首页 > 期刊论文知识库 > 运动目标检测论文5000字

运动目标检测论文5000字

发布时间:

运动目标检测论文5000字

只要把着个新闻写完整把细节写清楚

毕业论文的基本构成 本科学生毕业论文由文头、论文题名、论文副题名、作者、学院和专业、准考证号、指导教师、论文成绩、日期、中文提要、外文提要、关键词、正文、作者签名、注释、附录(附图)、参考文献组成。 ◆毕业论文各组成部分的含义●文头:由“中国人民大学自考本科学生毕业论文”字样组成。●论文题名:论文的正标题。●论文副题名:本项目为任选项目,指论文的副标题,即对论文题名的解释或补充说明。●作者:论文责任者的姓名。●学院和专业:论文作者所在学院和专业的全称。●准考证号:论文作者的准考证号。●指导教师:指导教师的亲笔签名。●论文成绩:由学院毕业论文评审小组或学院毕业论文答辩委员会最终确认的毕业论文成绩。●日期:论文答辩或验收的年月日。●目录:包含以下的全部内容,一般分为三级。统一用word自带的生成目录功能,做到页码准确且格式整齐。●中文提要:对论文内容要点的中文概括描述,应忠实于原文,字数应控制在200—400字之间。●关键词:从论文题名、正文或内容摘要中提取的能表征论文主题内容的具有实质意义的中文词语。关键词不超过10个,按中文音序排列。●正文:论文的主体部分,字数控制在5000—10000字。●作者签名:论文作者亲笔签署的姓名和论文完成日期。●注释:对论文所创设的名词术语的解释或引文出处的说明。注释采取脚注的形式。●附录(附图):附属于正文,对正文起补充说明作用的信息材料,可以是文字的,也可以是表格、图形、图像或其他形式的,如公式的推演,编写的程序等。●参考文献:作者在写作过程中使用过的主要参考文献。 毕业论文的格式要求◆毕业论文打印的用纸要求本科学生毕业论文采用国际标准A4型(297mm ╳ 210mm)打印纸或复印纸印制。◆毕业论文的排版要求页面设置本科学生毕业论文要求纵向打印,页边距的要求为:上(T): cm下(B): cm左(L):2 cm右(R):2 cm装订线(T): cm装订线位置(T):左 其余设置采取系统默认设置。排式与用字 文字图形一律从左至右横写横排。 文字一律通栏编辑。 字迹必须清楚整齐,忌用异体字、复合字及一切不规范的简化字。 除非必要,不使用繁体字。段落设置 在“格式”选项中的“段落”设置窗口中,取消“如果定义了文档网格,则与网格对齐(W)”选项,采用多倍行距,行距设置值为。 其余设置采取系统默认设置。页眉、页脚设置 本科学生毕业论文的页眉使用学校标志:高度为 cm,宽度为 cm,居中放置。本科学生毕业论文的页脚需要设置页码,页码采用号黑体字,加粗,居中放置,格式为:第1页。◆毕业论文各部分的编排式样本科学生毕业论文由文头、论文题名、论文副题名、作者、学院和专业、准考证号、指导教师、论文成绩、日期、作为论文的首页打印,需设置页眉,但不编排页码。本科学生毕业论文的中文提要、外文提要分别作为封一、封二打印,自中文提要开始编排页码并设置页眉。本科学生毕业论文的关键词、正文、作者签名、注释需要连续打印,需要编排页码并设置页眉。本科学生毕业论文的参考文献附录、附图须在作者签名之后分别使用单独一页依次打印,需要编排页码并设置页眉。首页●文头:“中国人民大学自考本科学生毕业论文”字样使用28号黑体字,加粗,在论文编码下一行,居中放置。●论文题名:居中,隔一行(28号黑体字),排印在论文文头下,使用28号黑体字,加粗。●论文副题名:居中排印在论文题名下,使用20号黑体字,加粗,副题名前加特殊符号中“长划线”。●作者、学院和专业、准考证号、指导教师、论文成绩、日期:隔六行(20号黑体字),依次排印在论文副题名下(如无副题名需隔七行),各占一行,使用20号黑体字,加粗,距左端空5格;项目名称需要两端对齐,内容下需要加下划线,并将内容置于下划线中部。●目录:包含以下的全部内容,一般分为三级。统一用word自带的生成目录功能,做到页码准确且格式整齐。●中文提要:项目名称置顶,居中放置,使用20号黑体字,加粗。内容使用12号宋体字。起行空两格,回行顶格。关键词、正文、作者签名、注释部分●关键词:项目名称使用14号黑体字,加粗,置顶,顶格放置;内容使用12号宋体字,段首空两格,词间空三格。●正文:正文按照自然段依次排列,每段起行空两格,回行顶格。一般使用12号宋体字;重点文句使用12号宋体字,加粗。★毕业论文的全部标题层次应整齐清晰,相同的层次应采用统一的表示体例,正文中各级标题下的内容应同各自的标题对应,不应有与标题无关的内容。各层标题均单独占行。第一级标题居中放置;第二级标题序数顶格放置,后空一格接标题内容,末尾不加标点;第三级和第四级标题均空两格放置序数,后空一格接标题内容。第四级以下单独占行的标题顺序采用.…和.两层,标题均空两格放置序数,后空一格接标题内容。正文中对总项包括的分项采用⑴⑵⑶…单独序号,对分项中的小项采用①②③…的序号或数字加半括号,括号后不再加其他标点。★各种计量单位一律采用国家标准GB3100——GB3102-93。非物理量的单位可用汉字与符号构成组合形式的单位。★标点符号应按照国家新闻出版署公布的“标点符号使用方法”的统一规定正确使用,忌误用和含糊混乱。★外文字母采用我国规定和国际通用的有关标准写法。要分清正斜体、大小写和上下脚码。★科学技术名词术语采用全国自然科学技术名词审定委员会公布的规范词或国家标准、部标准中规定的名称,尚未统一规定或叫法有争议的名称术语,可采用惯用的名称。★文中的数字,除部分结构层次序数和词、词组、惯用语、缩略语、具有修辞色彩语句中作为词素的数字必须使用汉字外,应当使用阿拉伯数码,同一文中,数字表示方法应前后一致。★序号一般按照层次使用“一”“二”“三”……, “(一)”“(二)”“(三)”……表示。文中各级序号不得混用,以避免眉目不清、层次难分。★文中的公式应使用公式编辑器编辑,字体大小根据文字美观需要设置,一般居中放置;有编号的公式顶格放置,编号需加圆括号标在公式右边居右放置,公式与编号之间不加虚线;公式下有说明时,应顶格书写“注:”,“注:”后书写说明。较长公式的转行处应选在等号或加、减、乘、除符号处,应在行首出现这些符号。★文中的表格应统一编排序号并赋予表名。表内内容应对齐,表内数字、文字连续重复时不可使用“同上”等字样或符号代替。表内数字使用同一计量单位时,可将该单位从表中提出并置于圆括号内。表内有整段文字时,起行处空一格,回行顶格,最后不用标点符号。★文中的附图应统一编排序号并赋予图名;除特殊情况,要求采用计算机制图。★文中图表需在表的上方、图的下方排印表号、表名、表注或图号、图名、图注。★文中一般不应有勾划涂抹。●作者签名:紧接在正文下空两行(28号黑体字),由作者亲笔签署,项目名称使用四号黑体字,加粗,顶格放置。●注释:注释采用脚注的形式,注释编号选用带圈的阿拉伯码,注文使用小五号宋体字。引用著作时,注文的样式为:著者、书名、出版者、出版年份、页码。例如:王众托.《企业信息化与管理变革》.中国人民大学出版社,引用报纸杂志文章时,注文的样式为:作者、文章题目、报刊杂志名、年份及期数、页码。例如:冯惠玲.《拥有新记忆——电子文件管理》.档案学通讯,1998(1).6-8引用互联网站上的文章时,著文的样式为:作者、文章题名、网址、访问时间。例如:夏敬华.《企业流程管理中的常见问题》. 年8月9日访问附录、参考文献部分●附录(附图):项目名称置顶,居中放置,使用20号黑体字,加粗。附录项目名称使用14号黑体字,加粗,居左顶格放置。另起一行空两格,使用12号宋体字标注附录序号和题名,编排样式可参照正文。●参考文献:作者在写作过程中使用过的主要参考文献。项目名称置顶,居中放置,使用20号黑体字,加粗。项目内容使用12号宋体字,居左,空两格放置。具体结构格式与标注方法同注释中交代引文出处的注文格式

