首页 > 期刊论文知识库 > 小学数学文化为主题的论文

小学数学文化为主题的论文

发布时间:

小学数学文化为主题的论文

小学数学论文怎么写数学的教学要偏重逻辑,而且这种偏重,从小学数学就要开始1.方法的多样性和学习的趣味性,促使学生乐于学习。2.多种感官的参与,不仅能调动学生的积极性和主动性,又能培养他们独立自学的能力和熟练的运算技巧,使其学会学习。3.学生逐步形成了良好的学习习惯,学数学的兴趣也随之增强。这是他们认识、明确学习数学的意义并逐步深化的真实表现。4.智能提高以后,通过练得多、用得多等实践活动,学生不仅学得活、学得广、学得深,而且能够逐步发展到勤学、善学。如学生能够用珠算进行同数连加、自己编出乘法口诀,自己搜集数据独立编写文字、应用题等。5.个性品质是表现在人的态度和行为方面的较稳定的心理特征。如对待学习、工作、劳动的态度和行为,对待自己、别人的态度和行为。个性品质是在各种学习和社会实践活动中逐渐形成的。优良的个性品质十分重要,它是一个人获得成功的重要条件,也是事业成功的保证。三算结合对激发学生民族自豪感、培养自信心、责任感和锻炼学生的毅力等优良的个性品质有明显的积极作用。多年的实践证明,“三算”结合教学优化了教学结构。新教法、新学法,体现了教学的多样性、实践性和科学性。学生积极性高,技能熟练,进而乐学、会学、善学,由感性到理性,由理解到实践,由实践到熟练掌握,形成了良性循环。在这样新结构、新体系、新方法的学习过程中,学生的基础知识、基本技能、智力、个

