的抑制作用。灵芝多糖(GLP)是从灵芝菌培养物的菌丝体中提取的多糖。向小鼠腹腔连续注射大剂量的GLP(4/mg只,2mg/只)5天,对T细胞增殖、细胞表型的表达、T细胞诱生IL-2及B细胞产生溶血素抗体均有抑制作用:当适量的GLP(只,只)连续向小鼠腹腔注射5天,可明显增强上述免疫指标。表明GLP是一种生物反应调节剂,适量可增强机体的细胞及体液免疫功能,为临床应用GLP治疗免疫功能紊乱提供了理论依据。灵芝多糖对B细胞的影响 赤芝多糖对抗SRBC空斑形成细胞的产生有促进作用,但对正常成年鼠作用不明显,而对免疫功能衰退的老龄鼠则有明显的促进作用。体外单独用赤芝多糖,对B细胞有轻度活化作用,高斌等报道,杩舌多糖能提高荷瘤鼠的NK细胞活性,并认为与抗肿瘤作用有关。灵芝促进巨噬细胞的吞噬功能腹腔注射灵芝提取物,能促进腹膜渗出细胞、巨噬细胞和多型核白细胞的积聚。灵芝与氯喹合用,可以改善氯喹所引起的免疫抑制现象,显著增强腹腔巨噬细胞系统的吞噬功能。灵芝腹腔注射给药可使巨噬细胞的吞噬能力和巨噬细胞溶酶体酶的活性明显增强,并呈剂量反应关系。高斌等报道,树舌多糖有体外诱导小鼠腹腔巨噬细胞分泌IL-1样物质,较对照组增加约2倍。灵芝液及灵芝多糖连续给药,能提高小鼠腹腔巨噬细胞吞噬鸡红血球的活力。天噬百分率和吞噬指数均有提高。抑制肿瘤 从不同品种或同一品种灵芝中提取的多糖,其抗肿瘤活性因提取方法、多糖的种灯和纯度等不同而有很大差异,其有效剂量(相当于生药)也有很大差异。口服多糖的有效剂量要比腹腔注射大得多,同等剂量时,口服一般不显示任何活性,因此各作者均采用腹腔注射给药。不同灵芝的不同多糖,其抑瘤率差异很大,与生药的有效剂量相差几十至几百倍。日本学者从灵芝中提取的多糖对S-180肉瘤有抗肿瘤作用,能抑抑制瘤细胞增殖。关洪昌等发现,灵芝多糖D6对小鼠艾氏腹水癌也有一定抑制作用。对核酸、蛋白质合成的影响 核酸,蛋白质是生命的物质基础,体内一切重要的生命过程都与核酸,蛋白质发生联系,有的灵芝多糖能促进核酸、蛋白质的生物合成。这对机体细胞物质代谢和能量代谢的调节可能产生积极的影响,从而增强机体抗病能力,促进病人康复。这可能是灵芝扶正固本作用的机制之一。灵芝多糖D6、银耳多糖及糖及银耳孢子多糖均能促进H-亮氨酸掺入小鼠血清蛋白更新率,进一步研究证实,灵芝多糖D6、银耳多糖还能促进H-亮氨酸掺入小鼠肝脏蛋白质,这些都反映肝脏合成蛋白质的能力增强。由于引此二多糖均能促进H-尿嘧啶核苷掺入小鼠肝脏RNA,但不能促进H-胸腺嘧啶核苷掺入小鼠肝脏DNA,似表明它们能促进转录过程,加速RNA合成,但对DNA合成无影响。灵芝多糖D6还分别能促进H-Leu和H-TdR掺入小鼠骨髓蛋白质、RNA和DNA,但对H-TdR掺入艾氏腹水癌细胞DNA无影响。灵芝多糖可引起体外培养的小鼠脾细胞核DNA、RNA含量的显著增加,细胞内超微核结构改变,细胞质和细胞核的平均截面积增加,核质比下降,促进细胞的增殖。灵芝多糖可明显促进混合淋巴细胞培养中脾细胞对[H]TdR的摄取,增加脾细胞中DNA多聚酶a的活性。表明灵芝多糖可通过诱导DNA多聚酶的产生,促进免疫细胞中DNA的合成和细胞增殖,加速免疫应答过程和同种异型坑原刺激的淋巴细胞转化。灵芝多糖也可以完全拮抗环胞素A、丝裂霉素C、氟尿嘧啶和阿糖胞对小鼠混合淋巴细胞反映(MLR)的轻度抑制作用,部分拮抗氢化可的松对MLR的严重抑制作用。灵芝的一种小分子多糖,促进H-尿嘧啶核苷掺入肝RNA,其增加率为,促进H-胸腺核苷,H-尿嘧啶核苷掺入骨髓RNA和DNA,其增加率分别为和。所以这些多糖对肝病恢复,骨髓造血均有促进作用。其它 从赤芝提取的葡萄糖、杂多糖、肽聚糖等具有降血糖作用。赤芝葡聚糖能刺激分泌胰岛素,并促进葡萄糖在外周组织的利用,对正常鼠和高血糖均有明显的陈旧降血糖作用。抗放射与促进骨髓造血机能:灵芝液具有抗放射作用,可明显降低Coγ射线照射小鼠的死亡率,并使平均存活时间显著延长。灵芝多糖D6促进蛋白质合成、改善造血机能、诱导细胞色素p-450等作用均有利于增强机体的防御功能,提高机体保持稳态的能力。灵芝多糖能增强小鼠耐缺氧存活的能力。灵芝制剂能降低机体及心肌的耗氧量,增加缺氧状态下豚鼠的冠状动脉血流量、增加心肌ATP,改善心肌缺血缺氧状态;对由于缺氧引起的家兔缺血型心电图改变有显著的对抗作用。提高小鼠耐缺氧的能力、延长缺氧小鼠平均存活时间。我的毕业论文,呵呵!
¥百度文库VIP限时优惠 现在开通,立享6亿+VIP内容立即获取异戊烯醇相关资料异戊烯醇相关资料一、异戊烯醇的性质异戊烯醇,又名3-甲基-2-丁烯-l-醇,英文名3-Methyl-2-buten-1-ol,相对分子质量,沸点 140℃,密度 g/mL(25℃),蒸气压 mm Hg (20℃),为无色透明液体。其结构式如图所示: 二、异戊烯醇的用途第 1 页大族粤铭激光切割机-激光切割机品牌企业_产品种类丰富最近9分钟前有人拨打电话咨询问题点击立即咨询,了解更多详情咨询广东大族粤铭激光集.. 广告异戊烯醇主要用于合成贲亭酸甲酯,贲亭酸甲酯是高效低毒农药拟除虫菊酯杀虫剂的中间体。随着合成异戊烯醇的工艺的不断改进,研究开发的不断加深,它在农药生产中的应用也在不断扩大,市场需求量大幅度上升。贲亭酸甲酯是拟除虫菊酯的重要前躯体,通常用原乙酸三甲酯与异戊烯醇在酸性催化剂存在的情况下,进行缩合重排,反应生成贲亭酸甲酯。拟除虫菊酯类杀虫剂对于大部分害虫具有强烈的触杀作用, 它的蒸气第 2 页还能驱赶害虫, 而且它对哺乳动物、鸟类的毒性低。由于易于降解, 它对环境没有污染。所以它适用于多种公共卫生场所。异戊烯醇还是聚羧酸减水剂的生产原料TPEG的主要中间体。在混凝土的生产和施工过程中使用这种高性能水泥减水剂,可以减少30%以上的用水量,增强30%以上混凝土的强度,在相同的情况下可减少水泥用量。也是人工合成柠檬醛的主要原料,第 3 页并由此可进一步合成L-薄荷醇及其衍生物、紫罗兰酮类香料、类胡萝卜素及维生素A类香料、营养素、医药另类刹那品等。三、生产方法根据合成异戊烯醇的原料的不同,可以把异戊烯醇的合成路线主要分成三种:第一种是异丁烯法,第二种是异戊二烯法,第三种是丙酮法。1、异丁烯法第 4 页异丁烯和多聚甲醛在磷酸氢二钠的催化下进行Prins缩合反应生成3-甲基-3-丁烯-1-醇,然后采用γ-为载体负载Pd作为异构化反应的催化剂,将3-甲基-3-丁烯1-醇加氢脱氢异构成3-甲基-2-丁烯-1-醇。此反应的工艺路线较短,生产原料丰富,产物与中间体分离容易。这个方法是现在合成异戊烯醇工业生产的主要方法。异丁烯(原料)异丁烯是一种重要的化工原料,可第 5 页用于生产丁基橡胶、聚异丁烯、二异丁烯、三异丁烯、甲基丙烯酸甲酯、2,4-叔丁基甲酚、叔丁基硫醇、叔丁醇、叔丁基胺、甲代烯丙基氯、甲基丙烯酸、甲基丙烯睛、新戊醛和异戊二烯等深加工产品。异丁烯衍生产品众多,上下游产业链复杂,消费结构呈多元化趋势。异丁烯工业生产方法主要有硫酸萃取法、吸附分离法、异丁烷丙烯共氧化联产法、甲基叔丁基醚(MTBE)裂解和正丁烯异构化法等。第 6 页高纯异丁烯生产技术门槛不高,国内大部分异丁烯生产厂家均配套有后续加工产品,所以在国内市场上异丁烯的商品量相对较少。目前东北地区主要生产厂商为吉林石化公司精细化学品厂,建有年产2万吨的异丁烯(中间体)装置。2、异戊二烯法 异戊二烯与HCl经催化,合成氯代异戊烯。产物1-氯-3-甲基-2-丁烯经催化生产1-氯-3-甲基-3-丁烯,产物与乙酸钠反应生成乙酸酯,经水第 7 页解最终得到产物。该方法的优点是原料丰富,化学反应平缓,缺点是操作繁琐,设备投资大,且原料异戊二烯的沸点低,蒸汽有比较大的毒性危害,氯化氢对设备有较大的腐蚀。3、丙酮法在碱性的环境下,丙酮和乙炔反应,经催化反应合成乙炔基异丙醇,再经催化剂Pd/C催化加氢合成甲基丁烯醇,最后经异构反应生成异戊烯醇。以丙酮作为原料生成异第 8 页戊烯醇的工艺路线,优点是我国乙炔的产量较大,容易获得,适合大规模生产,产物与中间体容易分离。缺点是该反应选择性较差,产品产率较低。要以贵金属作为催化剂,增加生产成本。四、国内主要生产企业 由于异戊烯醇作为众多产品的中间体,所以多数生产厂家基本都采取上下游联产方法。国内主要产销企业有:吉林众鑫化工5000t/a异戊烯醇;第 9 页山东新和成药业有限公司3200t/a异戊烯醇;江西省飓风化工有限公司200t/a异戊烯醇;连云港市中成化工有限公司300t/a吨;五、市场情况: 1、拟除虫菊酯是近几十年来迅速发展起来的一种新型仿生杀虫剂,现已形成了继有机氯、有机磷、氨基甲酸酯类杀虫剂之后又一个杀虫第 10 页剂序列,是杀虫剂历史上的第三个里程碑。由于杀虫谱广、高效低毒、低残留、生物降解性能好,对哺乳类动物毒性小等特点而被广泛应用于卫生害虫和农业害虫防治领域,占卫生杀虫剂有效成份使用量的70%,占国际农药市场l9%的份额,占杀虫剂市场的35%。 2、聚羧酸减水剂(PCE)可作为特种混凝土的减水剂,有掺入量低、减水率高、可提高强度等优点,可广泛应用于水利、核电等重大工程领域中。目前我国正处于建第 11 页设高峰期,所以未来聚羧酸系减水剂的发展动力主要源于两个替代,一是预拌混凝土及砂浆的全面推广对传统现拌混凝土的替代;二是聚羧酸系减水剂对传统萘系减水剂的替代。截止于2014年末,国内减水剂表观消费总量为800万吨,其中PCE减水剂占60%以上。但由于目前国内PCE减水剂生产厂商较多,国内近百家生产厂商,产能过剩。第 12 页百度文库 搜索异戊烯与醇反甘油与正丁酯反应展开全文免费读异戊烯醇相关资料全文APP打印导出为WORD导出为PDF发送至微信APP打开版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领相关文档异戊烯醇相关资料1049阅读免费获取全文异戊烯醇资料1000阅读 百里挑一免费获取全文异戊烯醇3107阅读 绝绝子免费获取全文异戊烯醇2622阅读查看更多为您精选异戊烯醇相关资料会员文档347篇人气好文异戊烯醇相关资料1049人阅读异戊烯醇资料2289人阅读热门TOP异戊烯醇3107人阅读异戊烯醇1446人阅读立即开通VIP异戊烯醇相关资料_乙二醇厂家_乙二醇厂家_就选_广州共信化工异戊烯醇相关资料,主营透明皂原料,表面活性剂,日化洗涤,化妆用品,纺织助剂,有机溶剂,涂料印染。品质稳定,价格公道,库充充足,服务专业,欢迎咨询!广告异戊烯醇相关资料_专业乙二醇生产厂家-昶润商贸-明智选择异戊烯醇相关资料,乙二醇,本公司库存充足,价格低廉,随时发货,现货供应!乙二醇,欢迎来电咨询!广告异戊烯醇相关资料_乙烯乙二醇〈焦作新景〉专业化学品生产厂商异戊烯醇相关资料,焦作新景公司生产乙烯乙二醇类产品,独有专利技术专业化学品生产厂商完善的质量保证体系,保证乙烯乙二醇产品质量。因为专业,所以值得您信赖。点击咨询广告基于你的浏览为你整理资料合集异戊烯与醇反甘油与正丁酯反应文件夹脂类代谢复习题 - 百度文库分 1800阅读 值得一读保幼激素及其生理学作用的研究进展_畜牧兽医_农林牧渔_专业资料分 1081阅读新型聚醚EPEG常温制备聚羧酸系高性能减水剂及其性能研究_论文 - 百度文库分 1197阅读 本周下载TOP剩余10篇精选文档APP内一键获取全部合集4709人已获取工具 收藏 APP获取全文 获取文档下一篇