改变课程结构过于强调学科本位和缺乏整合的现状,使课程结构具有均衡性、综合性和选择性是新一轮基础教育课程改革的重要内容。户外运动是青少年以亲身实践为主要形式,藉定向越野、远足郊游、野外生存能力训练、体能拓展训练及自然知识的学习与考察为主要内容,在自然环境下开展的青少年综合素质教育活动。在国外,特别是西方发达国家,经过长时间的实践与探索,已经形成了一整套相当完备的户外运动教育体系。随着我国基础教育课程改革稳步向前推进,素质教育正向多元化方向发展,因此,构建青少年户外运动课程体系,对于促进青少年学生思想道德水平、心理健康水平和身体素质的全面提高,以及完善和丰富素质教育理论与实践具有重要的现实意义。 一、构建青少年户外运动课程的理论基础 1.现代课程观。新课程提出了“为了每个学生的发展”的基本理念,把学生看成是独特的、发展的和完整的人,这意味着我国基础教育课程体系将要走出目标单一、过程僵化和方式机械陈旧的教育模式,让每个学生的个性获得充分发展,培养适应时代变化、富有竞争意识的一代新人。课程建设应该回归学生的生活世界,于是新课程不再把课程局限于“知识”、“学科”、“教学科目”等狭窄的范畴来理解,而是把课程理解为一种以人类生活经验为内容,通过学生在生活世界中对这些内容的批判和反思性的实践,沟通学生的现实生活和可能生活的教育中介。这种课程思想主要体现在学生是课程的主体,“生活世界”是课程内容的范围,课程是学生通过反思性、创造性实践而建构人生意义的活动,课程的学习活动方式以理解、体验、反思、探究和创造为根本。 2.体验教育理论。体验教育不同于一般的经验形成教育,具有新的教育理念元素,一方面,它强调个体的亲身经历与自我认识;另一方面,在价值观上,又重视人与人的理解与合作,重视人的全面发展。这一教育理念落实在教育行为上,就是要强调受教育者的情感体验与道德体验。户外运动具有外显性和互动性的基本特征,它要求学生积极主动地投入到各项活动中,并通过一系列学习与交流,从中分享和感受生活,达到体验教育的态度与行为、情感与道德的内化过程。户外运动学习体验方式有两种,一种是认识主体在观念上把自己当作客体,使自己暂时根据客体环境、立场、观点去观察事物和思考问题,从这种体验中去获得关于客体的信息;另一种是认识主体在实践中把自己暂时变为现实客体,不仅站在他所研究的对象的立场和观点去观察和思考问题,而且直接作为客体中的一分子去生活。 3.教育生态理论。教育的生态环境是以教育为中心,对教育的产生、存在和发展起制约与调控作用的多元环境体系。人与环境的关系是一种相互依存、相互制约的关系,人们通过主观能动性的发挥,改造周围的环境,以适应人与环境之间的矛盾冲突,增强自身的生存能力。户外运动课堂环境是一个生态系统,人与自然、教师与学生、学生与学生之间的关系构成了一种复杂的种群关系,充满了信息与能量的交流。然而更为重要的是,要达到课堂生态系统的平衡发展,构建和谐的户外课堂生态,必须充分发挥学生的主体精神,让学生积极主动地探求和生动活泼地发展,开展丰富多彩的对话与交往,给学生提供充分展示自己才华的机会,从而获取真正平等意义上的课堂。 二、青少年户外运动课程目标设计 课程目标是指导整个课程编制活动的最为重要的准则,是指导课程实施的依据和进行教学评价的准绳。基于户外运动的自然性、实践性、互动性和综合性特点,认为青少年户外运动课程的总体目标应该是:挖掘青少年学生的内在潜能,推进学生对自然、社会、他人和自我之内在联系的整体认识与体验,培养学生良好的思想道德品质、健康的心理行为,提高学生的身体素质和生存技能水平,发展学生的创新能力、实践能力和协作能力,促进学生全面素质提高和健康人格和谐发展。具体目标还应包括如下三个方面: 1.通过户外体验式学习活动,转变学校教育教学观念,克服中小学思想道德教育和心理健康教育中存在的形式主义、功利主义和泡沫化等问题,完善中小学思想道德教育和心理健康教育实践课程,延伸思想道德教育和心理健康教育的课堂,使学生的学习真正联系生活、联系实际,回归生活世界。 2.通过户外实践和亲身体验,寻求思想道德教育、身心健康教育和生存技能教育的有效途径,积极营造有利于青少年思想道德建设、心理健康、强健体魄的自然环境和社会氛围,充分挖掘思想道德教育、心理健康教育和身体锻炼的课程资源,全面了解和掌握户外运动的知识与技能。 3.通过大自然户外舞台,在生动、活泼、愉快的开放式学习活动中,拓宽学生的学习视野,丰富学生的人生阅历,激发学生探究问题的欲望,培养学生的自信心、责任心和合作意识,使学生能从思想到行动上做到“提高认识、实践反思、行为跟进、感悟人生”,建立积极的世界观、人生观和价值观,形成积极向上的生活态度和生活方式,培养和塑造学生健康人格。 三、青少年户外运动课程内容设置 新课程重视学生的学习兴趣和经验,课程设计力求面向学生的真实生活情境,并与现代社会科技发展相联系,强调课程内容的综合性和开放性。青少年户外运动课程设置要坚持以学生发展为本的观点,根据学生的年龄、性别和认知水平的不同情况,突出“回归自然生活世界”的基本特征,围绕学生与自然的关系、学生与社会的关系、学生与他人的关系、学生与自我的关系,依托现代课程理论与方法,合理地把远足郊游、野外生存、拓展训练等体育活动,以及“民俗文化”、“民间游戏”、“生产劳作”、“调查访谈”等内容和形式融合、提炼、加工、升华为项目内容,构建多维度、多层次和开放的课程内容体系。 1.课程内容的分类。从户外运动的特性上,课程内容可按身体练习、技术训练、技能训练、心理训练和综合训练等方面划分;从户外运动的形态上,可按熔炼团队、陶冶情操、磨练意志、开启智慧、净化心灵、完善人格等方面划分;从户外运动的形式上,可按沟通、信任、交流、自主、合作、探究、生存、观赏、游戏等方面划分。 2.内容选择的原则。趣味性和独特性:尊重学生的兴趣、爱好与特长,符合学生的身心发展特点,有利于激发学生参与活动的动机和热忱。结合本地实际,最大限度挖掘当地人力、物力、自然环境资源,形成自己的特色和风格。 安全性和可靠性:所选内容的安全系数高,实施过程中有措施、有保障,能消除一切安全隐患,确保学生生命安全。 可行性和实效性:所选内容简单易行,难易程度适宜,学生通过努力完全能够达成目标,具有一定的推广使用价值。 思想性和教育性:围绕活动项目的主题和目标任务,选择的内容要具有鲜明的思想性和教育意义,有利于学生全面素质的提高。 四、青少年户外运动课程评价手段 新课程强调评价的发展性功能,体现“以人为本”的主体性评价的价值取向,坚持评价主体多元化和评价信息多样化,把质性评定和量化评价结合起来。户外运动课程评价可以由学校、社会、指导教师和学生家长,以及学生个体和相互之间,通过观察、记录和描述学生在户外运动过程中的表现,并以此作为评价的基础对课程进行客观、全面的评价。在具体操作中,“档案袋评定”是有效的评价方法,因此,在进行户外运动课程价值判断中,鼓励每个学生建立自己的档案,使学生深入地了解和肯定自己的能力,并能与其他人分享自我探索的成功经验以及进步的喜悦。学生参与户外运动的评价包括评价的整体观、多元化和过程性三个方面的内容。 1.评价的整体观。一方面是将学生在户外活动中的各种表现和活动产品,如研究报告、主题演讲、活动录像和学习体会等,作为评价他们学习活动情况的依据;另一方面,注重把学习评价视作师生共同交流的平台,获取大量评价信息的渠道,作为完善和修改课程的有效资源。 2.评价的多元化。评价的内容多元和形式多样,允许学生对户外运动课程学习有不同的思维方式和行为表现,可以通过丰富多样的形式展示学生自己在户外运动中所学的东西,同时尽量使用人们能理解的、直观的方法手段来评判学生的表现。 3.评价的过程性。户外运动的基本特征是外显性和动态性,学习评价要突出它的过程性,揭示学生在户外运动过程中的表现以及他们是如何战胜困难和解决问题的,而不仅仅是针对他们曾经努力过或者开心后得出的结论,要充分肯定其活动过程的价值所在。

运动目标检测论文免费

能不能给我发一份呢?