数学是知识的工具,亦是 其它 知识工具的泉源。所有研究顺序和度量的科学均和数学有关。下文是我为大家搜集整理的关于数学小论文3000字的内容,欢迎大家阅读参考! 数学小论文3000字篇1 浅析小学数学中创设有效情境教学 新课程标准中明确规定了情境教学法在小学数学中的地位,倡导教师通过创建情境,引导学生展开学习。情境教学法的优势在于能够将抽象、难懂的数学知识更加直观地展现出来,符合小学阶段学生的学习特点以及因材施教的原则,针对小学数学教学中情境教学法的应用进行几点研究。 生活情境小学数学 高效课堂 情境教学法是倾向于学生的 教学 方法 ,而不是单纯地追求教学效果,为何要创建生活情境?它是以小学生实际能力为基础,在它们所能理解消化知识的最大范围内,运用更加便于学生理解的方式,来进行教学,从这一点可以看出生活情境完全符合因材施教,以生为本的原则,是非常值得在小学数学教学中应用和推广的。 一、小学数学课堂中情境教学法的优势 数学学科的特点是逻辑性强,要求学生具有一定的推理能力、分析能力以及理论联系实际的能力。小学阶段的数学,虽然在难度上有所控制,但是数学学科原本的性质并没有改变,它依旧具有抽象性、逻辑性以及实用性的特点,小学课本中一些图形、定义,教师如果单抽说教,学生很难理解和掌握。为了达到教有所成的目的,教师需要借助一定的教学方法,来简化这些数学知识,使学生能够更加轻松、快速地理解和掌握,情境教学法恰恰能够满足小学数学的有需求,借助情境教学法,能够将抽象知识点直观化的呈现出来,激发学生的学习欲望。教师通过构建一个个生动的情境,为学生营造更加生动、活泼的学习气氛,鼓励学生参与教学活动、学生的学习兴趣和热情被调动起来,教师的教学效率必然会得到提升。举例说明,进行“中心对称图形”这部分知识的讲解,采用传统的教学工具以及单一的口头讲述,学生很难理解其中的内涵和意义,而采用创建情境教学法,将学生带入到一个直观化的思维空间中,并通过多媒体技术将概念、关键知识点制作成动态的课件,学生很快就会投入学习状态,学习成效显著,教学效率得以提升。 二、合理创设情境,提升小学数学课堂教学效率 1.结合学生能力特点,创建教学情境 小学阶段,学生的学习能力不完善,学生第一次系统化的接触数学知识,学习起来难免会有些吃力,教师在教学情境创建的时候,应该尽量使用简单易懂、富有趣味性的语言,确保学生能够了解教师说什么,这是开展教学的第一步,在这个基础之上构建情境,才能够真正发挥情境教学的优势和作用。 比如,进行“分数的基本性质”这个知识点教学的时候,教师可以创建这样的情境:白兔子妈妈将一个苹果分成4块,准备分给白兔3兄弟吃,她将1块苹果分给了大哥,而二哥却嚷着要吃2块,妈妈没有办法就切了第2个苹果,分成了8块,给了二哥2块,可是这个时候,三弟又不开心了,他想吃3块,猴妈妈就把第3个苹果平均分成12块,给了三弟3块。那么问题来了,白兔三兄弟,谁分到的苹果最多呢?这个情境不仅富有趣味性,容易理解,同时也蕴含了把“单位1”平均分成几份,取出不同的分数,但是却表示相同的大小这个含义。 2.从学生兴趣出发,创建教学情境 首先教师要明确兴趣对于学习的重要性。激趣是学生主动学习数学的关键,激趣过程中运用运用学生熟悉并且感兴趣的话题创建情境,满足学生对于学习的各种需求,这样才能够达到提升教学效率与质量的目的,同时也培养了学生主动学习的习惯,激发了他们的学习欲望。 比如,在进行“用乘法口诀进行表内乘除法的口算”这个知识点的时候,教师可以将学生最喜欢的动画形象“熊大、熊儿”编成 故事 :有20个桃子,5个小动物,这个时候熊大和熊儿可为难了,它们要怎么分,才能够让每个小动物都获得一样多的桃子呢?这个时候学生的兴趣高涨,都会纷纷举手回答,这个导入成功的激发了学生的学习欲望和好奇心,也活跃了课堂气氛,在这样环境下,学生的学习效果会更好。教师在创建教学情境的时候,不能拘泥于一个方法,或者一种形式,根据不同的教学内容和目标,故事可以随时进行改编,即便是在课堂上,教师也可以灵活改变情境的设计,目的就是更好的带动学生学习,帮助学生更加轻松的领会数学知识和魅力。 3.结合学生心理特点,创建教学情境 创建教学情境,要注意结合小学生的心理发育特点。这个阶段游戏和动画是最能够吸引学生的手段,教师利用这一点进行情境创建,既能够寓教于乐,又做到了因材施教。在情境教学基础上,鼓励学会独立思考,强化学生数学应用意识,提升 逻辑思维 能力。 比如,“克与千克”知识点的讲解,教师可以采用小组合作做游戏的方式,游戏的规则是“比比谁最快、比比谁最准”。教师先将学会分成若干小组,每个小组都发一包黄豆,一瓶矿泉水,一本新华字典。然后先让这些小组自行估算这些物品的重量,然后将其填入表格中。然后教师再带领大家用称来测量,看看哪个小组估算最准确,并给予这个小组的成员一定的奖励,通过这样的游戏方法,锻炼学生的观察、估算以及验证意识。 三、结束语 教师应该基于教材基础,结合学生的自身的学习特点、兴趣等各方面因素,合理创建教学情境,丰富课堂教学内容,增加课堂教学趣味性。通过大量的实践教学分析发现,在小学数学教学中引入情境教学法,不仅有效提升了学生学习数学的兴趣,也培养了学生独立思维的能力,提升了小学数学课堂教学效率。 数学小论文3000字篇2 浅析中学数学的兴趣教学 中学数学在难度上和内容上都比小学阶段的数学要深广,因此学生在学习的时候经常出现畏难情绪,一开始产生学习困难而没有得到正确的解决,因此便一步步丧失对自己的信心。例如不少学生觉得自己学不好数学就是因为自己不够聪明,从而丧失学习的兴趣,上课心不在焉,很难集中注意力,这都需要教师给予高度的重视。