现场管理论文,你必须有十年高管企业实际管理经验,没有十年你是写不出来的,必须边工作、边进行不断的修改管理制度,而且是全面管理的制度经验,没有实践的论文那是空谈。
土木工程参考文献
参考文献,仅限于著录作者亲自阅读过并在论文中直接引用的文献,而且,无特殊需要不必罗列众所周知的教科书或某些陈旧史料。以下是我为您整理的土木工程参考文献,希望能提供帮助。
[1]国家标准.建筑制图标准(GB/T 50104-2010).北京:中国计划出版社,2010.
[2]国家标准.房屋建筑制图统一标准(GB/T 50001-2010).北京:中国计划出版社,2010.
[3]国家标准.建筑设计防火规范(GB 50016-2006).北京:中国建筑工业出版社,2006.
[4]国家标准.办公建筑设计规范(JGJ 67-2006).北京:中国建筑工业出版社,2006.
[5]国家标准.无障碍设计规范(GB 50763-2012).北京:中国建筑工业出版社,2012.
[6]国家标准.公共建筑节能设计标准(GB 50189-2005).北京:中国建筑工业出版社,2005.
[7]陕西省建筑设计标准图集(陕09J01-09).陕西省建筑标准设计办公室.2010.
[8]建筑设计资料集编委会.建筑设计资料集(第2、4、8集).北京:中国建筑工业出版社,1998.
[9]同济大学、西安建筑科技大学、东南大学、重庆大学合编.房屋建筑学.北京:中国建筑工业出版社,2005.
[10]国家标准.建筑结构荷载规范(GB 50009-2012).北京:中国建筑工业出版社,2012.
[11]国家标准.建筑抗震设防分类标准(GB 50223-2008).北京:中国建筑工业出版社,2008.
[12]国家标准.建筑抗震设计规范(GB 50011-2010).北京:中国建筑工业出版社,2010.
[13]国家行业标准.工程结构可靠性设计统一标准(GB 50513-2008).北京:中国建筑工业出版社,2008
[14].国家标准.混凝土结构设计规范(GB 50010-2010).北京:中国建筑工业出版社,2010.
[15]国家标准.建筑结构制图标准(GB/T 50105-2010).北京:中国计划出版社,2010.
[16]国家建筑标准设计图集.建筑物抗震构造详图(03 G329-1).中国建筑标准设计研究院出版,2003.
[17]龚思礼主编.建筑抗震设计手册(第二版).北京:中国建筑工业出版社,2002.
[18]梁兴文、王社良主编.混凝土结构设计原理(第二版).北京:中国建筑工业出版社,2011.
[19]梁兴文、史庆轩主编.混凝土结构设计(第二版).北京:中国建筑工业出版社,2011.
[20]丰定国、王社良主编.抗震结构设计(第2版).武汉:武汉工业大学出版社,2003.
[21]梁兴文、史庆轩主编.土木工程专业毕业设计指导.北京:科学出版社,2002.
[22]国家标准.建筑地基基础设计规范(GB 50007-2011).北京:中国建筑工业出版社,2012.
[23]国家标准.建筑地基处理技术规范(JGJ 79-2002 )北京:中国建筑工业出版社,2002.
[24]华南理工大学等编著.地基及基础(第三版).北京:中国建筑工业出版社,1998.
[1]王恩斌.论山区农村饮水工程建设管理存在的问题及建议[J].黑龙江水利科技,2014,(11):87-89
[2]韩娜,王霞.农村饮水工程建设与管理方法探究[J].黑龙江科技信息,2013,(30):246-246.
[3]冉启福.农村饮水工程建设中存在问题分析及其安全管理[J].中国新技术新产品,2012,(17):103-104.
[4]徐伟,陈东杰,模板与脚手架工程详细图集,北京,中国建筑工业出版社,2002
[5]山东省建筑工程工程量清单计价办法,北京:中国建筑工业出版社
[6]中华人民共和国建设部,建设工程工程量清单计价规范(GB50500-2003),第1版,北京:中国计划出版社,2003
[7]混凝土结构设计规范(GB50010---2002).北京,中国建筑工业出版社,2002
[8]中国建筑标准设计研究院组织,混凝土结构施工图平面整体表示方法制图规则和构造详图03G101-2,北京,中国计划出版社,2006
[9]编写组, 建筑施工手册,第4版,北京:中国建筑工业出版社,2003
[10]中国建筑标准设计研究院组织,混凝土结构施工图平面整体表示方法制图规则和构造详图03G101-4,北京,中国计划出版社,2006
[11]中国建筑业协会,建筑机械设备管理分会,简明建筑施工机械实用手册,北京,中国建筑工业出版社,2003
[12]江正荣,建筑施工计算手册,第二版,北京:中国建筑工业出版社
[13]编写委员会,建设工程项目管理规范实施手册,第1版.,京:建筑工业出版社,2002
[14]青岛市建委,青岛市工程结算资料汇编,青岛,中国海洋大学出版社,2008
[15]中国建设科学研究院、哈尔滨工业大学,建筑施工扣件式钢管脚手架安全技术规范JGJ130-2001,北京,中华人民共和国建设部,2002
[16]严微.土木工程项目管理与施工组织设计.北京:人民交通出版社,1999
[17]混凝土结构工程施工质量验收规范(GB50204-2002).北京:中国建筑工业出版社,2002
[18]山东省建设厅,山东省建筑工程消耗量定额上册,北京,中国建筑工业出版社,2006
[19]重建工,同济,哈建工,建筑施工,第2版,北京,中国建筑工业出版社,2009
[20]中国建筑标准设计研究院组织《混凝土结构施工图平面整体表示方法制图规则和构造详图03G101-1》,北京,中国计划出版社,2006
[21]建筑结构荷载规范(GB50009---2001),北京,中国建筑工业出版社,2002
[22]汪正荣,朱国梁,简明施工手册,第2版,北京,中国建筑工业出版社,2009
[23]邢莉燕,王坚,梁振辉,工程估价,北京,中国电力出版社,2004
[24]邢莉燕,陈起俊,工程估价,北京,中国电力出版社,2008
[25]建设工程劳动定额-装饰工程(LD/T ),北京,中国计划出版社,2009
1、腾智明,朱金铨编著.《混凝土结构及砌体结构》.中国建筑工业出版社,199
2、黄棠.王效通主编.《结构设计原理(上册)》.中国铁道出版社,1999
3、邵全,韦敏才.《土力学与基础工程》.重庆大学出版社出版,1997
4、王祖华主编.《混凝土及砌体结构》.华南理工大学出版社,1993
5、王萍主编.《混凝土结构及砌体结构》.大连理工大学出版社,2000
6、李国强.《建筑结构抗震设计》.中国建筑工业出版社,2002
7、朱彦鹏主编.《混凝土结构设计原理》.重庆大学出版社,2002
8、黄双华主编.《房屋结构设计》.重庆大学出版社,2001
9、陈树华主编.《建筑地基基础》.哈尔滨工程大学出版社,2003
10、侯治国主编.《砼结构》.武汉工业大学出版社,1999
11、胡乃君主编.《建筑结构课程设计指导》.武汉工业大学出版社,2001
12、沈满生、苏三庆主编.《高等学校建筑工程专业毕业设计指导》.中国建筑工业出版社,2000
13、贾韵绮、王毅红主编.《工业与民用建筑专业课程设计指南》.中国建筑工业出版社,1994
14、陈登鳌主编.《建筑设计资料集(1、2、3、8、9)》.中国建筑工业出版社出版,1994
15、《新版建筑工程勘察设计规范汇编》.北京:中国建筑工业出版社,2002
16、同济大学、西安建筑科技大学、东南大学、重庆建筑大学编.《房屋建筑学》中国建筑工业出版社,1997
[1] 苏文菊.浅谈施工企业成本管理的现状及对策[J].郑州工业高等专科学院学报,2003,19(4) : 36-37
[2] 马瀛洲.工程项目施工阶段造价控制与管理[J].现代商业,2008, (26) :66-67
[3] 周榕冰,范建双.建设项目全寿命期精益成本管理研究[J].建筑管理现代化,2009, 23(2) : 164-167
[4] 于文凯,刘伟.对建筑成本管理的探讨[J].森林工程, 2001,17(6) :27-28
[5] 赵勇,吕敏娟,张永学.影响建设项目工程造价的因素分析[J].建筑与预算,2009, 25(3) : 15-15
[6] 贾志远.浅析建设项目施工阶段造价的控制[J].现代企业文化,2009, (27) : 92-93
[7] 于江泳,陈继伟.建设工程造价控制中存在的问题与对策[J]黑龙江科技信息,2009, (27) :249-249
[8] 吴学军,胡韫频,郭树元.关于大型建设项目全生命周期投资控制的探讨[J].武汉理工大学学报,2005, 27(6) : 133-136
[9] 黄屹岳.浅谈招标投标中工程造价的管理[J].管理观察,2009, (26) :16-17.