论文名称:Rich feature hierarchies for accurate object detection and semantic segmentation 提出时间:2014年 论文地址: 针对问题: 从Alexnet提出后,作者等人思考如何利用卷积网络来完成检测任务,即输入一张图,实现图上目标的定位(目标在哪)和分类(目标是什么)两个目标,并最终完成了RCNN网络模型。 创新点: RCNN提出时,检测网络的执行思路还是脱胎于分类网络。也就是深度学习部分仅完成输入图像块的分类工作。那么对检测任务来说如何完成目标的定位呢,作者采用的是Selective Search候选区域提取算法,来获得当前输入图上可能包含目标的不同图像块,再将图像块裁剪到固定的尺寸输入CNN网络来进行当前图像块类别的判断。 参考博客: 。 论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 提出时间:2014年 论文地址: 针对问题: 该论文讨论了,CNN提取到的特征能够同时用于定位和分类两个任务。也就是在CNN提取到特征以后,在网络后端组织两组卷积或全连接层,一组用于实现定位,输出当前图像上目标的最小外接矩形框坐标,一组用于分类,输出当前图像上目标的类别信息。也是以此为起点,检测网络出现基础主干网络(backbone)+分类头或回归头(定位头)的网络设计模式雏形。 创新点: 在这篇论文中还有两个比较有意思的点,一是作者认为全连接层其实质实现的操作和1x1的卷积是类似的,而且用1x1的卷积核还可以避免FC对输入特征尺寸的限制,那用1x1卷积来替换FC层,是否可行呢?作者在测试时通过将全连接层替换为1x1卷积核证明是可行的;二是提出了offset max-pooling,也就是对池化层输入特征不能整除的情况,通过进行滑动池化并将不同的池化层传递给后续网络层来提高效果。另外作者在论文里提到他的用法是先基于主干网络+分类头训练,然后切换分类头为回归头,再训练回归头的参数,最终完成整个网络的训练。图像的输入作者采用的是直接在输入图上利用卷积核划窗。然后在指定的每个网络层上回归目标的尺度和空间位置。 参考博客: 论文题目:Scalable Object Detection using Deep Neural Networks 提出时间:2014年 论文地址: 针对问题: 既然CNN网络提取的特征可以直接用于检测任务(定位+分类),作者就尝试将目标框(可能包含目标的最小外包矩形框)提取任务放到CNN中进行。也就是直接通过网络完成输入图像上目标的定位工作。 创新点: 本文作者通过将物体检测问题定义为输出多个bounding box的回归问题. 同时每个bounding box会输出关于是否包含目标物体的置信度, 使得模型更加紧凑和高效。先通过聚类获得图像中可能有目标的位置聚类中心,(800个anchor box)然后学习预测不考虑目标类别的二分类网络,背景or前景。用到了多尺度下的检测。 参考博客: 论文题目:DeepBox: Learning Objectness with Convolutional Networks 提出时间:2015年ICCV 论文地址: 主要针对的问题: 本文完成的工作与第三篇类似,都是对目标框提取算法的优化方案,区别是本文首先采用自底而上的方案来提取图像上的疑似目标框,然后再利用CNN网络提取特征对目标框进行是否为前景区域的排序;而第三篇为直接利用CNN网络来回归图像上可能的目标位置。创新点: 本文作者想通过CNN学习输入图像的特征,从而实现对输入网络目标框是否为真实目标的情况进行计算,量化每个输入框的包含目标的可能性值。 参考博客: 论文题目:AttentionNet: AggregatingWeak Directions for Accurate Object Detection 提出时间:2015年ICCV 论文地址: 主要针对的问题: 对检测网络的实现方案进行思考,之前的执行策略是,先确定输入图像中可能包含目标位置的矩形框,再对每个矩形框进行分类和回归从而确定目标的准确位置,参考RCNN。那么能否直接利用回归的思路从图像的四个角点,逐渐得到目标的最小外接矩形框和类别呢? 创新点: 通过从图像的四个角点,逐步迭代的方式,每次计算一个缩小的方向,并缩小指定的距离来使得逐渐逼近目标。作者还提出了针对多目标情况的处理方式。 参考博客: 论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 提出时间:2014年 论文地址: 针对问题: 如RCNN会将输入的目标图像块处理到同一尺寸再输入进CNN网络,在处理过程中就造成了图像块信息的损失。在实际的场景中,输入网络的目标尺寸很难统一,而网络最后的全连接层又要求输入的特征信息为统一维度的向量。作者就尝试进行不同尺寸CNN网络提取到的特征维度进行统一。创新点: 作者提出的SPPnet中,通过使用特征金字塔池化来使得最后的卷积层输出结果可以统一到全连接层需要的尺寸,在训练的时候,池化的操作还是通过滑动窗口完成的,池化的核宽高及步长通过当前层的特征图的宽高计算得到。原论文中的特征金字塔池化操作图示如下。 参考博客 : 论文题目:Object detection via a multi-region & semantic segmentation-aware CNN model 提出时间:2015年 论文地址: 针对问题: 既然第三篇论文multibox算法提出了可以用CNN来实现输入图像中待检测目标的定位,本文作者就尝试增加一些训练时的方法技巧来提高CNN网络最终的定位精度。创新点: 作者通过对输入网络的region进行一定的处理(通过数据增强,使得网络利用目标周围的上下文信息得到更精准的目标框)来增加网络对目标回归框的精度。具体的处理方式包括:扩大输入目标的标签包围框、取输入目标的标签中包围框的一部分等并对不同区域分别回归位置,使得网络对目标的边界更加敏感。这种操作丰富了输入目标的多样性,从而提高了回归框的精度。 参考博客 : 论文题目:Fast-RCNN 提出时间:2015年 论文地址: 针对问题: RCNN中的CNN每输入一个图像块就要执行一次前向计算,这显然是非常耗时的,那么如何优化这部分呢? 创新点: 作者参考了SPPNet(第六篇论文),在网络中实现了ROIpooling来使得输入的图像块不用裁剪到统一尺寸,从而避免了输入的信息丢失。其次是将整张图输入网络得到特征图,再将原图上用Selective Search算法得到的目标框映射到特征图上,避免了特征的重复提取。 参考博客 : 论文题目:DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers 提出时间:2015年 论文地址: 主要针对的问题: 本文的作者观察到CNN可以提取到很棒的对输入图像进行表征的论文,作者尝试通过实验来对CNN网络不同层所产生的特征的作用和情况进行讨论和解析。 创新点: 作者在不同的激活层上以滑动窗口的方式生成了假设,并表明最终的卷积层可以以较高的查全率找到感兴趣的对象,但是由于特征图的粗糙性,定位性很差。相反,网络的第一层可以更好地定位感兴趣的对象,但召回率降低。 论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 提出时间:2015年NIPS 论文地址: 主要针对的问题: 由multibox(第三篇)和DeepBox(第四篇)等论文,我们知道,用CNN可以生成目标待检测框,并判定当前框为目标的概率,那能否将该模型整合到目标检测的模型中,从而实现真正输入端为图像,输出为最终检测结果的,全部依赖CNN完成的检测系统呢? 创新点: 将当前输入图目标框提取整合到了检测网络中,依赖一个小的目标框提取网络RPN来替代Selective Search算法,从而实现真正的端到端检测算法。 参考博客 :

information purposes信息目的;信息用途The interpretive geotechnical report is enclosed within the special conditions of contract for information purposes only.解释性土工技术报告附于合同特别条款之后,仅供参考之用。

information purposes 信息目的

运动目标检测数模论文

运动目标的检测的其主要目的是 获取目标对象的运动参数(位置、速度、加速度等)及运动轨迹 ,通过进一步分析处理,实现对目标行为更高层级上的理解。 运动目标检测技术目的是 从序列图像中将变化区域从背景图像中提取出来 ,常用于视频监视、图像压缩、三维重构、异常检测等。

运动目标检测主流方法有帧差法、背景差法、光流法等。光流法源于 仿生学 思想,更贴近于直觉,大量昆虫的视觉机理便是基于光流法。 二十世纪五十年代心理学家Gibson在他的著作“The Perception of Visual World”中首次提出了以心理学实验为基础的光流法基本概念,而直到八十年代才由Horn、Kanade、Lucash和Schunck创造性地将灰度与二维速度场相联系,引入光流约束方程的算法,对光流计算做了奠基性的工作。

光流(optical flow):由于目标对象或者摄像机的移动造成的图像对象在连续两帧图像中的移动。

通俗说,对于一个图片序列,把每张图像每个像素在连续帧之间的运动速度和方向( 某像素点在连续两帧上的位移矢量 )找出来就是光流场。

第t帧的时A点的位置是(x1, y1),第t+1帧时A点位置是(x2,y2),则像素点A的位移矢量:(ux, vy) = (x2, y2) - (x1,y1)

如何知道第t+1帧的时候A点的位置涉及到不同的光流计算方法,主要有四种:基于梯度的方法、基于匹配的方法、基于能量的方法、基于相位的方法。

光流法依赖于三个假设:

根据所形成的光流场中 二维矢量的疏密程度 ,光流法可分为稠密光流与稀疏光流。

稀疏光流只对有 明显特征的组点 (如角点)进行跟踪,计算开销小。

(1)calcOpticalFlowPyrLK 基于金字塔LK光流算法,计算某些点集的稀疏光流。 参考论文《Pyramidal Implementation of the Lucas Kanade Feature TrackerDescription of the algorithm》 (2)calcOpticalFlowFarneback 基于Gunnar Farneback 的算法计算稠密光流。 参考论文《Two-Frame Motion Estimation Based on PolynomialExpansion》 (3)CalcOpticalFlowBM 通过块匹配的方法来计算光流 (4)CalcOpticalFlowHS 基于Horn-Schunck 的算法计算稠密光流。 参考论文《Determining Optical Flow》 (5)calcOpticalFlowSF 论文《SimpleFlow: A Non-iterative, Sublinear Optical FlowAlgo》的实现

你的问题问的太宽泛了,我就是搞建模的,都不到从何开始回答你,想要进一步讨论的话可以hi我。论文七大部分肯定是必不可少的:问题重述,模型假设,问题分析,模型建立,模型求解,结果分析及检验,(包括灵敏度分析,如果需要的话)模型推广,当然还得有目录和摘要以及参考文献了