如何有效解决这些负面现象的影响是教师应该着手的方面之一,我认为,要想真正使学生主动喜欢学习数学就必须要有兴趣的支撑,中学阶段学生自我的意识和约束力相对较弱,学习目的性不强,因此更加需要兴趣的辅助作用,有了兴趣之后,学生就会积极主动参与到学习活动中来,认真学习课本内容甚至还会对于一些拓展思考题有兴趣,自己进行研究探求。以下我结合自身的教学 经验 针对中学数学的兴趣教学谈几点看法。 一、建立和谐的师生关系 帮助学生培养兴趣,教师必须关注师生关系的建构。在中学阶段教师和学生相处的时间较长,因此教师自身对于学生的态度会对学生产生较大影响。尤其是中学时期,学生的个性和 兴趣 爱好 、人格、情感、意志等都在发展的过程中,教师的行为和语言都会对学生产生持久的影响,教师可以充分利用这一点,通过自身对学生的数学学习兴趣产生有效的引导作用。 第一,数学教师无论是否担任班主任都应该对学生十分用心。关注学生整体的发展,不仅仅是要求学生一定要把数学学好,占有学生课下的时间,实践证明数学教师如果要求过分苛刻会令学生产生逆反心理。例如,在每个阶段性考试进行完之后,询问学生整体的学习情况,并且及时给出建设性意见。学生都希望能够得到老师的关注和鼓励,这对于学生兴趣的建立有莫大的好处,良好的师生关系能够推动学生兴趣的培养进度。 第二,教师要关注学生非智力因素的发展。作为数学教师仍然有义务帮助学生建立积极乐观的价值观,教师应该以正确的价值引导,使学生对数学形成正确的认识,在心理上真正接受这门学科。例如,教师在课上讲到一些数学定理的时候,教师可以引导学生对数学家进行学习了解,继承和发扬数学家的精神。这需要教师明确自身的教学任务和作为 教育 者的责任,全面推动学生品质和能力的发展,当学生感到教师的用心和关注之后自然会产生亲切感,这无疑会对课堂教学效果和师生和谐关系的构建起到推动作用。 总之,师生关系的建立需要教师充分调动一切积极因素,帮助学生建立对教师的正确态度和认识,促进他们对数学学科的关注和学习,这是兴趣建立的重要步骤。 二、注重学生在教学中的主体性 主体性是建立兴趣的重要支撑,有了主体性,学生就会自觉产生对数学学习的认识,并且积极进行知识的学习,甚至会主动发现问题、解决问题,进行预习和主动复习等。中学阶段的数学教学内容多且课时紧,教师在课堂上都是紧赶慢赶,一节课下来以自己为中心,灌输式的学习方式严重压抑学生此阶段继续发展的主体性,导致学生无法获得相应的自由空间来发展自己,从而致使兴趣的失落。因此,教师应该充分尊重学生的主体性,在教学的过程中帮助学生建构主体性特征和能力,从而推动兴趣的发展。那么如何在教学形式和内容方面全方位建构学生的主体性呢?我认为从以下几点出发效果明显。 第一,在课堂教学中,教师应该减小功利性,不要总是告诉学生什么考什么不考,要让学生真正对于数学形成自己的认知感受,而不是为了应付考试才学数学。那么,教师就应该加大拓展思考题的训练和学习,打开学生的思维,形成开放性思维模式和创造性思维能力,这是建立主体性的主要内容之一。 第二,教师要采取启发式的教学方法,在课堂授课的过程中,很多教师发现虽然让学生主动预习,但是由于中学阶段学业压力较大,学生没有养成习惯进行预习,也没有时间和精力去提前预习准备,而这一过程实际上是很重要的,尤其对于学生主体性的发展很关键。因此,教师应该提前为每个阶段的学生设置合适的预习目标,并且给学生充分的时间进行预习讲解,学生之间相互检查和学习可以增强他们自我表现的意识,在自己预习的过程中,逐步养成积极主动的学习习惯,继而对今后的发展奠定良好的基础。 总之,主体性的建立是培养学生学习兴趣的必要过程,教师应该结合该阶段学生的发展特征进行主体性的建构和教学过程中的设置,充分尊重学生的发展需求和方向,满足其自我表达和个性发展的欲求,从而产生良好的教学影响。 三、加强合作 合作是开展兴趣教学的推动力和组成部分之一。合作教学和合作学习本身作为一种教学方法就是中学数学教育的重要内容,但是合作又可以作为兴趣教学的重要组成部分而开展,提高学生之间的互帮互助,有效帮助学困生的提升和困难克服,同时帮助学生在自由轻松的学习氛围中感受数学学习的乐趣,从而建立持久的兴趣。 第一,合作是学生之间的合作,教师要对学生进行有效的分组,并不是随机进行分组,小组的构成合理可以提高学生的参与兴趣。例如,有的小组构成差距过大,学困生产生自卑心理,几乎很少参与到合作中来,只会产生负面作用,因此教师要根据学生的性格发展和学习水平进行合理划分。 第二,合作不仅仅是学生之间的合作,也需要教师的参与,学生自由合作讨论可能会降低效率,学生自控力差,很难高效完成学习任务,因此教师要充分发挥引导和监督的作用,帮助学生快速完成任务,从而建立自信,在自豪感的形成过程中,学生逐步产生对数学的喜爱之情。 第三,教师也要充分利用多媒体来激发学生的兴趣,多媒体是符合时代发展的教学手段,学生对于电脑和高科技充满好奇和兴趣,教师应该及时学习最新教学技术,应用到数学课堂教学中来,作为激发因素帮助学生建立学习兴趣。总之,开展兴趣教学形式多样,需要广大教师群体不断进行探索和完善。 通过以上论述,我发现中学阶段数学的兴趣教学必须以学生的发展特征和需求为立足点,充分发挥教师的能动作用,围绕建立主体性为中心,关注学生全方面的发展情况和趋势,从而实现兴趣的有效建立。 猜你喜欢: 1. 数学文化论文3000字 2. 初中数学论文3000字 3. 数学论文范文3000字 4. 数学文化的论文范文参考 5. 物理学术论文3000字