[10] 任民主.目前我国设计阶段工程造价控制的现在分析[J].山西建筑,2009,35(25) :262-263
[11] Sieglinde K. Fuller, Amy S. Boyles. Life-Cytec Costing Workshop for Energy Conservation inBuildings[J]. Student Manual, 2010,V12(4):125-129
[1] 常永红.工程造价在建设项目中的投资控制与管理.陕西建筑[J],2007,(10):44-45.
[2] 全兆松.石油工程造价分析体系研究.科技创业月刊[J],2010,02:59-61
[3] 贾俊平.统计学「M].北京:中国人民大学出版社,2009.
[4] 滕素珍,冯敬海.数理统计学[M].大连:大连理工大学出版社,2005.
[5] 孙晓斌.试论石油工程造价分析及其应用.胜利油田党校学报[J],2009,02:51-53
[6] 王鹏.石油工程造价管理信息化风险分析及其控制.现代商业[J],2012,07:95
[7] 祝春梅.信息技术在石油工程造价分析上的应用.企业导报[J],2010,11:190-191
[8] 叶峰.浅析建设项目全过程造价控制.山西建筑[J],2007,(32):25-26.
[9] 汤桥.别墅建筑工程造价分析[D].北京:北方工业大学,2009
[10] 匡雯琦.别墅安装工程造价分析[D].北京:北方工业大学,2009
[11] 唐.埃思里奇.应用经济学研究方法论[M].北京:经济科学出版社,2007
[12] 美国项目管理协会.项目管理知识体系指南(第 3 版)(PMBOK 指南)[M].北京:电了工业出版社,2005.
[13] 王星.国内外工程造价计价模式比较研究.内江科技[J],2008,07:30-41
[14] 尹贻林主编.工程造价计价与控制[M].北京:中国计划出版社,2010.
[15] Zhenhua Rui et al. Historical pipeline construction cost of Oil, Gas and Coal Technology[J], 2011,V4(3): 244-263
[16] Prof Russell Kenleya. Construction Cost Management: Learning from Management and Economics[J],2010 V28:545-546
[1]付哲.浅析现代建筑施工材料管理[J].科技创新与应用,2012 (08Z): 247-247
[2]郭建华,黄卫.高速公路工程质量管理系统数据库设计刃.公路交通科技,2001,18(4):35-39
[3]赵昕慰,张保民,杨瑞生.国际工程现场施工材料管理系统[J].兰州交通大学学报,2004, 23(4): 47-49.
[4]王静,翟全礼,仲景冰.地铁建设材料管理信息化研究m.华中科技大学学报(城市科学版),2009, 2: 019
[5]陈豫龙,何旭洪.Delphi6数据库系统开发实例导航[M].人民邮电出版社,2002.
[6]马智亮,莫方彬.建筑施工项目信息化管理系统的面向对象建模[J].土木工程学报,2001,34(2): 105-110
[7]张志杰.基于分层结构的管理信息系统架构设计[J].计算机技术与发展,2010,20(10):146-149
[8]廖志英,董安邦.基于C/S和B/S混合结构的管理信息系统运行模式[J].计算机工程与应用,2002, 38(2): 184-185
[9]余国斌.工程项目成本控制[J].铁路工程造价管理,2004,18(6): 27-29.
[10]刘芳.浅谈施工企业降低项目施工成本的途径[J].技术经济与管理研究,2006,6: 024
[1] 齐骥, 徐波. 建筑工程管理学[M]. 陕西科学技术出版社.2003
[2] 刘正周. 管理激励. 上海财经大学出版社.1999 年 1 月
[3] 刘志远, 林云. 现代企业激励机制.上海人民出版社.1997 年,第 6 页
[4] 李旭伟. 总承包体制下项目质量管理研究[J]. 科技管理研究.2006(04)
[5] 侯光明. 管理激励与约束.北京理工大学出版社.1999 年,第 80 页
[6] 杨红军. 非正式制度与企业文化研究.吉林大学 2004 年硕士论文
[7] 姜敢闯. 现代企业激励问题研究.中南大学 2002 年硕士论文
[8] 张婷. 中西方管理特点比较分析. 山东大学 2009 年硕士论文
[9] 张曼玲. 企业内部会计控制研究.首都经济贸易大学 2004 年 3 月.
[10] 陈郁.所有权、控制权与激励. 上海三联书店、上海人民出版社.1998 年
[11] 齐骥, 徐波. 香港的建筑管理制度[J]. 建筑,2002(2):50-52.
[12] 戚安邦. 现代项目管理[M]. 北京:对外经济贸易大学出版社,2001 年.
[13] 王宗昌. 建筑工程质量控制实例[M]. 科学出版社.2004
[14] 王宗昌, 高振东. 建筑工程质量百问[M]. 北京:中国建筑工业出版社.1999
[5] 朱宏亮. 项目进度管理[M]. 北京:清华大学出版社,2002 年.
[16] 刘迎心, 李清立. 中国建筑工程质量现状剖析、国际借鉴、未来对策[M]. 中国建筑工业出版社.2007
[1] 张飞涟,周继祖.铁路建设项目后评价理论体系的.研究[J].综合运输,2010(12) :25-28
[2] 黄 恺.积极开展商业房地产项目后评价[J].城市开发.2011(10): 76
[3] 汪红霞,商业地产项目引入后评价的探讨[J].重庆教育学院学报,(6):93-95
[4] 曲琳莉.正确进行商业房地产项目后评价研究[J].特区经济.2011(10), 299
[5] 曾珍香.可持续发展协调性分析[J].系统工程观论与文践,2011(3): 18-21
[6] 倪枫杰,黄金枝.工秤项目后评价研究综述[J].建筑技术开发,2009,31(11):103-106
[7] 许晓峰,肖 翔.建设项目后评价[M].中华工商联合出版社,2000
[8] 吕军印.浅谈环境经济评价的类别划分[J].中国环境保护.
[9] 张三力.项目后评价[M].清华大学出版社,2003
[10] 王 超.项目决策与管理[M].中国对外经济贸易出版社.2005
[1] 王玉杰.浅谈施工项目管理[J].城市建设理论研究,2014(10):56-58
[2] 李林.绩效管理在 HR 管理系统中的定位和作用--基于人力资源管理的工作流程[J].商情,2012(4):55
[3] 朱晨海.战略性职业生涯开发与管理研究--从人力资源计分卡到胜任力模型[D].上海:同济大学,2005
[4] 李溪.基于能力素质模型的人才测评系统的研究与实现[D].济南:山东大学,2007
[5] 彭剑锋.员工素质模型设计[M].北京:中国人民大学出版社,2003:12-13
[6] 曹志强.基于 KPI 的绩效管理体系设计[D].北京:北京交通大学,2004
[7] 魏群.供电企业 KPI 绩效管理体系的建立[D].北京:华北电力大学,2008
[8] 战冰峰.基于胜任力模型的员工绩效测评体系的应用研究[D].北京:对外经济贸易大学,2008
[9] 徐中林.中国企业国际化经营发展战略研究[D].北京:对外经济贸易大学,2012
[10] 郭祥友.风险导向内部审计下审计人员能力素质模型构建[J].企业导报,2009(1):89-91
[11] 刘芳.基于胜任力视角的职业经理人的素质评价解析[D].北京:首都经济贸易大学, 2012
[12] 宫鹤.企业实施绩效管理过程的问题研究[J].华章,2012(36):1
[13] 崔爱珍.腾飞的中建八局天津公司[J].天津建设科技,2010(2):23-24
[14] 赵岳.我国高校学生干部能力素质评价与培养研究[D].青岛:青岛大学,2012
[15] 李晶晶,张玉清.基于胜任力的绩效管理体系[J].企业导报,2009(11):82-83
[16] 李作学.人力资源管理案例(第 2 版)[M].北京:人民邮电出版社,2012:89-97
[17] 吴晓琴.基于执行力的企业中层管理者的胜任力模型及评价研究[D].西安:西安电子科技大学,2007
[1]拓勇飞,孔令伟.湛江地区结构性软土的赋存规律及其工程特性[J].岩土力学,2004,25(12):1879-1884.
[2]张先伟,孔令伟.湛江强结构性黏土的物理力学性质指标及相关性分析[J].工程地质学报,2017,19(4):447-454.
[3]孔令伟,吕海波,汪稔等.湛江海域结构性海洋土的工程特性及其微观机制[J].水利学报,2002,33(9):82-88
[4]孔令伟,吕海波.某防波堤下卧层软土的工程特性状态分析[J].岩土工程学报,2004,26(4):454-458.