重点:数模论文的格式及要求 难点:团结协作的充分体现 一、 写好数模论文的重要性 1. 数模论文是评定参与者的成绩好坏、高低、获奖级别的惟一依据. 2. 数模论文是培训(或竞赛)活动的最终成绩的书面形式。 3. 写好论文的训练,是科技论文写作的一种基本训练。 二、数模论文的基本内容 1,评阅原则: 假设的合理性; 建模的创造性; 结果的合理性; 表述的清晰程度 2,数模论文的结构 0、摘要 1、问题的提出:综述问题的内容及意义 2、模型的假设:写出问题的合理假设,符号的说明 3、模型的建立:详细叙述模型、变量、参数代表的意义和满足的条件,进行问题分析,公式推导,建立基本模型,深化模型,最终或简化模型等 4、模型的求解:求解及算法的主要步骤,使用的数学软件等 5、模型检验:结果表示、分析与检验,误差分析等 6、模型评价:本模型的特点,优缺点,改进方法 7、参考文献:限公开发表文献,指明出处 8、 附录:计算框图、计算程序,详细图表 三、需要重视的问题 0.摘要 表述:准确、简明、条理清晰、合乎语法。 字数300-500字,包括模型的主要特点、建模方法和主要结果。可以有公式,不能有图表 简单地说,摘要应体现:用了什么方法,解决了什么问题,得到了那些主要结论。还可作那些推广。 1、 建模准备及问题重述: 了解问题实际背景,明确建模目的,搜集文献、数据等,确定模型类型,作好问题重述。 在此过程中,要充分利用电子图书资源及纸质图书资源,查找相关背景知识,了解本问题的研究现状,所用到的基本解决方法等。 2、模型假设、符号说明 基本假设的合理性很重要 (1)根据题目条件作假设; (2)根据题目要求作假设; (3)基本的、关键性假设不能缺; (4)符号使用要简洁、通用。 3、模型的建立 (1)基本模型 1) 首先要有数学模型:数学公式、方案等 2) 基本模型:要求完整、正确、简明,粗糙一点没有关系 (2)深化模型 1)要明确说明:深化的思想,依据,如弥补了基本模型的不足…… 2)深化后的模型,尽可能完整给出 3)模型要实用,有效,以解决问题有效为原则。数学建模面临的、是要解决实际问题,不追求数学上的高(级)、深(刻)、难(度)。 ▲能用初等方法解决的、就不用高级方法; ▲能用简单方法解决的,就不用复杂方法; ▲能用被更多人看懂、理解的方法,就不用只有少数人看懂、理解的方法。 4)鼓励创新,但要切实,不要离题搞标新立异,数模创新可出现在 ▲建模中:模型本身,简化的好方法、好策略等; ▲模型求解中; ▲结果表示、分析,模型检验; ▲推广部分。 5)在问题分析推导过程中,需要注意的: ▲分析要:中肯、确切; ▲术语要:专业、内行; ▲原理、依据要:正确、明确; ▲表述要:简明,关键步骤要列出; ▲忌:外行话,专业术语不明确,表述混乱、繁琐,冗长。 4、模型求解 (1)需要建立数学命题时:命题叙述要符合数学命题的表述规范,论证要尽可能严密; (2)需要说明计算方法或算法的原理、思想、依据、步骤。若采用现有软件,要说明采用此软件的理由,软件名称; (3)计算过程,中间结果可要可不要的,不要列出。 (4)设法算出合理的数值结果。 5、模型检验、结果分析 (1) 最终数值结果的正确性或合理性是第一位的 ; (2)对数值结果或模拟结果进行必要的检验。 当结果不正确、不合理、或误差大时,要分析原因,对算法、计算方法、或模型进行修正、改进; (3)题目中要求回答的问题,数值结果,结论等,须一一列出; (4)列数据是要考虑:是否需要列出多组数据,或额外数据;对数据进行比较、分析,为各种方案的提出提供可依赖的依据; (5)结果表示:要集中,一目了然,直观,便于比较分析。(最好不要跨页) ▲数值结果表示:精心设计表格;可能的话,用图形图表形式。 ▲求解方案,用图示更好 (6) 必要时对问题解答,作定性或规律性的讨论。 最后结论要明确。 6.模型评价 优点要突出,缺点不回避。若要改变原题要求,重新建模则可在此进行。推广或改进方向时,不要玩弄新数学术语。 7、参考文献 限于公开发表的文章、文献资料或网页 规范格式: [1] 陈理荣,数学建模导论(M),北京:北京邮电大学出版社,1999. [2] 楚扬杰,快速聚类分析在产品市场区分中的应用(J),武汉理工大学学报,2004,23(2),20-23. 8、附录 详细的数据、表格、图形,计算程序均应在此列出。但不要错,错的宁可不列。主要结果数据,应在正文中列出。 9、关于写答卷前的思考和工作规划 答卷需要回答哪几个问题――建模需要解决哪几个问题 问题以怎样的方式回答――结果以怎样的形式表示 每个问题要列出哪些关键数据――建模要计算哪些关键数据 每个量,列出一组还是多组数――要计算一组还是多组数…… 10、答卷要求的原理 ▲ 准确――科学性 ▲ 条理――逻辑性 ▲ 简洁――数学美 ▲ 创新――研究、应用目标之一,人才培养需要 ▲ 实用――建模。实际问题要求。 四、建模理念 1. 应用意识:要让你的数学模型能解决或说明实际问题,其结果、结论要符合实际;模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。 2. 数学建模:用数学方法解决问题,要有数学模型;问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决。相同问题上要能够推广。 3. 创新意识:建模有特点,要合理、科学、有效、符合实际;要有普遍应用意义;不单纯为创新而创新 五、格式要求 参赛论文写作格式 论文题目(三号黑体,居中) 一级标题(四号黑体,居中) 论文中其他汉字一律采用小四号宋体,单倍行距。论文纸用白色A4,上下左右各留出厘米的页边距。 首页为论文题目和作者的专业、班级、姓名、学号,第二页为论文题目和摘要,论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字“1”开始连续编号。 第四页开始论文正文 正文应包括以下八个部分: 问题提出: 叙述问题内容及意义; 基本假设: 写出问题的合理假设; 建立模型: 详细叙述模型、变量、参数代表的意义和满足的条件及建模的思想; 模型求解: 求解、算法的主要步骤; 结果分析与检验:(含误差分析); 模型评价: 优缺点及改进意见; 参考文献: 限公开发表文献,指明出处; 参考文献在正文引用处用方括号标示参考文献的编号,如[1][3]等。参考文献按正文中的引用次序列出,其中 书籍的表述方式为: [编号] 作者,书名,出版地:出版社,出版年 参考文献中期刊杂志论文的表述方式为: [编号] 作者,论文名,杂志名,卷期号:出版年 参考文献中网上资源的表述方式为: [编号] 作者,资源标题,网址,访问时间(年月日) 附录:计算框图,原程序及打印结果。 六、分工协作取佳绩 最好三人一组,这三人中尽量做到一人数学基础较好,一人应用数学软件和编程的能力较强,一人科技论文写作水平较好。科技论文的写作要求整篇论文的结构严谨,语言要有逻辑性,用词要准确。 三人之间要能够配合得起来。若三人之间配合不好,会降低效率,导致整个建模的失败。 在合作的过程中,最好是能够找出一个组长,即要能够总揽全局,包括任务的分配,相互间的合作和进度的安排。 在建模过程中出现意见不统一时,要尊重为先,理解为重,做到 “给我一个相信你的理由”和“相信我,我的理由是……”,不要作无谓的争论。要善于斗争,勇于妥协。 还要注意以下几点: 注意存盘,以防意外 写作与建模工作同步 注意保密,以防抄袭 数学建模成功的条件和模型: 有兴趣,肯钻研;有信心,勇挑战;有决心,不怕难;有知识,思路宽;有能力,能开拓;有水平,善协作;有办法,点子多;有毅力,轻结果。

数学建模论文写作一、写好数模答卷的重要性1. 评定参赛队的成绩好坏、高低,获奖级别,数模答卷,是唯一依据。2. 答卷是竞赛活动的成绩结晶的书面形式。3. 写好答卷的训练,是科技写作的一种基本训练。二、答卷的基本内容,需要重视的问题1.评阅原则假设的合理性,建模的创造性,结果的合理性,表述的清晰程度。2.答卷的文章结构题目(写出较确切的题目;同时要有新意、醒目)摘要(200-300字,包括模型的主要特点、建模方法和主要结论)关键词(求解问题、使用的方法中的重要术语)1)问题重述。2)问题分析。3)模型假设。4)符号说明。5)模型的建立(问题分析,公式推导,基本模型,最终或简化模型等)。6)模型求解(计算方法设计或选择;算法设计或选择,算法思想依据,步骤及实现,计算框图;所采用的软件名称;引用或建立必要的数学命题和定理;求解方案及流程。)7)进一步讨论(结果表示、分析与检验,误差分析,模型检验)8)模型评价(特点,优缺点,改进方法,推广。)9)参考文献。10)附录(计算程序,框图;各种求解演算过程,计算中间结果;各种图形,表格。)3. 要重视的问题1)摘要。包括:a. 模型的数学归类(在数学上属于什么类型);b. 建模的思想(思路);c. 算法思想(求解思路);d. 建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验……);e. 主要结果(数值结果,结论;回答题目所问的全部“问题”)。▲ 注意表述:准确、简明、条理清晰、合乎语法、要求符合文章格式。务必认真校对。2)问题重述。3)问题分析。因素之间的关系、因素与环境之间的关系、因素自身的变化规律、确定研究的方法或模型的类型。5)模型假设。根据全国组委会确定的评阅原则,基本假设的合理性很重要。a. 根据题目中条件作出假设b. 根据题目中要求作出假设关键性假设不能缺;假设要切合题意。6) 模型的建立。a. 基本模型:ⅰ)首先要有数学模型:数学公式、方案等;ⅱ)基本模型,要求完整,正确,简明;b. 简化模型:ⅰ)要明确说明简化思想,依据等;ⅱ)简化后模型,尽可能完整给出;c. 模型要实用,有效,以解决问题有效为原则。数学建模面临的、要解决的是实际问题,不追求数学上的高(级)、深(刻)、难(度大)。ⅰ)能用初等方法解决的、就不用高级方法;ⅱ)能用简单方法解决的,就不用复杂方法;ⅲ)能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。d.鼓励创新,但要切实,不要离题搞标新立异。数模创新可出现在:▲ 建模中,模型本身,简化的好方法、好策略等;▲ 模型求解中;▲ 结果表示、分析、检验,模型检验;▲ 推广部分。e.在问题分析推导过程中,需要注意的问题:ⅰ)分析:中肯、确切;ⅱ)术语:专业、内行;ⅲ)原理、依据:正确、明确;ⅳ)表述:简明,关键步骤要列出;ⅴ)忌:外行话,专业术语不明确,表述混乱,冗长。7)模型求解。a. 需要建立数学命题时:命题叙述要符合数学命题的表述规范,尽可能论证严密。b. 需要说明计算方法或算法的原理、思想、依据、步骤。若采用现有软件,说明采用此软件的理由,软件名称。c. 计算过程,中间结果可要可不要的,不要列出。d. 设法算出合理的数值结果。8) 结果分析、检验;模型检验及模型修正;结果表示。a. 最终数值结果的正确性或合理性是第一位的;b. 对数值结果或模拟结果进行必要的检验;结果不正确、不合理、或误差大时,分析原因, 对算法、计算方法、或模型进行修正、改进。c. 题目中要求回答的问题,数值结果,结论,须一一列出;d. 列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据;e. 结果表示:要集中,一目了然,直观,便于比较分析。▲ 数值结果表示:精心设计表格;可能的话,用图形图表形式。▲ 求解方案,用图示更好。9)必要时对问题解答,作定性或规律性的讨论。最后结论要明确。10)模型评价优点突出,缺点不回避。改变原题要求,重新建模可在此做。推广或改进方向时,不要玩弄新数学术语。11)参考文献12)附录详细的结果,详细的数据表格,可在此列出,但不要错,错的宁可不列。主要结果数据,应在正文中列出,不怕重复。检查答卷的主要三点,把三关:a. 模型的正确性、合理性、创新性b. 结果的正确性、合理性c. 文字表述清晰,分析精辟,摘要精彩三、关于写答卷前的思考和工作规划答卷需要回答哪几个问题――建模需要解决哪几个问题;问题以怎样的方式回答――结果以怎样的形式表示;每个问题要列出哪些关键数据――建模要计算哪些关键数据;每个量,列出一组还是多组数――要计算一组还是多组数。四、答卷要求的原理1. 准确――科学性;2. 条理――逻辑性;3. 简洁――数学美;4. 创新――研究、应用目标之一,人才培养需要;5. 实用――建模、实际问题要求。五、建模理念1. 应用意识要解决实际问题,结果、结论要符合实际;模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。2. 数学建模用数学方法解决问题,要有数学模型;问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决。3. 创新意识建模有特点,更加合理、科学、有效、符合实际;更有普遍应用意义;不单纯为创新而创新。

运动目标检测论文总结

一、图片输入层面 基于以上结论,采用多尺度训练过程中,要在避免那些极小的和极大的(多尺度后)带来的不好的影响时,考虑保证目标有足够的多样性。所以在进行多尺度训练过程中,将每种输入尺度下,不满足要求的proposal以及anchor忽略。论文中使用了三种尺度如图所示,比一般的多尺度训练的尺度跨度要大。 二、 Neck部分(采用金字塔结构改进方案的) 一般意义的FPN网络结构是最右边似的结构,而本文中采用的结构则是 该方法首先无疑是增加了计算量,优点就是最终输出的每一层的特征不是一个线性的变换(应该想表述的说不是从一层特征直接到另一层特征),而是使用共享的多层特征。最终相比RetinaNet提升一个点左右吧,效果一般。VisDrone2020检测的冠军团队采用了这个结构 该文章利用多个TUM模块试图更充分构建的特征金字塔的网络结构,靠前的TUM提供浅层特征,中间的TUM提供中间层特征,靠后的TUM提供深层特征,通过这种方式能够多次将深层浅层特征融合,参数量多了。和RetinaNet对比可以看到,512输入,都不采用multi-scale推理,mAP由33提升到,小目标精度也提升了一点;以参数量和计算量堆砌的精度提升,不是好方法。 文章认为不同层的重要程度应该和目标的绝对尺度分布有关系,所以在FPN自上而下融合的时候,加入了一个尺度因子用来平衡金字塔不同层的重要性。个人感觉意义不大,实际提升也不明显。 三、 Head部分的改进方案 在VisDrones上的冠军方案和若干其他方案都采用了这种“双头部”的方案。soft-NMS似乎可以提升几个点。 四、 小目标目前检测不好,主要原因不是小,应该是小且和背景接近,对比度不高。所以可以借鉴伪装物体检测的思路;

姓名:刘帆;学号:20021210609;学院:电子工程学院 【嵌牛导读】目标跟踪算法研究难点与挑战在于实际复杂的应用环境 、背景相似干扰、光照条件的变化、遮挡等外界因素以及目标姿态变化,外观变形,尺度变化、平面外旋转、平面内旋转、出视野、快速运动和运动模糊等。而且当目标跟踪算法投入实际应用时,不可避免的一个问题——实时性问题也是非常的重要。正是有了这些问题,才使得算法研究充满着难点和挑战。 【嵌牛鼻子】目标跟踪算法,传统算法 【嵌牛提问】利用目标跟踪检测算法要达到何目的?第一阶段的单目标追踪算法包括什么?具体步骤有哪些?它们有何特点? 【嵌牛正文】 第一阶段 目标跟踪分为两个部分,一个是对指定目标寻找可以跟踪的特征,常用的有颜色,轮廓,特征点,轨迹等,另一个是对目标特征进行跟踪。 1、静态背景 1)背景差: 对背景的光照变化、噪声干扰以及周期性运动等进行建模。通过当前帧减去背景图来捕获运动物体的过程。 2)帧差: 由于场景中的目标在运动,目标的影像在不同图像帧中的位置不同。该类算法对时间上连续的两帧或三帧图像进行差分运算,不同帧对应的像素点相减,判断灰度差的绝对值,当绝对值超过一定阈值时,即可判断为运动目标,从而实现目标的检测功能。 与二帧差分法不同的是,三帧差分法(交并运算)去除了重影现象,可以检测出较为完整的物体。帧间差分法的原理简单,计算量小,能够快速检测出场景中的运动目标。但帧间差分法检测的目标不完整,内部含有“空洞”,这是因为运动目标在相邻帧之间的位置变化缓慢,目标内部在不同帧图像中相重叠的部分很难检测出来。帧间差分法通常不单独用在目标检测中,往往与其它的检测算法结合使用。 3)Codebook 算法为图像中每一个像素点建立一个码本,每个码本可以包括多个码元(对应阈值范围),在学习阶段,对当前像素点进行匹配,如果该像素值在某个码元的学习阈值内,也就是说与之前出现过的某种历史情况偏离不大,则认为该像素点符合背景特征,需要更新对应点的学习阈值和检测阈值。 如果新来的像素值与每个码元都不匹配,则可能是由于动态背景导致,这种情况下,我们需要为其建立一个新的码元。每个像素点通过对应多个码元,来适应复杂的动态背景。 在应用时,每隔一段时间选择K帧通过更新算法建立CodeBook背景模型,并且删除超过一段时间未使用的码元。 4)GMM 混合高斯模型(Gaussian of Micture Models,GMM)是较常用的背景去除方法之一(其他的还有均值法、中值法、滑动平均滤波等)。 首先我们需要了解单核高斯滤波的算法步骤: 混合高斯建模GMM(Gaussian Mixture Model)作为单核高斯背景建模的扩展,是目前使用最广泛的一种方法,GMM将背景模型描述为多个分布,每个像素的R、G、B三个通道像素值的变化分别由一个混合高斯模型分布来刻画,符合其中一个分布模型的像素即为背景像素。作为最常用的一种背景建模方法,GMM有很多改进版本,比如利用纹理复杂度来更新差分阈值,通过像素变化的剧烈程度来动态调整学习率等。 5)ViBe(2011) ViBe算法主要特点是随机背景更新策略,这和GMM有很大不同。其步骤和GMM类似。具体的思想就是为每个像素点存储了一个样本集,样本集中采样值就是该像素点过去的像素值和其邻居点的像素值,然后将每一个新的像素值和样本集进行比较来判断是否属于背景点。 其中pt(x)为新帧的像素值,R为设定值,p1、p2、p3….为样本集中的像素值,以pt(x)为圆心R为半径的圆被认为成一个集,当样本集与此集的交集大于设定的阈值#min时,可认为此为背景像素点(交集越大,表示新像素点与样本集越相关)。我们可以通过改变#min的值与R的值来改变模型的灵敏度。 Step1:初始化单帧图像中每个像素点的背景模型。假设每一个像素和其邻域像素的像素值在空域上有相似的分布。基于这种假设,每一个像素模型都可以用其邻域中的像素来表示。为了保证背景模型符合统计学规律,邻域的范围要足够大。当输入第一帧图像时,即t=0时,像素的背景模型。其中,NG(x,y)表示空域上相邻的像素值,f(xi,yi)表示当前点的像素值。在N次的初始化的过程中,NG(x,y)中的像素点(xi,yi)被选中的可能次数为L=1,2,3,…,N。 Step2:对后续的图像序列进行前景目标分割操作。当t=k时,像素点(x,y)的背景模型为BKm(x,y),像素值为fk(x,y)。按照下面判断该像素值是否为前景。这里上标r是随机选的;T是预先设置好的阈值。当fk(x,y)满足符合背景#N次时,我们认为像素点fk(x,y)为背景,否则为前景。 Step3:ViBe算法的更新在时间和空间上都具有随机性。每一个背景点有1/ φ的概率去更新自己的模型样本值,同时也有1/ φ的概率去更新它的邻居点的模型样本值。更新邻居的样本值利用了像素值的空间传播特性,背景模型逐渐向外扩散,这也有利于Ghost区域的更快的识别。同时当前景点计数达到临界值时将其变为背景,并有1/ φ的概率去更新自己的模型样本值(为了减少缓慢移动物体的影响和摄像机的抖动)。 可以有如下总结,ViBe中的每一个像素点在更新的时候都有一个时间和空间上随机影响的范围,这个范围很小,大概3x3的样子,这个是考虑到摄像头抖动时会有坐标的轻微来回变化,这样虽然由于ViBe的判别方式仍认为是背景点,但是也会对后面的判别产生影响,为了保证空间的连续性,随机更新减少了这个影响。而在样本值保留在样本集中的概率随着时间的增大而变小,这就保证了像素模型在时间上面的延续特性。 6)光流 光流是由物体或相机的运动引起的图像对象在两个连续帧之间的视在运动模式。它是2D矢量场,其中每个矢量是一个位移矢量,显示点从第一帧到第二帧的移动。 光流实际上是一种特征点跟踪方法,其计算的为向量,基于三点假设: 1、场景中目标的像素在帧间运动时亮度(像素值或其衍生值)不发生变化;2、帧间位移不能太大;3、同一表面上的邻近点都在做相同的运动; 光流跟踪过程:1)对一个连续视频帧序列进行处理;2)对每一帧进行前景目标检测;3)对某一帧出现的前景目标,找出具有代表性的特征点(Harris角点);4)对于前后帧做像素值比较,寻找上一帧在当前帧中的最佳位置,从而得到前景目标在当前帧中的位置信息;5)重复上述步骤,即可实现目标跟踪 2、运动场(分为相机固定,但是视角变化和相机是运动的) 1)运动建模(如视觉里程计运动模型、速度运动模型等) 运动学是对进行刚性位移的相机进行构型,一般通过6个变量来描述,3个直角坐标,3个欧拉角(横滚、俯仰、偏航)。 Ⅰ、对相机的运动建模 由于这个不是我们本次所要讨论的重点,但是在《概率机器人》一书中提出了很多很好的方法,相机的运动需要对图像内的像素做位移矩阵和旋转矩阵的坐标换算。除了对相机建立传统的速度运动模型外,也可以用视觉里程计等通关过置信度的更新来得到概率最大位置。 Ⅱ、对于跟踪目标的运动建模 该方法需要提前通过先验知识知道所跟踪的目标对象是什么,比如车辆、行人、人脸等。通过对要跟踪的目标进行建模,然后再利用该模型来进行实际的跟踪。该方法必须提前知道要跟踪的目标对象是什么,然后再去跟踪指定的目标,这是它的局限性,因而其推广性相对比较差。(比如已知跟踪的物体是羽毛球,那很容易通过前几帧的取点,来建立整个羽毛球运动的抛物线模型) 2)核心搜索算法(常见的预测算法有Kalman(卡尔曼)滤波、扩展卡尔曼滤波、粒子滤波) Ⅰ、Kalman 滤波 Kalman滤波器是通过前一状态预测当前状态,并使用当前观测状态进行校正,从而保证输出状态平稳变化,可有效抵抗观测误差。因此在运动目标跟踪中也被广泛使用。 在视频处理的运动目标跟踪里,每个目标的状态可表示为(x,y,w,h),x和y表示目标位置,w和h表示目标宽高。一般地认为目标的宽高是不变的,而其运动速度是匀速,那么目标的状态向量就应该扩展为(x,y,w,h,dx,dy),其中dx和dy是目标当前时刻的速度。通过kalman滤波器来估计每个时刻目标状态的大致过程为: 对视频进行运动目标检测,通过简单匹配方法来给出目标的第一个和第二个状态,从第三个状态开始,就先使用kalman滤波器预测出当前状态,再用当前帧图像的检测结果作为观测值输入给kalman滤波器,得到的校正结果就被认为是目标在当前帧的真实状态。(其中,Zt为测量值,为预测值,ut为控制量,Kt为增益。) Ⅱ、扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF) 由于卡尔曼滤波的假设为线性问题,无法直接用在非线性问题上,EKF和UKF解决了这个问题(这个线性问题体现在用测量量来计算预测量的过程中)。EKF是通过构建线性函数g(x),与非线性函数相切,并对每一时刻所求得的g(x)做KF,如下图所示。 UKF与EKF去求解雅可比矩阵拟合线性方程的方法不同,通过对那个先验分布中的采集点,来线性化随机变量的非线性函数。与EKF所用的方法不同,UKF产生的高斯分布和实际高斯分布更加接近,其引起的近似误差也更小。 Ⅲ、粒子滤波 1、初始状态:基于粒子滤波的目标追踪方法是一种生成式跟踪方法,所以要有一个初始化的阶段。对于第一帧图像,人工标定出待检测的目标,对该目标区域提出特征; 2、搜索阶段:现在已经知道了目标的特征,然后就在目标的周围撒点(particle), 如:a)均匀的撒点;b)按高斯分布撒点,就是近的地方撒得多,远的地方撒的少。论文里使用的是后一种方法。每一个粒子都计算所在区域内的颜色直方图,如初始化提取特征一样,然后对所有的相似度进行归一化。文中相似性使用的是巴氏距离; 3、重采样:根据粒子权重对粒子进行筛选,筛选过程中,既要大量保留权重大的粒子,又要有一小部分权重小的粒子; 4、状态转移:将重采样后的粒子带入状态转移方程得到新的预测粒子; 5、测量及更新:对目标点特征化,并计算各个粒子和目标间的巴氏距离,更新粒子的权重; 6、决策阶段:每个粒子都获得一个和目标的相似度,相似度越高,目标在该范围出现的可能性越高,将保留的所有粒子通过相似度加权后的结果作为目标可能的位置。 3)Meanshift算法 MeanShift算法属于核密度估计法,它不需要任何先验知识而完全依靠特征空间中样本点的计算其密度函数值。对于一组采样数据,直方图法通常把数据的值域分成若干相等的区间,数据按区间分成若干组,每组数据的个数与总参数个数的比率就是每个单元的概率值;核密度估计法的原理相似于直方图法,只是多了一个用于平滑数据的核函数。采用核函数估计法,在采样充分的情况下,能够渐进地收敛于任意的密度函数,即可以对服从任何分布的数据进行密度估计。 Meanshift算法步骤 1、通过对初始点(或者上一帧的目标点)为圆心,绘制一个半径为R的圆心,寻找特征和该点相似的点所构成的向量; 2、所有向量相加,可以获得一个向量叠加,这个向量指向特征点多的方向; 3、取步骤二的向量终点为初始点重复步骤一、二,直到得到的向量小于一定的阈值,也就是说明当前位置是特征点密度最密集的地方,停止迭代,认为该点为当前帧的目标点; 4)Camshift算法 Camshift算法是MeanShift算法的改进,称为连续自适应的MeanShift算法。Camshift 是由Meanshift 推导而来 Meanshift主要是用在单张影像上,但是独立一张影像分析对追踪而言并无意义,Camshift 就是利用MeanShift的方法,对影像串列进行分析。 1、首先在影像串列中选择目标区域。 2、计算此区域的颜色直方图(特征提取)。 3、用MeanShift演算法来收敛欲追踪的区域。 4、通过目标点的位置和向量信息计算新的窗口大小,并标示之。 5、以此为参数重复步骤三、四。 Camshift 关键就在于当目标的大小发生改变的时候,此算法可以自适应调整目标区域继续跟踪。 3、小结 第一阶段的单目标追踪算法基本上都是传统方法,计算量小,在嵌入式等设备中落地较多,opencv中也预留了大量的接口。通过上面的两节的介绍,我们不难发现,目标检测算法的步骤分为两部分,一部分是对指定目标寻找可以跟踪的特征,常用的有颜色,轮廓,特征点,轨迹等,另一部分是对目标特征进行跟踪,如上文所提及的方法。所以目标检测方法的发展,也可总结为两个方面,一个是如何去获得更加具有区分性的可跟踪的稳定特征,另一个是如何建立帧与帧之间的数据关联,保证跟踪目标是正确的。 随着以概率为基础的卡尔曼滤波、粒子滤波或是以Meanshift为代表向量叠加方法在目标检测的运用,使得目标检测不再需要假设自身的一个状态为静止的,而是可以是运动的,更加符合复杂场景中的目标跟踪。