[5]孙吉主,王勇.湛江海域结构性软土的边界面损伤模型研究[J].岩土力学,2006,27(1):99-103.
[6]姚珩珩,夏远野,刘胜娥.海口地区第四系湛江组灰色粘土的工程地质特性[J].港工技术,2001,(6):54-55.
[7]张丽.浅谈第四系湛江组粘土层工程特点[J].采矿技术,2017,10(1):24-25.
[8]陈书荣.湛江灰色粘土的工程特性[J].西部探矿工程,2006,(6):30-31.
[9]雷严问.浅谈湛江市老粘性土的工程地质特性与环境地质因素的关系[J].广东水利水电,2007,4:03-04.
[10]胥稳,侯玉宾,朱瑞田.大直径超长桩承载力影响因素数值分析[J].低温建筑技术,2017,10:104-106.
[11]魏静,王建华,李永林.西安地区单桩桩土相互作用数值模拟分析[J].长安大学学报,2003,25(3):63-66.
[12]徐燕,佴磊.单桩不同加载条件下有限元模拟及侧摩阻力分析[J].煤田地质与勘探,2007,35(3):55-58.
[13]蔡志.钉形搅拌桩单桩承载力的数值模拟分析[J].城市道桥与防洪,2017,8:147-149.
[14]赵健利,冯旭.基于薄层单元法的单桩挤土效应数值模拟[J].上海大学学报,2017,19(2):208-213.
[15]吕全乐,鹿群,郭少龙.静压单桩施工对道路影响的数值模拟研究[J].广西大学学报,2017,38(1):182-187.
[16]张瑞坤,石名磊,倪富健,王晋.黏性土中大直径超长钻孔灌注桩承载性状及单桩沉降分析[J].岩石力学与工程学报,2017,32:4190-4198.
[17]周健,郭建军,张昭,贾敏才.砂土中单桩静载室内模型试验及颗粒流数值模拟[J].岩土力学,2017,31(6):1763-1768.
[18]王幼青,张克绪.竖向荷载作用下单桩工作性能模拟分析[J].哈尔滨工业大学学报,2002,34(5):667-670.
[19]吴增伟.竖向荷载作用下单桩三维模型参数分析[J].地下空间与工程学报,2017,10(2):351-355.
[20]邢克勇,江松,姚升康,赵春晓,张华文.PHC管桩单桩振动台试验与数值模拟对比分析[J].华北地震科学,2017,32(1):33-37.
中国期刊全文数据库 共找到 381 条[1]李玉,何平,谢喜山. 后浇混凝土与砖砌体粘结面抗剪强度的试验研究[J]. 四川建筑科学研究, 2006,(02) . [2]黄文明. 泵送混凝土的施工工艺分析[J]. 安徽建筑工业学院学报(自然科学版), 2005,(01) . [3]王顶堂. 大体积混凝土裂缝控制技术应用研究[J]. 安徽建筑工业学院学报(自然科学版), 2008,(06) . [4]王文中,王国荣,殷济波,殷风雨. 芜湖临江桥主塔C50预拌混凝土的设计及应用[J]. 安徽建筑, 2008,(01) . [5]黄志福. 论机制砂在高速公路中应用的经济效益[J]. 安徽建筑, 2009,(02) . [6]钟庆华,赵成宇,高卉. 船闸工程“双掺”泵送混凝土配合比试验研究[J]. 安徽水利水电职业技术学院学报, 2005,(04) . [7]王朋. 大体积混凝土施工温度控制计算[J]. 安徽水利水电职业技术学院学报, 2008,(03) . [8]张宏梅,王耀华,毕亚军,陆明. 含钢丝网遮弹层的结构靶的力学性能与枪弹射击试验研究[J]. 兵工学报, 2005,(02) . [9]韩延清. 水泥GB法与ISO法对比试验与应用[J]. 本溪冶金高等专科学校学报, 2002,(01) . [10]赵军,张海军,田向阳. 基于耐久性的混凝土配合比设计方法[J]. 平顶山工学院学报, 2003,(01) . >>更多 中国博士学位论文全文数据库 共找到 7 条[1]陈斌. 混凝土配合比优化及结构早期裂缝防治研究[D]. 浙江大学, 2005 . [2]牟晓光. 高强预应力钢筋粘结性能试验研究及数值模拟[D]. 大连理工大学, 2006 . [3]王雨利. 低强度等级泵送高石粉机制砂混凝土的研究[D]. 武汉理工大学, 2007 . [4]曾磊. 型钢高强高性能混凝土框架节点抗震性能及设计计算理论研究[D]. 西安建筑科技大学, 2008 . [5]王立军. 混凝土强度无损检测试验及人工智能系统模型研究[D]. 天津大学, 2008 . [6]张德成. 硫铝酸盐水泥基高性能混凝土的结构—性能及工程应用研究[D]. 武汉理工大学, 2009 . [7]伍崇明. 核工程抗强辐射屏蔽混凝土试验研究[D]. 中南大学, 2008 . 中国优秀硕士学位论文全文数据库 共找到 62 条[1]李小法. 太原滨河小区高层住宅现浇混凝土楼板裂缝的预防及治理[D]. 天津大学, 2004 . [2]潘振. 钢筋混凝土简支梁试验系统的研制开发[D]. 南京林业大学, 2004 . [3]吴蓉. 商品混凝土回弹法测强曲线的研究[D]. 郑州大学, 2004 . [4]刘红军. 框架结构梁柱节点施工质量控制的研究[D]. 天津大学, 2003 . [5]刘卫华. 组合模块式加筋土挡墙墙面板与筋带的摩擦性质研究[D]. 长安大学, 2004 . [6]宗荣. 聚丙烯纤维混凝土使用性能研究[D]. 长安大学, 2004 . [7]陈(韦华). 5万吨级扩建码头施工(技术)工艺研究[D]. 河海大学, 2004 . [8]黄祚继. 临淮岗船闸底板混凝土裂缝控制方法研究[D]. 河海大学, 2005 . [9]武欣慧. 基于人工神经网络的普通混凝土强度预测的研究[D]. 内蒙古农业大学, 2005 . [10]宗永红. 乌鲁木齐地区碱-骨料反应及预防措施的研究[D]. 新疆大学, 2005 . >>更多 中国重要会议论文全文数据库 共找到 17 条[1]范孟岭,卓晓明. 商品混凝土在公路工程中的应用[A]. 2007'中国商品混凝土可持续发展论坛论文集[C], 2007 . [2]康忠寿. 高强混凝土的配合比设计[A]. 预制混凝土桩——中国硅酸盐学会钢筋混凝土制品专业委员会、中国混凝土与水泥制品协会预制混凝土桩委员会2007-2008年年会论文集[C], 2008 . [3]张波,张方. 聚羧酸盐高效减水剂、大掺量复合掺合料及机制砂在大体积混凝土中的应用[A]. 2008中国商品混凝土可持续发展论坛暨第五届全国商品混凝土技术交流大会论文集[C], 2008 . [4]江守恒,朱卫中. 大体积混凝土实体强度发展规律及其表征[A]. 2008中国商品混凝土可持续发展论坛暨第五届全国商品混凝土技术交流大会论文集[C], 2008 . [5]刘本刚. 浆水回收再利用在混凝土中的试验与应用[A]. 2008中国商品混凝土可持续发展论坛暨第五届全国商品混凝土技术交流大会论文集[C], 2008 . [6]江涛. 商品混凝土质量教训35例[A]. 2008中国商品混凝土可持续发展论坛暨第五届全国商品混凝土技术交流大会论文集[C], 2008 . [7]曹志强,张广山,华玉,马卫华,柳丽霞. CFRP约束受损混凝土圆柱的应力-应变关系研究[A]. 第五届全国FRP学术交流会论文集[C], 2007 . [8]陈喜旺,丁宏,黄天贵,史忠,李路明. 海洋冻融环境防腐阻锈混凝土的研究与应用[A]. “全国特种混凝土技术及工程应用”学术交流会暨2008年混凝土质量专业委员会年会论文集[C], 2008 . [9]蒋学茂,任学军,苏话诚. 泵送混凝土在超高层建筑施工中的应用[A]. 建设工程混凝土应用新技术[C], 2009 . [10]卫海亮,陈江,卢则阳. 烟台世茂海湾工程大体积混凝土施工温控监测及分析[A]. 建设工程混凝土应用新技术[C], 2009 .