能不能给我发一份呢?

运动目标检测与跟踪论文

在我国经济组成中,汽车产业对促进国民经济发展和社会进步具有重要的战略意义。下面是我为大家精心推荐的关于汽车的科技3000字论文,希望能对大家有所帮助。汽车的科技3000字论文篇一:《试谈汽车超载监测系统》 摘 要: 为了实时识别各种车型的超载车辆,该系统基于开源计算机视觉库(OpenCV),先根据车辆照片库建立车型分类器,然后使用数字摄像机拍摄进入监控区域的车辆,在视频中使用分类器识别车型,根据所识别得到的车型去查询数据库获得该车型的核载,再通过动态称重技术获得车辆的实际载重,及时判别车辆是否超载。此 方法 可避免过去使用统一重量衡量不同车型是否超载的弊端,并可同时免线圈测量车速。测试结果表明系统能快速准确地识别出车型。配合动态称重系统,就能实时得出所通过的车辆是否超载,对公路养护和道路交通安全有相当大的实用意义。 关键词: 超载监测; 视频识别; OpenCV; 动态称重 超载车辆的危害很大,主要表现在加速道路损坏和危害道路交通安全,人们都深知其危害性,所以治理超载一直是公路监管部门的工作重点。传统的自动超载信息系统都是使用统一标准,对所有车辆都应用同一个整车重量划分是否超载,这样会遗漏部分实际上已经超过该车型核载的超载车辆。实际上,这部分车辆对道路交通同样造成严重影响。鉴于此,本系统首先识别出车辆的车型,再查询得到该车型的核载重量,对比实测重量,便得知是否超载。理论上能够适用于所有车型。 利用摄像机较长的视域,附加设计了一个测速系统,能方便地得出超速数据,以便作为超速监测和供给动态称重系统作参考。 1 系统构成 系统方案 系统主要工作过程为:车辆驶入摄像机监视范围,视频流通过以太网传输到后台处理系统,处理系统通过处理视频识别出车辆的车型,然后根据车型从数据库中查出相应的核载重量;同时,安装在地面的动态称重设备测出车辆的实际载重。两个数据对比即可得出车辆是否超载。系统流程如图1所示。 为了加快处理速率,在程序设计过程中多处使用了多线程并行处理。 OpenCV及其分类器介绍 传统的图像处理软件大多为Matlab,用于开发算法最为快捷,但是其处理速度慢,难以跟上视频处理的需求,所以选用了Intel牵头开发的开源计算机视觉库(OpenCV)。新版的OpenCV已经在易用性上已经接近Matlab,再加上其开源性,很多算法均已公开,加快了开发进程。另外,目前OpenCV已经提供C,C++,Python等语言接口,且支持Windows,Linux,Android和IOS等主流平台,资源相当丰富。对于计算机平台,OpenCV支持多线程并行计算和图形处理器(GPU)计算,这将能大大加快计算速率,用其开发本系统的demo是首选。 图1 系统流程图 为了从视频流中识别出车型,需要使用分类器[1]。所谓分类器,是利用样本的特征进行训练,得到一个级联分类器。分类器训练完成后,就可以应用于目标检测。分类器的级联是指最终的分类器是有几个简单分类器级联组成。每个特定的分类器所使用的特征用形状、感兴趣区域中的位置以及比例系数来定义(如图2所示)。 图2 特征分类 首先使用弱分类器分出货车和客车等车型,然后再分出大中小型货车,最后再精确分类,获得准确的车型。新版本的OpenCV已经支持多种特征的分类器,如SVM,LBP,PBM等。因为系统实时性要求较高,这里选取训练和分类速率都较高的LBP特征分类器。 训练分类器 使用分类器的需要首先训练,即让分类器“认识”目标,为了训练分类器,需要准备样本,样本包括正样本和负样本。正样本即包含目标的灰度图片,而且每张图片都要归一化大小,负样本则不要求归一化,只需要比正样本大即可(使得可以在负样本中滑动窗口检索)。 OpenCV提供了专门的工具用以整理训练样本的原始数据,只需准备好正、负样本,归一化然后转成灰度图,再使用两个描述文件分别记录这些样本集合,然后输入程序即可整理出原始数据。为了准备正样本,借助OpenCV提供的HighGUI模块,在此专门编写了一个GUI截图工具,界面如图3所示。为了能从不同角度识别车辆,准本正样本时需要准备从一定角度范围描述车辆的样本。 图3 GUI截图工具界面 接下来就是训练分类器,这部分工作直接关系到系统的鲁棒性。同样,OpenCV提供了专门工具训练分类器,既有旧版也有新版,为了有更多特性,在此选择新版本的训练程序。 由于这是基于统计的方法,要对大量数据进行处理,如果选择Haar特性,训练周期会比较长,不利于系统的搭建,所以选择用LBP特性训练分类器。从机器性能方面考虑训练时间,使用英特尔线程构建模块(TBB)重新编译OpenCV,就能得到多核加速,且有利于接下来的程序性能。分类器分为三级,分别为:货车、客车分类器,大、中、小型货车分类器和具体车型分类器。由于客车按载客数区分是否超载,车辆总重不会对公路造成严重损坏,所以本系统无需对客车作出具体车型区分。但若然具体管理部门需要统计车型信息,可以进一步加上客车车型分类器。实际使用时,由于要应对车辆车身的喷漆变化或者小范围合法改装等情况,分类器的分类除了在系统筹建的时候大规模训练外,在系统运行时也应继续训练分类器,增加统计数据,使得识别结果更加精确。 识别车型及获得核定载重 训练好分类器后,最直观的测试方法是直接输入测试视频,检查识别效果。新版本OpenCV提供一个C++类CascadeClassifier,该类封装了基本的目标识别操作,使得只需要使用该类的实例加载训练好的XML文件,然后逐帧检测即可。若发现目标,结果将会存放在C++标准模板库(STL)容器vector中。但直接对每帧图像使用CascadeClassifier::detectMultiScale方法将会大大加重系统的工作量并且在多车辆的情况下无法区分开各车辆,为此,首先需要发现车辆,然后区分不同的车辆目标,再对每一个目标单独进行分类识别。 具体的主要操作的顺序为: (1) 系列的图像预处理操作,降低图像噪音。 (2) 图像差分,发现车辆轮廓[2],得到运动掩码。图像差分有两种主要方式,分别是帧间差分和背景差分。帧间差分速度快,但容易产生空洞,且无法分离出缓慢运动的车辆;背景差分速度慢,但分离效果好。考虑到如果车辆是缓慢进入测速区,则称重数据可靠性高,而且没有超速,进入识别点的效果好,所以选择帧间差分,这里使用能有效减小前景空洞的三帧差分算法[2]。 (3) 结合运动掩码更新历史运动图像、计算历史运动图像的梯度。 (4) 分割运动目标,得到一辆一辆的车,并跟踪。为区分开图像中的每一辆车,需要对其进行标记,这里使用的方法为: [Mkx,y=ID ifMk-1x,y≠0&k-1≠10 ifMk-1x,y=0 ] 式中:Mk(x,y)为分割出来的单独车辆目标的第k帧感兴趣区域矩形。这种方法虽然鲁棒性较好,但是因为重复计算量大,运算速度有限,所以在确定每辆车的ID后,使用OpenCV提供的更为快速的Camshift算法[3]继续跟踪。 (5) 计算每辆车的运动方向。这部分关系到运动目标筛选,在部分场合,摄像机的视野可能会涉及逆向车道。在这种情况下,可以通过筛选符合主要行驶方向的车辆来排除其他车辆或无关运动目标的干扰。 (6) 车辆进入测速区,开始测速。 (7) 车辆离开测速区,结束测速并计算速度。使用TBB进行并行分类识别车型。由于OpenCV新版矩阵结构Mat的所有操作使用原子操作,大大减轻了多线程编程的工作量,所以这里使用多线程并行操作是最佳选择。 (8) 根据所安装动态称重系统的车速要求,判断是否需要引导车辆到检测站进行检查。 获得实际载重 在视频分析中发现车辆后,对比动态测重模块中测得的实际载重。这里需要把应用场合分为两种情况:高速测重和低速测重,至于高低速的阀值,这根据不同动态称重系统的性能而定[4],在系统安装时根据动态称重系统参数设置即可。由于目前高速测重技术的精度未达到作为证据的要求,所以在高速测重的场合,所得车重数据只能作为初步判断,若初步发现车辆超载,需要进一步引导车辆到大型地磅再次静态测量,并作其他处理。在低速测重场合,测得的动态数据可靠,可直接作为证据使用。所以系统的运行需要测速模块的配合。 无论高速场合与低速场合,本系统都能实现视频测速功能,可以直接用作超速抓拍系统,降低了公路部门的重复投入成本。 测速方法 测速测量车辆通过测速区所用的时间,然后用测速区长度除以时间而粗略估计得到。考虑到摄像机视域限制,设定的测速区域并不长,只有20 m左右,而且速度是用于参考载重信息是否有效的,所以无需太精确,因而可认为车辆是直线经过测速区域的。测速区的长度需在系统安装时手工进行长度映射。另外,确定通过测速区域的时间差使用帧率和帧计数得出,这样在多线程处理的情况下,可以排除系统时钟和处理速率的干扰,得出准确时间差。 2 测量结果 为快速测试系统性能,直接使用测试视频替代摄像机输入。使用微软Visual Studio 2010 MFC + OpenCV 编写一个即时处理程序,界面如图4所示。 图4 运行在Windows平台上的系统 测试使用一台Intel Core i5M处理器(主频 GHz+智能变频技术)、6 GB内存、 操作系统 为Windows 7 64 b的普通 笔记本 计算机,测试代码尚未使用图形处理器(GPU)计算,但代码在识别部分应用了TBB进行多核并行加速计算。 测试视频共两段,分别在两个不同的场景拍摄,第一段只有一辆公交车,场景较为简单;第二段则是多车多人环境,并且有车辆并行的情况,场景较为复杂,干扰较多。 第一段视频主要用于测试系统的极限性能,在测试开始前,先用转码工具把同一段视频转成不同帧率和分辨率的几段视频,其中视频的宽高比不变。输入视频测试后的结果如表1所示。 视频原始长度为6 s,双斜线为该场景的称重和测速区域。 测试结果表明:系统能实时处理标清视频流,但对高清视频还需进一步优化。 第二段视频主要测试系统的车型识别能力,测试数据如图5所示。 表1 输入视频测试后结果 图5 多车并行时能够准确区分 第二段视频夹杂较多无关目标,如行人、抖动的树枝横向行驶的车辆等,其中双白线之间区域为本场景的称重测速区域。 通过测试,可以看出无关目标能被全部排除,体现了车辆筛选很好的鲁棒性。视频中共通过9辆汽车,所有车辆均本正确识别车型。 3 结 语 通过测试数据可以看出,本系统提出的车型识别算法能适应不同场景和一定的环境变化,具有较高的效率和鲁棒性。