土建专业毕业论文参考文献
紧张又充实的大学生活即将结束,众所周知毕业前要通过最后的毕业论文,毕业论文是一种比较正规的、有准备的检验学生学习成果的形式,毕业论文应该怎么写才好呢?以下是我帮大家整理的土建专业毕业论文参考文献,欢迎大家借鉴与参考,希望对大家有所帮助。
,场所精神—迈向建筑现象学[M],华中科技大学出版社,2012;
2.杨·盖尔,交往与空间[M],北京:中国建筑工业出版社,2002;
,城市意向[M],北京:华夏出版社,2001;
4.童林旭,地下空间与城市现代化发展,北京:中国建筑工业出版社,2005;
5.刘晓晖、杨宇振,商业建筑[M],武汉:武汉大学出版社,1999;
6.曾坚、陈岚、陈志宏.,现代商业建筑的规划与设计[M],天津:天津大学出版社,2002;
7.杨贵庆,城市社会心理学[[M],上海:同济大学出版社,2000;
8.布恩(美),心理学原理和应用[M],知识出版社,1985;
9.魏伦杰,张卫华,关注城市地下商业建筑的安全性与舒适性[J].四川建筑,2007年第27卷;
,设计结合自然[M],北京:中国建筑工业出版社,1992;
11.高履泰,光环境的'剖析,北京建筑工程学院.照明工程学报2000(04);
12.王紫雯、涂银霞,城市居住环境中的人文要素研究—以杭州市的人居环境调查为例,建筑学报,;
13.韩晶,张宇星,城市流线空间连续性设计的方法.规划师,2004,09:90-93;
14.童林旭,地下空间概论(一),地下空间,2004年3月,24(1):133-142;
15.童林旭,地下空间与未来城市,地下空间与工程学报,2005年06月,1(3):323-328;
16.束昱、彭方乐,地下空间研究的新领域一一地下环境心理学、地下空间,1990,10(3);
17.王保勇,束昱,影响城市地下空间环境的因素分析,同济大学学报,2000,28(6):656-660;
18.陈秋琼,改善室内空气环境的几种方法,上海建设科技,2000,03;
19.[美]吉迪恩·S·格兰尼,[日]尾岛俊雄.城市地下空间设计,北京:中国建筑工业出版社,2005;
20.赵景伟,城市化进程中的人居环境与地下空间利用.隧道建设,2008,28(2);154-157;
21.陈育霞,诺伯格·舒尔茨的“场所和场所精神”理论及其批判,长安大学学报,2003,20(4);30-33;
22.郭红、莫鑫,诺伯格·舒尔茨的场所理论评析,四川建筑,2004,24(5);
23.胡映东,场所精神的回归,山西建筑,2007,33(18):26-27;
24.费彦,现象学与场所精神,武汉城市建设学院学报,1999,16(4);25.李道增,环境行为学概论[M],北京:清华大学出版社,1999;
26.刘力,商业建筑[M],北京:中国建筑工业出版社,1999;
27.(丹)扬·盖尔、拉尔斯·吉姆松,公共空间·公共生活[M],北京:中国建筑工业出版社,2003;
28.赵慧宁、赵军,现代商业环境设计与分析[M],南京:东南大学出版社,2005;
29.鲁睿,商业空间设计[M],北京:知识产权出版社,2006;
30.张伟.,商业建筑[M],北京:中国建筑工业出版社,2006;
1、腾智明,朱金铨编著.《混凝土结构及砌体结构》.中国建筑工业出版社,199
2、黄棠.王效通主编.《结构设计原理(上册)》.中国铁道出版社,1999
3、邵全,韦敏才.《土力学与基础工程》.重庆大学出版社出版,1997
4、王祖华主编.《混凝土及砌体结构》.华南理工大学出版社,1993
5、王萍主编.《混凝土结构及砌体结构》.大连理工大学出版社,2000
6、李国强.《建筑结构抗震设计》.中国建筑工业出版社,2002
7、朱彦鹏主编.《混凝土结构设计原理》.重庆大学出版社,2002
8、黄双华主编.《房屋结构设计》.重庆大学出版社,2001
9、陈树华主编.《建筑地基基础》.哈尔滨工程大学出版社,2003
10、侯治国主编.《砼结构》.武汉工业大学出版社,1999
11、胡乃君主编.《建筑结构课程设计指导》.武汉工业大学出版社,2001
12、沈满生、苏三庆主编.《高等学校建筑工程专业毕业设计指导》.中国建筑工业出版社,2000
13、贾韵绮、王毅红主编.《工业与民用建筑专业课程设计指南》.中国建筑工业出版社,1994
14、陈登鳌主编.《建筑设计资料集(1、2、3、8、9)》.中国建筑工业出版社出版,1994
15、《新版建筑工程勘察设计规范汇编》.北京:中国建筑工业出版社,2002
16、同济大学、西安建筑科技大学、东南大学、重庆建筑大学编.《房屋建筑学》中国建筑工业出版社,1997
[1]徐晋仙.建筑施工中施工组织设计的重要性[J].科技向导,2010,(26):73.
[2]李润成.编制投标施工组织设计的几点建议[J].山西建筑,2012,(6):74-75.
[3]李海涛.工程投标中的施工组织设计编制[J].技术市场,2011,(6):295.
[4]王革新.施工组织设计的作用与编制[J].甘肃科技纵横,2007,(1):54.
[5]聂迎春.浅谈施工组织设计在工程施工中的重要作用[J].科技创新指导,2010,(2):29.
[6]林瑞.优化施工组织设计合理确定工程造价[J].水利水电工程造价,2007,(3):25.
[7]宋玮.施工组织设计与工程造价[J].水利水电工程造价,2007,(2):41.
[8]吴永昌.简述安全、质量、进度、投资之间的关系[J].经济师,2010,(6):233.
[9]陈兵.浅谈建筑施工组织设计[J].企业研究,2011,(20):183.
[10]齐新红.浅谈施工组织设计编制及其重要性[J].建工论坛,2010,(23):181.
[11]石爱萍.浅谈季节性施工的管理[J].科技情报开发与经济,2011,(11):225.
[12]王坤.浅谈施工组织设计编制要点[J].探索经验,2010,(3):76.
[13]王清洲,刘淑艳.施工组织设计对工程成本的影响[J].山西建筑,2006,(13):21.
[1]王亚军.交通土建工程项目中的路基路面施工技术研究[J].西部交通科技,2016(4):43-45.
[2]史经会.基于交通土建工程路基路面施工的关键技术研究[J].江西建材,2016(12):143-144.
[3]张奕宝.交通土建工程路基路面施工的关键技术[J].价值工程,2015(9):151-152.
[4]梁飞.交通土建工程路基路面施工的关键技术分析[J].企业科技与发展,2015(17):65-66.
[1]陈剑勇.土建施工工程中的电气安装技术浅析[J].中国城市经济.2010(07)
[2]徐建文.浅谈水暖工程中土建的施工配合[J].山西建筑.2010(20)
[3]罗新刚.论建筑工程土建施工现场管理的优化策略[J].科技致富向导.2011(24)
[4]彭毅.电气安装工程与土建工程的施工配合[J].西部探矿工程.2005(S1)
[5]梁笑娴.建筑工程施工管理及技术分析[J].中小企业管理与科技(下旬刊).2010(07)
[6]董服松.建筑施工中裂缝控制技术分析[J].中国新技术新产品.2010(12)
[7]郭建功.建筑工程中的预埋件施工流程及要求[J].科技传播.2011(11)
[8]陈冉.浅析影响建筑施工安全的原因及防控措施[J].科技资讯.2007(12)
参考文献是论文写作中可参考或引证的主要文献资料,可以反映论文作者的科学态度和论文具有真实、广泛的科学依据。下面是我带来的关于化学论文参考文献的内容,欢迎阅读参考! 化学论文参考文献(一) [1] 王亮. 薄层等离子体与表面等离子体激元的实验研究[D]. 中国科学技术大学 2009 [2] 汪建. 射频电感耦合等离子体及模式转变的实验研究[D]. 中国科学技术大学 2014 [3] 马新欣. 基于COSMIC掩星数据的电离层分布特征及地震响应研究[D]. 中国地震局地球物理研究所 2014 [4] 王若鹏. 地震电离层前兆短期预报研究[D]. 武汉大学 2012 [5] 何昉. 地基大功率无线电波加热电离层对空间信息链路影响研究[D]. 武汉大学 2009 [6] 汪枫. 高频电波人工调制低纬电离层所激发的ELF波的研究[D]. 武汉大学 2011 [7] 邓忠新. 电离层TEC暴及其预报方法研究[D]. 武汉大学 2012 [8] 刘宇. 实验室研究化学物质主动释放形成的电离层空洞边界层的非线性演化[D]. 中国科学技术大学 2015 [9] 宋君. 返回式电离层探测技术应用研究[D]. 武汉大学 2011 [10] 冯宇波. 电离层等离子体分析仪的设计与研制[D]. 中国科学院研究生院(空间科学与应用研究中心) 2011 [11] 李正. 电离层暴及“行星际扰动-磁暴-电离层暴”的观测研究[D]. 中国科学院研究生院(空间科学与应用研究中心) 2011 [12] 赵莹. GNSS电离层掩星反演技术及应用研究[D]. 武汉大学 2011 [13] 牛田野. 特殊等离子体环境物理信息获取与处理的研究[D]. 中国科学技术大学 2008 [14] 黄勇,时家明,袁忠才. Numerical Simulation of Ionospheric Electron Concentration Depletion by Rocket Exhaust[J]. Plasma Science and Technology. 2011(04) 化学论文参考文献(二) [1] 徐凯. 硝基甲烷及其分解产物的从头算分子动力学研究[D]. 四川大学 2014 [2] 李倩,徐送宁,宁日波. 用发射光谱法测量电弧等离子体的激发温度[J]. 沈阳理工大学学报. 2011(01) [3] 李兵,张明安,狄加伟,魏建国,李媛. 电热化学炮内弹道参数敏感性研究[J]. 电气技术. 2010(S1) [4] 赵晓梅,余斌,张玉成,严文荣. ETPE发射药等离子体点火的燃烧特性[J]. 火炸药学报. 2009(05) [5] 张祎. 小口径固体电枢电磁轨道炮发射稳定性与初始装填过程影响规律的研究[D]. 南京理工大学 2012 [6] 弯港. 基于格子Boltzmann方法的流动控制机理数值研究[D]. 南京理工大学 2013 [7] 李海元. 固体发射药燃速的等离子体增强机理及多维多相流数值模拟研究[D]. 南京理工大学 2006 [8] 王争论. 中心电弧等离子体发生器及其在电热化学炮中的应用研究[D]. 南京理工大学 2006 [9] 林鹤. HMX共晶炸药的制备与理论研究[D]. 南京理工大学 2014 [10] 王娟. 2,3-二羟甲基-2,3-二硝基-1,4-丁二醇衍生物的合成及其应用研究[D]. 南京理工大学 2014 [11] 董岩. 多氨基多硝基苯并氧化呋咱及其金属配合物的合成与性能研究[D]. 南京理工大学 2014 [12] 刘进剑. 多氨基多硝基吡啶及吡嗪氮氧化物含能配合物的合成、性能及应用[D]. 南京理工大学 2014 [13] 赵国政. 氮杂环硝胺化合物的理论设计与母体合成[D]. 南京理工大学 2014 [14] 郭长平. 一步法微气孔球扁药成孔机理、燃烧性能及应用研究[D]. 南京理工大学 2013 [15] 金涌. 电热等离子体对固体火药的辐射点火及燃烧特性研究[D]. 南京理工大学 2014 化学论文参考文献(三) [1] 王晓东. 蛋白质复合体及蛋白质相互作用研究新策略[D]. 北京协和医学院 2012 [2] 罗孟成. H5N1亚型禽流感病毒DNA疫苗及分子佐剂研究[D]. 武汉大学 2010 [3] 吴志强. 应用RNA干扰技术抑制手足口病重要病原体的基因表达与复制研究[D]. 武汉大学 2010 [4] 刘丹. 乙型肝炎病毒Pol蛋白对NF-κB信号通路抑制作用的研究[D]. 武汉大学 2014 [5] 江淼. RNA结构在其诱导细胞先天免疫反应中的作用及其相关信号通路研究[D]. 武汉大学 2011 [6] 詹蕾. 呼吸道合胞病毒的纳米免疫分析新方法研究[D]. 西南大学 2014 [7] 易昌华. 麻疹病毒血凝素蛋白H诱导HeLa细胞凋亡及其分子作用机制研究[D]. 武汉大学 2014 [8] 杨景晖. H3N2亚型流感病毒Vero细胞冷适应株减毒特性及假病毒评价中和抗体的研究[D]. 北京协和医学院 2014 [9] 刘娟. 人呼吸道腺病毒55型的基因组学与病原学特征研究[D]. 中国人民解放军军事医学科学院 2014 [10] 喻正源. 全基因组测序与病毒捕获测序技术探讨EB病毒进化及整合规律的初步研究[D]. 中南大学 2013 [11] 陈晓庆. 天然产物抗单纯疱疹病毒感染活性评价及机理研究[D]. 南京大学 2014 [12] 李康. 抗流感病毒和EV71新靶标及新药物研究[D]. 北京工业大学 2014 [13] 王君. 白细胞介素-6受体介导A型流感病毒感染诱导白细胞介素-32及白细胞介素-6表达的研究[D]. 武汉大学 2013 [14] 申彦森. 基于内含子剪切的人工miRNA结构和靶向位点与基因沉默效率的关系研究[D]. 武汉大学 2009 [15] 金旭. 冠状病毒N7甲基转移酶甲基化核苷酸GTP的特性研究[D]. 武汉大学 2013 [16] 陶佳莉. SARS冠状病毒非结构蛋白nsp14的结构功能关系研究[D]. 武汉大学 2013 [17] 高国振. 宿主因子Cyclin T1和Sam68在Ⅰ型人免疫缺陷型病毒生活周期中的功能研究[D]. 武汉大学 2012 [18] 柳叶. 阻断HIV-1辅助受体CXCR4的新方法研究[D]. 武汉大学 2012 [19] 李围. Akt1蛋白质复合体的纯化鉴定及其相互作用蛋白质的功能研究[D]. 中国人民解放军军事医学科学院 2007 [20] 鞠湘武. H5N1型禽流感病毒损伤细胞溶酶体的机制研究和南极极端环境下科考队员的应激反应研究[D]. 北京协和医学院 2012 猜你喜欢: 1. 化学论文参考范文 2. 关于科学论文参考文献 3. 药学论文参考文献 4. 药学毕业论文参考文献 5. 毕业论文参考文献国家标准
其实应该说甲烷作为一种温室气体的效力是二氧化碳的23-25倍
其他
:质量当量:
1tCH4的GWP值为21tCO2e
其中:GWP为增温潜力值,表示对温室效应的贡献大小。
补充:
根据IPCC的国家温室气体清单指南2006,全球增温潜势计作一吨温室气体在一段时间(如100年)内对一吨二氧化碳的辐射强迫。因此均采用 1tCH4 = 21tCO2e
=====================================其他参考
科学家们相信,南极洲冰盖和冰川下的水世界中生活着大批的微生物。他们还推测,这些微生物可能在漫长的时间里制造出了大量的甲烷,通常情况下甲烷被冰封在那里,但是如果上升的气温使冰川和冰盖融化,甲烷则有可能外泄到大气之中。
甲烷是大气中继水蒸气、二氧化碳之后最为重要的温室气体。一些科学家担心,南极和北极地区冰封的甲烷如果随着全球变暖而被释放出来,将会对气候形成正反馈的循环,进一步加剧全球变暖。
英国布里斯托大学的地球化学家杰玛·沃德姆(JemmaWadham)的研究小组分别在南极和北极的冰川采了样本,拿到实验室里进行研究。他们发现,冰里面存在高浓度的甲烷,以及大量的产烷生物。在南极的样本中,每克冰里有1000万个产烷生物,在格陵兰的样本中,每克里面有10万个。
他们还将这些产烷生物放在瓶子里培养。南极洲的样本在起初的250天里都没有什么动静,接下来却突然产生了大量的甲烷。格陵兰的产烷生物一直到今年3月15日都没有出现任何释放甲烷的迹象,但沃德姆认为它们也许只是需要更多一点的时间。
在沃德姆等人得到的样本中,产烷生物的含量与深海沉积物中的含量不相上下,生物的种类也与北极地区泥炭和冻土中的产烷生物非常相似。
甲烷的温室效应
2008年发表在英国《自然》杂志上的一篇文章曾指出,亿年前,由于甲烷的释放,地球迅速升温,炎热的气候取代了冰期。论文第一作者、美国加州大学滨河分校教授马丁·肯尼迪(MartinKennedy)认为,同样的事件可能在今天再次发生,而且变化会来得异常迅速———不是在几千年或几百万年里,而是在短短一个世纪中。“这是一个重要的忧虑因素,因为也许只要一点点的升温就能让禁锢着的甲烷释放出来。”肯尼迪表示。
根据科学家的估计,湿地、永久冻土,包括北冰洋下的永久冻土里,以甲烷(CH4)形式存在的碳的量是现在大气中以二氧化碳(CO2)形式存在的碳的至少两倍。在大气里,甲烷的含量已经是工业革命前的两倍。这种增加中有人类活动的作用,包括能源生产和使用、垃圾填埋、养牛、稻米农业和生物体燃烧,但也有大约百分之四十来自于自然界。
甲烷作为一种温室气体的效力是二氧化碳的23-25倍。地球上的甲烷水合物(俗称“可燃冰”)如果在几年中有10%释放到大气中,那么它对地球辐射的影响就相当于二氧化碳增加了十倍。
在联合国政府间气候变化专门委员会(IPCC)的报告中,气温的曲线总是随着二氧化碳的水平平滑上升,这是因为图示是根据线性数学模型做出来的。但是肯尼迪和其他一些地质学家认为甲烷能够在短短几十年里造成非线性的气候变化。
在他对远古气候的研究中,存在于较低纬度的甲烷水合物首先变得不稳定,释放出甲烷气体。这些甲烷气体所造成的升温使得甲烷水合物的去稳定化向着更高的纬度发展,最终成为一种失控的反馈效应传播到全球。
尽管肯尼迪等人研究的是几亿年前发生的情况,但是他们看到今天发生的状况与那时是类似的。在定量评估温室气体排放对气温变化的贡献时,IPCC报告引用了“辐射强迫”的概念,它指的是某种因子造成的太阳辐射的变化。肯尼迪也用这个概念来考察。“如果我们将二氧化碳水平翻一倍或是翻两倍,会发生什么情况呢?”肯尼迪担心,二氧化碳增加所造成的全球变暖会让储藏在自然界的甲烷在一代人的时间里释放出来。
美国加州大学圣塔芭芭拉分校的地质学和古生物学教授吉姆·肯尼特(JimKennett)同意肯尼迪的看法,认为他的思路是正确的。肯尼特甚至认为,如果地球的气候能够在短短几十年里发生巨大的变化,那么甲烷的释放是唯一可能的引爆器。
正在释放的甲烷
“甲烷从永久冻土冒出来是一件正在发生的事情。今天我们面临的挑战是我们无法测量它,所以我们就无挂虑地忽略它。”肯尼迪在2008年说。
现在他所说的无法测量的情况正在发生改变。一些科学家在近些年开展了艰苦的野外测量工作,以期查明自然界中的甲烷究竟在以多大的速度向外释放。
来自美国、俄罗斯和瑞典研究机构的一组科学家从2003年到2008年每年均乘坐俄罗斯的破冰船,到东西伯利亚北极大陆架(ESAS)探测甲烷。他们还在2006年做了一次直升机考察,在2007年冬天做了一次冰面考察。在这些考察中,他们取得了至少5100个海水样本。然后他们在这个基础上分析ESAS甲烷释放的情况。这样的行动艰苦又周期漫长的研究工作被一些科学家称为“灰姑娘科学”。ESAS由西伯利亚的海岸线向北延伸1000千米,海床中包含了从上一次冰期遗留下来的永久冻土。这里海底的年平均温度为-到1摄氏度,比地面上的永久冻土的年平均温度高出12到17摄氏度。
美国阿拉斯加大学国际北极研究中心的娜塔莉亚·沙克霍娃(NataliaShakhova)及其合作者经过数年的艰苦探测得出的结果是,ESAS每年以甲烷形式向大气中释放出的碳的量约为8×1012克(8TgC)。他们在直升机上的测量结果也在大气中记录到四倍于北极其他地区的甲烷浓度。“海底甲烷最后也影响大气甲烷的浓度,问题就是人们对甲烷,包括二氧化碳,在大气里面的收支还是了解得很不够,数字不准确。”北京大学物理学院大气科学系教授王绍武评论说,“现在这项研究加了一个甲烷的源,那么以后在计算甲烷的收支的时候它是可以纳入考虑的。”沙克霍娃等人的论文发表在3月5日的美国《科学》杂志。在一篇配发的评论中,德国马普研究所的马丁·黑曼(MartinHeimann)说这项研究是“一个勤奋、高质量实地测量的美妙案例”。
在1月15日的《科学》杂志上,英国爱丁堡大学地球科学学院安东尼·布鲁姆(AnthonyBloom)等人还从另一个角度考察了甲烷的释放情况。他们分析了2003年到2005年的卫星资料,从中寻找湿地释放甲烷的量级与分布。
他们的研究显示,赤道地区的湿地为全球的甲烷释放贡献52%到58%。他们还估计,在2003年到2007年期间,由于中纬度的北极地区的升温,湿地的甲烷排放增加了7%。用另一个数字来说,是每年增加大约6TgC。“这些变化对于全球甲烷循环来说有多重要?”黑曼在评论中写道,“考虑到全球每年排放的甲烷有大约440TgC,西伯利亚的北冰洋海域和北半球湿地的甲烷排放变化是微不足道的。这是一个好消息,说明当下的气候变化并没有严重影响全球甲烷循环。”“但是在持续的变暖之下,这种状况会持续吗?”黑曼继续自问自答,“我们不知道。”
一些科学家与肯尼迪等人持有不同的观点,他们认为甲烷的释放并不是灾难性的。美国芝加哥大学的地球科学教授大卫·阿彻(DavidArcher)指出,大部分甲烷水合物都深埋在地下和海洋里,那些地方人为造成的升温和甲烷的释放都会是在千年尺度里发生的事情。
他认为甲烷带来的影响是“长期的但并非灾难性的”。他在一篇文章中写道,“从地质的时间尺度来说,可以想象的是甲烷水合物会向大气和海洋中释放的碳与我们化石燃料燃烧所释放的一样多。”
张松航1 唐书恒1 潘哲军2 汤达祯1 李忠诚1 张静平1
(1.中国地质大学(北京)能源学院,北京 100083;2.澳大利亚联邦科工组织地球科学与资源工程部,墨尔本 3168)
摘要:基于晋城无烟煤储层地质条件下的储层和煤岩参数,结合晋城无烟煤煤层气藏直井生产必须压裂增产的实际,以200m为产注井距,使用澳大利亚联邦科工组织的煤层气储层数值模拟软件(SIMED Win)模拟了不同气体组分条件下(CO2∶N2=90∶10,75∶25,50∶50)的煤层气增产和二氧化碳埋存过程。研究结果表明,采用CO2和N2混合气体驱替煤层气的早期,氮气组分含量越高,气井产量越高,但从整体上看对煤层甲烷产量影响不大;不同气体组分条件下的驱替对水产量变化影响不大;煤储层的割理孔隙度在甲烷解吸、氮气、二氧化碳吸附、煤岩有效应力改变的综合效应下呈现增高降低增高降低的变化趋势。综合考虑煤层甲烷产量和CO2的封存效果,采用在煤层气开发初期适当增加氮气组分含量,改善储层渗透性,随后注入纯二氧化碳驱替的方式更加经济有效。
关键词:沁水盆地 煤层气 煤储层 CO2&N2 提高采收率
作者简介: 张松航,男,博士,讲师; 中国地质大学 ( 北京) ,北京市海淀区学院路 29 号 100083; Tel:: E mail: zshangdream@ 126. com.