随着计算机及其他数字信号处理(DSP)设备的信息处理能力不断提高,应用实时视频处理技术促进智能交通的能力将更大更稳定。若本系统能真正应用在智能交通系统上,有望对遏制道路超载超速现象做出贡献。 参考文献 [1] LIENHART Rainer, MAYDT Jochen. An extended set of Haar?like features for rapid object detection [J]. IEEE ICIP, 2002 (1): 900?903. [2] 徐卫星,王兰英,李秀娟.一种基于OpenCV实现的三帧差分运动目标检测算法研究[J].计算机与数字工程,2011(11):141?144. [3] BRADSKI G R. Computer vision face tracking for use in a perceptual user interface [EB/OL]. [2010?12?02]. [4] 张波,鲁新光,邓铁六,等.动态车辆称重物理模型与提高动态称重准确度研究[J].计量学报,2009(5):426?430. [5] 唐双发.基于OpenCV的车辆视频检测技术研究[D].武汉:华中科技大学,2009. [6] 詹群峰.基于OpenCV的视频道路车辆检测与跟踪[D].厦门:厦门大学,2009. [7] 郭旭,张丽杰.运动目标检测视频监控软件的设计与实现[J]. 计算机技术与发展,2010,20(8):200?207. [8] 周品,李晓东.Matlab数字图像处理[M].北京:清华大学出版社,2012. [9] 陈胜勇,刘盛.基于OpenCV的计算机视觉技术实现[M].北京:科学出版社,2008. [10] 刘瑞祯,于仕琪.OpenCV教程基础篇[M].北京:北京航空航天大学出版社,2007. [11] 范伊红,彭海云,张元.基于SVM 的车型识别系统的设计与实现[J].微计算机信息,2007,23(5):296?297. [12] 李庆忠,陈显华,王立红.一种视频运动目标的检测与识别方法[J].模式识别与人工智能,2006,19(2):238?243. [13] [美]REINDERS J, 聂雪军. Intel Threading Building Blocks编程指南[M].北京:机械工业出版社,2009. [14] 刘慧英,王小波.基于OpenCV的车辆轮廓检测[J].科学技术与工程,2010,10(12):2987?2991. 汽车的科技3000字论文篇二:《试谈现代科技在汽车焊接工艺中的应用》 摘 要:随着我国汽车保有量的不断增加,汽车售后市场呈现了井喷式的发展趋势,与汽车相关的售后市场服务行业开始兴起。其中汽车维修是后市场比较火爆的行业,汽车的使用必然会涉及汽车的维修。因此,为了能够更好的实现汽车维修效率,提高汽车维修的质量,应该加强对于汽车维修行业的行业监管以及对汽车维修技术的提升。目前,诸多的现代化技术开始不断的应用到汽车维修之中,其中尤其以焊接工艺为主。因此,本文重点对汽车焊接工艺中现代科技的应用进行分析,从而探讨其未来的发展趋势。 关键词:现代科技;汽车;焊接技术;工艺 引言 汽车加工与制造以及汽车维修领域,都会涉及汽车的焊接技术。目前,随着技术的不断发展,尤其是汽车生产制造业的蓬勃发展,已经可以实现汽车车身以及车辆配件的无缝焊接技术。车身的加工甚至采用模具化加工的形式,从而减少了因为焊接造成的不足。因此,目前,焊接工艺在汽车后市场应用比较广泛,尤其是在汽车的维修市场中,当汽车出现事故的时候,就会采用焊接技术进行维修,从而让汽车能够保证正常的使用。此外,在汽车的加装方面,焊接技术更加的适用,并且通过引进先进的现代科技,从而让焊接效果与质量都更加完善。 一、汽车焊接工艺的应用领域分析 在汽车领域中,由于越来越多的高新技术被应用,是的汽车生活更加丰富。对于我国而言,随着汽车保有量的不断增加,汽车售后市场出现了井喷的状态。在汽车售后市场中,汽车的维修与保养占据着非常重要的地位,也让汽车的服务产业有了较大的发展。对于汽车的焊接工艺而言,最早是应用于汽车的车身焊接。但是,随着技术的发展以及车身制造工艺的发展,汽车车身开始使用模具制作,从而降低了因为焊接而造成的车身问题。那么,下面就对现代化的汽车的焊接工艺主要应用领域进行分析: 1、在汽车的维修领域中有非常广泛的应用;汽车维修属于汽车售后市场领域,由于汽车驾驶的过程中,难免会出现碰撞的现象,从而造成了汽车车身或者是相关配件的损坏。因此,在这种情况下,就可以使用汽车的焊接工艺,将损坏的部分采用焊接的方式,从而进行汽车的维修工艺。 2、人们对于汽车的装饰和改装越来越感兴趣。虽然在汽车检测的过程中,对于擅自改装会进行处罚,但是有车一族们仍然热衷于对于汽车的改装和装饰。其中,对于汽车尾翼的安装非常常见。汽车安装尾翼以后,就显得非常运动动感,有一种非常霸气的感觉。因此,为了让汽车的外观更加个性鲜明,需要对汽车的外观进行相关的改装,从而实现车主所需要的效果。而对于尾翼的加装而言,就一定要采用焊接技术,从而使得汽车的尾翼牢固坚实。因为安装尾翼还是存在一定的风险的,当车速达到一定程度的时候,就需要保证汽车的尾翼的稳定性。 3、对于汽车的车身配件的焊接工艺;汽车在使用的过程中,经常需要在配件方面进行焊接,此外对于在配件之间的结合方面,也需要在适当的情况下使用汽车焊接技术。因此,对于汽车的焊接工艺而言,主要在车身焊接、汽车改装以及汽车配件之间主要进行应用。 二、现代科技在汽车焊接工艺中的应用 随着现代科技的不断发展,汽车焊接工艺中也不断的引入了现代的科技技术。其中最为重要的就是计算机技术,计算机的单片机远程通信技术以及3Dmax等技术开焊接始不断应用到汽车的焊接工艺中。由于人工焊接技术容易在焊接的过程中出现失误,无法实现循迹操作,从而造成焊接的不完美。因此,采用计算机单片机技术,可以进行程序编译,将需要焊接的部分利用3Dma x的进 行仿真,从而保证在焊接的过程中,其能够实现完美的循迹焊接,降低了焊接过程中出现的失误。 此外,在焊接的工艺方面,又引入了一些工艺以及化工技术。传统的高温焊接技术,不仅仅容易造成伤害,更是对操作人员有一定的影响。因此,使用现在的氩弧焊焊接技术,虽然温度更高,但是焊接的质量有所提高。对于焊接的接口以及焊面的平整度,都有了显著的提高。因此,随着现代科技的不断发展,促进了多个行业工艺的提升。对于汽车的焊接工艺而言,引入计算机技术并且实现真正的智能化以及自动化焊接,从而让焊接工艺更加安全方便,有效的提升焊接的效率,保证在焊接的过程中,达到质量的提升以及客户的满意提升。总之,要充分适应时代的发展,让更多的现代科技不断的应用到汽车的焊接工艺之中,从而保证其在不断的发展过程中,符合现有时代的发展理念,满足客户不断提升的硬性要求,实现现代化的汽车焊接工艺。 三、机器人焊接工艺是现代汽车焊接技术的发展前景 汽车焊接最主要的是车身的焊接。在汽车制造公司车身的主要焊接方法为弧焊、点焊、二氧化碳保护焊等。随着社会的发展,人民生活水平的提高,用户个性化需求的日益强烈,对汽车的安全性、美观性与舒适性的要求越来越高,同时汽车制造企业为了追求更大的经济效益,对焊接精度、焊接质量和焊接速度等的要求越来越高,因此建立一条现代化的生产流水线就显得非常重要。而焊接机器人的应用促进了现代化流水线的建立。现代化的焊接流水线主要是满足多车型、多批次的市场需求,提高车身车间生产能力的柔性和弹性。因此现代焊接线必须具有柔性。那么如何才能使焊接线具有柔性呢?普通的焊接线是刚性的,主要由焊接夹具、悬挂点焊机、弧焊机和多点焊机等组成。 这种焊接线一般只能焊接一种车型的车身,那么为了满足市场多元化的需求,就需要重新建立焊接流水线。这对企业来说是非常不利的,企业是追求利润为目的的,并且重新建立流水线造成了财力、人力、物力的浪费。于是建立柔性化焊接生产线摆在了企业面前。机器人的出现与应用满足了汽车企业的现代化的需求,实现了焊接生产线的柔性化。那么在车身焊接线上应用的机器人主要有几种:点焊机器人、弧焊机器人和激光焊机器人。这些机器人的应用,使焊接实现了机器人代替工人工作。 1、点焊机器人:主要进行的是点焊作业,在点与点之间移位时速度比较快,从而减少了移位的时间,通过平稳的动作、长时间的重复工作和准确的定位,取代了笨重、单调、重复的体力劳动,更好地保证了焊点质量,使工作效率得到了很大的提高。它是柔性自动生产系统的重要组成部分,增强了企业应变能力。 2、弧焊机器人:弧焊过程比点焊过程要复杂得多,对焊丝端头的运动轨迹、焊枪姿态、焊接参数都要求精确控制。具有较高的抗干扰能力和高的可靠性。能实现连续轨迹控制,并可以利用直线插补和圆弧插补功能焊接由直线及圆弧所组成的空间焊缝,还应具备不同摆动样式的软件功能,供编程时选用,以便作摆动焊,而且摆动在每一周期中的停顿点处,机器人也应自动停止向前运动,以满足工艺要求。此外,还应有接触寻位、自动寻找焊缝起点位置、电弧跟踪及自动再引弧功能等。 3、激光焊接机器人:激光焊接是与传统焊接本质不同的一种焊接方法,是将两块钢板的分子进行了重新组合,使两块钢板融为了一体变为一块钢板,从而提升了车身结构强度。同时在焊接过程中焊接工件变形非常小,一点连接间隙都没有,焊接深度/宽度比高,焊接质量高。从而提升了车身的结合精度。可见机器人的应用,实现了焊接流水线的智能化,实现了焊接生产线的自动化与现代化。 结束语 汽车维修行业中的汽车焊接行业,其技术要求相对较高,并且直接影响着汽车的维修效果。焊接技术,一般是针对出现重大事故或者是问题车辆等进行焊接。为了让焊接的痕迹最小化,实际上就是为了能够更好的实现高精度焊接,需要不断引入现代科技技术。计算机技术的引入,让焊接工艺能够以一种循迹的方式进行,从而避免了焊接过程中出现的认为失误。此外,在汽车的生产以及制造的过程中,依然需要不断的引入高新科学技术,让焊接工艺更加精湛,从而实现汽车的高精度和高密度,实现汽车质量的全面提升。 参考文献 [1]刘鸣斌.煤层气发动机爆震的检测与控制[J].内燃机与动力装置,2011(02):45-46. [2]吴扬帆.汽油发动机爆震分析与控制[J].传动技术,2010(13):36-38. [3]高玉明.点燃式发动机临界爆震控制及其特性[J].吉林大学学报,2012(14):77-79. >>>下一页更多精彩的“汽

列固为了减小摩擦的是( )独讨论某一点的隶属度毫无意义。对 错 (1). 小的混酥面坯制品

1、基于博弈理论对美国职业篮球联赛总决赛战术运用的研究Robocup武术擂台赛视频中运动目标的检测与跟踪2、高职院校部分体育选项课教学负荷研究3、战术比赛教学模式对初中男子篮球课堂教学效果影响的实验研究4、核心稳定性训练对高中男子篮球运动员跳投命中率影响的实验研究5、蓝球运动在呈贡高校公共体育课中推广的可行性研究6、如何培养少年篮球运动员的情商7、中小学生篮球比赛教练临场指挥浅析8、篮球三人裁判与两人裁判对比研究9、体育教育专业学生篮球基本功的训练10、浅谈如何培养中职学生篮球运动兴趣11、核心力量训练在篮球训练中的应用与分析12、高职体育教学中篮球体育创新能力培养13、浅谈篮球意识的培养与提高14、案例教学在篮球课中的应用研究15、体育游戏在篮球训练中的作用16、新时期篮球技术系统训练的方法分析17、浅谈提高篮球教练员执教能力的策略18、服装压对男子篮球运动中上肢疲劳的影响19、婚嫁习俗视角下民族传统体育运动研究20、有关运动生物力学对篮球运动研究的文献综述21、篮球进攻战术"挡拆配合"的特点与训练策略22、篮球运动员核心力量训练方法的实效性探究23、篮球教学中运用合作学习的反思与前瞻24、青少年篮球运动员战术意识的培养研究25、篮球运动员战术意识培养的科学性分析(本回答由学术堂整理提供)

运动目标的检测的其主要目的是 获取目标对象的运动参数(位置、速度、加速度等)及运动轨迹 ,通过进一步分析处理,实现对目标行为更高层级上的理解。 运动目标检测技术目的是 从序列图像中将变化区域从背景图像中提取出来 ,常用于视频监视、图像压缩、三维重构、异常检测等。

运动目标检测主流方法有帧差法、背景差法、光流法等。光流法源于 仿生学 思想,更贴近于直觉,大量昆虫的视觉机理便是基于光流法。 二十世纪五十年代心理学家Gibson在他的著作“The Perception of Visual World”中首次提出了以心理学实验为基础的光流法基本概念,而直到八十年代才由Horn、Kanade、Lucash和Schunck创造性地将灰度与二维速度场相联系,引入光流约束方程的算法,对光流计算做了奠基性的工作。

光流(optical flow):由于目标对象或者摄像机的移动造成的图像对象在连续两帧图像中的移动。

通俗说,对于一个图片序列,把每张图像每个像素在连续帧之间的运动速度和方向( 某像素点在连续两帧上的位移矢量 )找出来就是光流场。

第t帧的时A点的位置是(x1, y1),第t+1帧时A点位置是(x2,y2),则像素点A的位移矢量:(ux, vy) = (x2, y2) - (x1,y1)

如何知道第t+1帧的时候A点的位置涉及到不同的光流计算方法,主要有四种:基于梯度的方法、基于匹配的方法、基于能量的方法、基于相位的方法。

光流法依赖于三个假设:

根据所形成的光流场中 二维矢量的疏密程度 ,光流法可分为稠密光流与稀疏光流。

稀疏光流只对有 明显特征的组点 (如角点)进行跟踪,计算开销小。

(1)calcOpticalFlowPyrLK 基于金字塔LK光流算法,计算某些点集的稀疏光流。 参考论文《Pyramidal Implementation of the Lucas Kanade Feature TrackerDescription of the algorithm》 (2)calcOpticalFlowFarneback 基于Gunnar Farneback 的算法计算稠密光流。 参考论文《Two-Frame Motion Estimation Based on PolynomialExpansion》 (3)CalcOpticalFlowBM 通过块匹配的方法来计算光流 (4)CalcOpticalFlowHS 基于Horn-Schunck 的算法计算稠密光流。 参考论文《Determining Optical Flow》 (5)calcOpticalFlowSF 论文《SimpleFlow: A Non-iterative, Sublinear Optical FlowAlgo》的实现

  • 索引序列
  • 运动目标检测论文5000字
  • 运动目标检测论文免费
  • 运动目标检测数模论文
  • 运动目标检测论文总结
  • 运动目标检测与跟踪论文
  • 返回顶部