Numerical Simulation of CO2&N2Enhanced Coalbed Methane Recovery on Jincheng Anthracite Coal Reservoir
ZHANG Songhang1,TANG Shuheng1,PAN Zhejun2, TANG Dazhen1,LI Zhongchen1,ZHANG Jingping1
( 1. School of Energy Resources,China University of Geosciences,Beijing 100083,China; 2. CSIRO Earth science and resources engineering,Melbourne 3168,Australia)
Abstract: In this paper,the gas production and CO2&N2injection processes of the production well and the injection well with 200 m spacing were respectively studied using the coal reservoir simulator,SIMEDWin,devel- oped by CSIRO Earth Science and Resources Engineering,Australia. The coal reservoir and coal property parame- ters used in this simulation were full account of the in-situ coal geological conditions of the anthracite coal in Jincheng district. In addition,the hydraulic fracturing which was widely used as an enhanced methane recovery technology was also taken into account. The simulation results show that the higher of the N2content in the mixed gas,the higher of the CBM output in the early stage of the production. But N2content show very small effect on the long term CBM production. In addition,the injected mixed gas of CO2&N2with different ratio has little effect on the water production. The cleat porosity of the coal reservoir changing dynamically under the effect of desorption of CH4,adsorption of CO2&N2and changing of pore pressure during the gas and water production process. Considering the production of CBM and the sequestration of CO2for CO2&N2ECBM the suggestion is that appropriately increase the nitrogen component in mixed gas improving the reservoir permeability in the early production stage,and then inject the pure carbon dioxide.
Keywords: Qinshui Basin; coalbed methane; coal reservoir; CO2&N2; ECBM
全球变暖问题已经越来越严重,如何减少全球变暖的“主犯”———二氧化碳气体的排放,已经成为了一个亟待解决的全球性热点问题。碳捕集和封存技术(CCS)被认为是最切实可行和最具发展前景的二氧化碳减排技术。其中煤层封存二氧化碳技术受煤储层埋深影响较小,既可以达到减少温室气体排放的效果,还可以提高煤层甲烷的采收率(CO2ECBM),具有经济和环境双重效益。目前,我国已经和加拿大合作实施了“中国煤层气技术开发/CO2埋藏”项目,项目实施效果良好(Wongetal.,2007;Wongetal.,2010;叶建平etal.,2007),但是由于CO2注入引起的煤基质膨胀,使得煤储层的渗透率降低,一定程度上抵消了该项目的可操作性。然而,加拿大在Alberta地区进行的CO2/N2ECBM试验,使得在渗透率为1mD的低渗透煤储层中进行的气体注入比较容易进行(Mavoretal.,2004)。因此,注入CO2和N2混合气体的方式有助于CO2封存和ECBM项目实施的成功;此外,由于CO2和N2是工厂烟道气的主要成分,直接使用能够减少CO2的捕集和分离成本,增加了项目实施的经济性。考虑注入CO2和N2混合气体就要求寻找最佳的注气比例和注气方式。我国目前处在CO2ECBM的探索阶段,相关研究还很少,本文采用数值模拟方法,研究晋城无烟煤储层地质条件下,不同比例CO2和N2混合气体的CO2封存和ECBM效果,并提出相关建议,对深部煤层中进行CO2埋存和ECBM有一定的指导意义。
1 方法原理
本研究基于澳大利亚联邦科工组织的煤储层数值模拟软件———SIMEDWin。SIMEDWin是一款气、水两相多组分,包含单孔和双孔隙模型的三维储层模拟软件,适于煤层气单井或气田范围内的多井生产模拟,以及注气(多组分)提高煤层气采收率模拟(潘哲军,卢克·康奈尔,2006;张松航etal.,2011)。本论文模拟网格采用对数网格,气体吸附模型采用扩展的兰氏方程,孔隙度渗透性模型采用PR模型(PekotandReeves,2003),基质至割理的气体扩散采用WarrenandRoot公式描述;割理中的气、水流动采用达西定律描述;储层中压降模型采用扩散方程描述;物质守恒方程的求解采用全隐式多元牛顿方法和正交极小化方法,由于张松航等(2011)已做详细介绍,本文不再赘述。另外,张松航等(2011)的研究结果表明,就晋城无烟煤的储层地质条件而言,200m产注井距具有较好的驱替效果,因此本文设定产注井距为200m,而CO2和N2混合气体的组分比例分别设定为90∶10,75∶25和50∶50。
2 煤储层地质特征和参数设置
沁水盆地南部,太原组的15#煤层和山西组的3#煤层厚度大且全区分布稳定,为煤层气勘探的主要目的层,本次的模拟工作主要考虑封闭性较好的3#煤层。3#煤层厚~,埋深变化于~。宏观煤岩类型主要为半亮煤和半暗煤,属中低灰煤。镜质体反射率介于~之间,属半无烟煤和无烟煤,反映了较高的生气能力。煤层含气量一般介于~,理论含气量~,含气饱和度多大于70%。煤储层压力主要在~之间变化,平均,属欠压常压储层。储层渗透性变化较大,试井渗透率变化于~之间,多数储层原始渗透率小于1mD。从晋试1和TL003井的3#煤层的气样组分分析结果看,甲烷气含量占主体(分别为和),含少量氮气(分别为和)和二氧化碳(分别为和),及一些痕量气体。
本次模拟的参数选择主要参考TL003井,以及上述的区域总体储层地质特征。TL003井为枣园地区施工的第一口煤层气井,张先敏和同登科(2007)采用数值方法拟合了其从1998年3月16日至1999年4月11日共392天的排采资料,取得了不错的效果;叶建平(2007),wong等(2007)分别报道了2004期间对其实施的ECBM微型先导性实验研究成果,并通过数值拟合结果校正了储层参数。本次模拟实验的参数选取见表1,考虑到我国煤储层初始渗透率偏低,普遍需要储层压裂,根据单学军等(2005)的数据设计了煤储层压裂裂缝模拟参数。3#煤层对甲烷、二氧化碳和氮气的吸附参数选取见表2。此外,在模拟过程中存在以下假设,1)在排采过程中煤储层的温度不变;2)储层原始状态下割理裂隙被水100%饱和。
表1 晋城3#无烟煤数值模拟参数汇总表
表2 晋城3#煤层无烟煤吸附解吸参数取值表
3 模拟结果
气体组分对产气的影响
从每种气体组分条件下的产气量曲线(图1)可以看出,总日产气量基本存在三个阶段:第一次产气高峰及其随后的下降阶段,从产气低值到第二次产气高峰的持续增长阶段和达到第二次产气高峰及其后的稳定阶段。其中前两个阶段,甲烷的产量基本和总产气量重合,说明此时还未出现氮气和二氧化碳气体的穿透;而在第三阶段,随着氮气和二氧化碳的穿透,甲烷日产量与日总产气量差值越来越大(图1a)。每种气体组分条件下,氮气和二氧化碳的产出具有时间性,氮气的产出约在第800~1000天,二氧化碳的产出在第3000天前后(图1b)。
图1 生产井日产气量图(a)总产气量和甲烷产气量;(b)二氧化碳产气量和氮气产气量
对比不同组分注气条件下的气产量(图1)可知,各条件下的气产量(即甲烷产量)曲线在总日产气的第一阶段基本重合。生产井的第一产气高峰和煤储层压裂裂缝和储层原始渗透性的“二元”渗透性相关,气体主要来源于井筒和裂缝周围的气体解吸,而在稍远离该高渗通道的煤基质内部由于渗透性较低,不能快速补给,导致气产量降低。生产井产气量降至最低点的时间在第300天左右,从第330天的气相相对渗透率(图2)可以看出,在生产井产气量降至最低值前,生产井周围的气相相对渗透率较低,一般小于,此时注入井周围产生的气相相对渗透率的增加尚未对生产井的气产量产生直接影响。同时除注入混合气体组分不同外,其他模拟参数都相同,产气井周围的压力分布相似,因此该阶段不同组分注气条件下的气产量相同。从总日产气的第二阶段开始,90∶10,75∶25,50∶50三种注气条件下的总日产气量依次增加,即随着混合气体中氮气组分含量的增加,总日产气量逐渐增加;同时容易发现,随氮气组分含量的增加,产气第二阶段的持续时间依次减少,即产气量达到第二产气高峰的时间提前。
图2 第330天时气相渗透率等值线图
三种气体组分比例条件下的甲烷产出情况显示(图1a),从第300天左右的日产气量低值开始到第3000天,组分比例为50∶50条件下,甲烷的产量最高,组分比例为75∶25条件下的甲烷产量中等,组分比例为90∶10条件下的甲烷产量最低。也就是说,随着注入气体组分中二氧化碳含量的增高,在生产的前3000天,甲烷的产量降低;相反混合气体中氮气含量增加有助于提高甲烷的产量。从图2可以看出,在第330天生产井和注入井刚刚出现气相相对渗透率的贯通,而且90∶10,75∶25,50∶50三种气体组分比例条件下,生产井和注入井的贯通性依次变好,这也是在产气低值至生产约第3000天以前这段时间内,在这三种气体组分比例条件下,气井产量依次升高的原因。然而在50∶50条件下,气体达到第二次产气高峰后,形成的甲烷产量并不稳定持久,成缓慢下降趋势,气体组分中氮气含量越高,甲烷日产量下降越快。而在生产3000天以后,在90∶10的组分比例条件下的甲烷日产量反而最高。值得注意的是,第3000天左右这个时间点,既是不同组分条件下甲烷产量的交点,即转折点,同时也是二氧化碳产量逐渐快速增加的阶段。
对比三种组分条件下氮气产量和二氧化碳产量的差别可知,随着注入混合气体组分中氮气含量的增加,产出井中的氮气含量依次增加;同样,注入混合气体中二氧化碳组分含量增加,产出井中的二氧化碳含量依次增加(图1b)。然而,虽然不同混合气体组分条件下,氮气和二氧化碳的产出量不同,但是它们开始产出的时间基本相同。分析认为,由于氮气和二氧化碳气体存在性质上的差别,注入氮气和二氧化碳气体对增产甲烷存在两个关键时间。第一个关键时间是产气井中氮气含量明显上升的时间,此时表明生产井和注入井之间的气相渗透性的穿透形成不久,生产井逐渐达到第二次产气高峰。第二个关键时间是产气井中二氧化碳气体产量开始明显上升的时间,此时产气井中,氮气产量基本趋于稳定。两个关键时间出现的先后,不因气体组分比例的差别而有太大的差别,说明不同气体组分在煤岩中的运移,与气体本身和煤岩的作用性质相关,而与气体本身的浓度关系不大。此外,在第二关键时间点与甲烷产气量的交点相对应,说明在这个时间点,氮气对增产甲烷的影响已经比较小。
90∶10,75∶25,50∶50三种气体组分比例条件下,在第3000天时生产井产出氮气含量占注入井注入氮气含量的比例分别为,,;在第7000天时,生产井产出的氮气含量占注入井氮气含量的比例分别为,,,这说明在生产井生产3000天以后,从注入井注入的氮气有一半以上都产出了。对比甲烷的产气情况,说明氮气对CO2&N2ECBM的影响主要体现在对采出速率的影响上,由于其对煤岩的竞争吸附能力弱于甲烷、更弱于二氧化碳,不能从本质上起到提高甲烷采收率的作用。因此,在实际的注气操作中,可以考虑在注气前期注入氮气和二氧化碳的混合气体,而在注入后期单注二氧化碳。
气体组分对产水的影响
从数值模拟的结果看,不同气体组分对生产井产水的影响不大,仅在第一产气阶段存在差别,随氮气含量的增高,日产水量略有增加(图3)。由于煤储层对二氧化碳、甲烷和氮气的吸附能力依次为CO2﹥CH4﹥N2(于洪观等,2005;唐书恒等,2004;吴建光等,2004),向煤层中注入混合气后,CO2分子会置换吸附着的甲烷分子,CH4分子被置换后扩散到煤层天然裂隙系统中,而CO2则被捕获到煤基质中;同时,由于N2的吸附能力小于CO2和CH4,仅一小部分注入的N2被吸附到煤基质中,其余大多数停留在裂隙系统中,裂隙中的N2一方面减少了甲烷在裂隙系统中的分压,从而提高了甲烷从原生孔隙中的解吸速率和在原生孔隙系统中的扩散速率;另一方面,增加了煤层的天然裂隙系统的总压力,提高了气体从裂隙系统到达生产井的推进力。由此可知,氮气的存在,改变了注入井周围的渗透性,增加了压力传播的效率。在生产井和注入井间气相穿透前,随着混合气体中氮气组分的增多,两井间的压差呈略微增大趋势,因此50∶50组分条件下生产井排水量略高。生产井和注入井气相穿透后,不同气体组分条件下,生产井的水产量基本相等,说明改变注入井的气体组分,整体上对生产井的排水情况影响不大。
图3 不同气体组分条件下气井日产水量图
气体组分对储层孔渗性的影响
在90∶10组分比例注气增产条件下,储层的平均孔隙度变化呈先降低,略有升高,再缓慢降低的趋势(图4)。总体上在90∶10组分比例条件下,储层孔隙度呈降低趋势。75∶25,50∶50组分比例条件下,在模拟时间内,储层孔隙度都呈现先降低,再升高的趋势。比较三种组分比例条件下的平均孔隙度变化曲线,气体组分中氮气组分的比例越高,在生产的初始阶段储层平均孔隙度下降的速率越小,下降的幅度也越小,下降的时间也越短。同时,氮气含量越高,储层平均孔隙度由下降转上升的时间也越早,增大的幅度也愈大。
图4 不同气体组分下储层平均孔隙度随时间变化图
不同气体组分条件下CO2ECBM综合效益分析
对比不同气体组分条件下,累积总产气量和累积甲烷产量(图5),可以看出,90∶10,75∶25,50∶50三种气体组分比例条件下,总气体产量依次升高,模拟生产7000天的总产气量分别约为万m3,万m3,万m3;而三种气体组分比例条件下生产7000天的甲烷累积含量相差不大分别为万m3,万m3,万m3。可见,在注入气体中,增加氮气组分的含量,在生产的约前3000天,明显提高了甲烷气体的生产速率,但是在总体上,即整个7000天的模拟时间内,对甲烷气体增产的贡献不大。在生产的后半段,氮气组分含量对储层孔渗性的改善主要体现在,增加了注入气体的穿透速度,总体上对甲烷增产的作用不大。
图5 累积甲烷产气量对比图
从90∶10,75∶25,50∶50三种气体组分比例条件下的累积注入气量和累积封存二氧化碳气体含量图(图6)上可以看出,三种气体组分比例条件下的气体注入气量依次降低分别为,万m3,万m3,万m3,同时二氧化碳气体的封存气量也依次降低分别为,万m3,万m3,万m3。由此,生产7000天的时间内三种气体组分比例条件下的注存比分别为,,。总体上二氧化碳气体含量越高,注入的二氧化碳越多,封存的二氧化碳也越多。
图6 累积注入气量和累计净封存二氧化碳含量图
因此,考虑到生产井产出混合气体后,分离混合气体的成本,以及注入气体的成本,如果不考虑时间成本的话,注入井的气体用纯二氧化碳气体最好,因为在整个生产周期内,氮气组分对甲烷气体的总产量影响不大;如果考虑时间成本,可以考虑在生产的前半期使用较高含量的氮气的混合气体,可以有效地提高甲烷气体的采出率,但是在生产后期,可以考虑使用纯二氧化碳气体入注。减少不必要的注入和分离成本。
4 结论
使用SIMEDWin软件可以有效地模拟不同储层参数对煤层气井生产的影响,同时可以了解生产过程中储层压力、气和水相相对的渗透率、气和水相饱和度、储层平均孔隙度等储层参数的动态变化。
通过对比90∶10,75∶25,50∶50三种CO2∶N2组分比例条件下的CO2&N2ECBM模拟结果可知,在煤层气生产的前期,适当增加注入井中氮气组分含量,可以有效地改善储层孔渗性能,提高煤层气甲烷产量;然而,从整个煤层气生产过程考虑,增加注入气体组分中氮气的含量,并不能从实质上增加甲烷气体的产量,同时由于注入气体中氮气组分含量过大,造成生产井总产气量的大幅提高,从而增加分离产出气体的成本;从二氧化碳气体封存的角度看,增加注入气体中氮气组分的含量,会大幅度减小同期内的二氧化碳封存量;此外,从氮气的流动情况看,注入气体中氮气含量越高,在煤层气生产的后半段稳定的产出的氮气含量越高,基本上煤储层已经氮气饱和,注入氮气量和产出氮气量形成了一种均衡。因此,在煤层气生产的前半期适当增加注入氮气的含量,而在煤层气上产的后半期改用纯的二氧化碳注入,一方面能够起到,煤层气增产的目的;另一方面能够起到节约成本,增加二氧化碳注入量的目的,是一个有效的CO2&N2ECBM措施。
参考文献
单学军,张士诚,李安启,张劲.2005.煤层气井压裂裂缝扩展规律分析.天然气工业.25(01):130~132+220
潘哲军,卢克·康奈尔.2006.煤层气产量预测和矿区优化的储层模拟.中国煤层气.03:27~31
唐书恒,汤达祯,杨起.2004.二元气体等温吸附实验及其对煤层甲烷开发的意义.地球科学中国地质大学学报.29(2):219~223
吴建光,叶建平,唐书恒.2004.注入CO2提高煤层气产能的可行性研究.高校地质学报.10(3):463~467
叶建平,冯三利,范志强,王国强,Gunte W D,Wong S,.沁水盆地南部注二氧化碳提高煤层气采收率微型先导性试验研究.石油学报.28(4):77~80
于洪观,范维唐,孙茂远,叶建平.2005.煤对CH4/CO2二元气体等温吸附特性及其预测.煤炭学报.30(05):617~622
张松航,唐书恒,潘哲君,汤达祯,李忠诚,张静平.2011.晋城无烟煤CO2-ECBM数值模拟研究.煤炭学报.(录用待刊)
张先敏.2007.煤层气储层数值模拟及开采方式研究(硕士).中国石油大学
Mavor M J,Corp T,Gunter W D,Robinson J R,Council A R. 2004. Alberta Multiwell Micro-Pilot Testing for CBM Prop- erties,Enhanced Methane Recovery and CO2Storage Potential SPE Annual Technical Conference and Exhibition,Houston,Tex- as,p. SPE 90256
Pekot L J,Reeves S R. 2003. Modeling the Effects of Matrix Shrinkage and Differential Swelling on Coalbed Methane Recov- ery and Carbon Sequestration, international Coalbed Methane Symposium, University of Alabama, Tuscaloosa, Alabama, pp. paper 0328
Wong S,Law D,Deng X,Robinson J,Kadatz B,Gunter W D,Jianping Y,Sanli F,Zhiqiang F. 2007. Enhanced coal- bed methane and CO2storage in anthracitic coals—Micro-pilot test at South Qinshui,Shanxi,China. International Journal of Greenhouse Gas Control. 1 ( 2) : 215 ~ 222
Wong S,Macdonald D,Andrei S,Gunter W D,Deng X,Law D,Ye J,Feng S,Fan Z,Ho P. 2010. Conceptual eco- nomics of full scale enhanced coalbed methane production and CO2storage in anthracitic coals at South Qinshui basin,Shanxi, China. International Journal of Coal Geology. 82 ( 3 ~ 4) : 280 ~ 286