小学数学论文写法如下:1.科学性教学论文是教学经验的科学总结,首先要立论正确,论据严谨,符合教学规律。2.实用性教学论文是教学经验的升华,既来源于教学又服务于教学。因此,所引用的材料应该翔实可信,所介绍的方法应该切实可行,能够为同行所借鉴,有一定的推广价值。3.独创性教学论文必须具有论文的共性,即应该要么在理论上有创见,或者至少有新的认识,要么在方法上有创新,或者至少有新的体会,这样才能对教学和教学研究起到推动作用。4.可读性教学论文必须具有文章的共性,即要有章法,要有风采,要有吸引力。遣词造句要符合人们的阅读习惯,容易让人理解。

随着国家素质教育目标的提出和新课程改革的推行,探究式教学开始在小学数学教学中逐渐被推广,数学的教学在小学生的教育中占据着至关重要的地位。下面是我为大家整理的小学数学小论文,供大家参考。

课堂教学设计,是解决教学问题的一种特殊设计活动,课堂教学设计不仅是一门科学,更是一门艺术,其中学生对教学内容的认知是课堂教学的重心,是教学活动的中心,更是达到课堂教学目的的重要保证。数学作为小学基本课程之一,担负着学生基础数理逻辑思维和抽象思维培养的重任。下面笔者就小学数学课堂教学设计认知能力培养的方法创新谈几点看法。

一、小学数学课堂教学设计中认知能力培养的现状与问题分析

(一)小学数学课堂教学设计认知能力培养的现状

创新趋势已经显现。随着经济发展科技进步,教学硬件设施逐步高科技化,教师队伍整体素质提升,对先进教学设施地运用逐步常态化,同时针对小学生的年龄特点在课堂教学设计中进行了认知能力培养方法的探索,取得了一定的成效。课堂教学设计仍以依赖型为主。目前在我国的教育尤其是基础教育中,由于学生的学习技能欠缺,基础薄弱,数学课堂教学设计仍以依赖型为主。在依赖型的教学设计中,认知能力培养的重要性被忽视,讲授的知识大多只局限于课本和测验中,学生的学习内容与生活实际割裂,这种情况下虽然教师能够更容易地控制课堂进度,在短期内取得相对较好的教学效果。但长远来看不利于学生学习能力和运用知识能力的培养,更不利于学生学习兴趣的养成。

(二)小学数学课堂教学设计认知能力培养存在的问题

在教学思维方式上的创新存在不足。目前,大多数教师在数学课堂学生认知能力培养方法设计上的创新多为形式创新,过于追求新器材多媒体教学,花哨的设计使学生一时无法抓住关键,复杂的教具让数学课变成了手工课、观影课,课堂教学设计的创新若只停留在“形”上,对教学目的的实现反而会产生不利的影响。对学生学习能力把握有偏差。学生在每个年龄阶段的学习能力和表现特点都不同,数学作为一门相对抽象和枯燥的学科。如果教师对学生学习能力把握有偏差,没有按照学生学习能力所能达到的水平进行课堂教学设计,就很容易造成认知能力培养方法的失败,无法真正达到教学目的。对学生认知主动性培养不足。多数教师都以完成教学目标为目的,而在教授知识的同时将培养学生学习主动性放在相对次要的位置,这就容易导致前文所说的依赖型学习方式无法改变,学生对数学这门课程的认知只能停留在一门学科而不是一个兴趣上。

二、小学数学课堂教学设计中认知能力培养方法的创新方向

(一)教学思维方式的创新

思维决定思路,方式决定方法,教育教学创新中思维方式的创新至关重要。教师的教学思维方式很大程度上将影响学生的思维水平。推动教学思维方式的创新,要使教师真正认识到教学思维方式创新的重要性。针对小学数学课程的特点和学生特点,在教学研讨活动中要积极学习先进经验,发扬探索精神,改进教学方式,为数学课堂教学设计中认知环节的创新打好基础。通过动手操作培养认知能力,帮助学生思维。根据小学生年龄特点,数学课堂教学要重视操作认知,学生在操作过程中动用手、口、脑等多种感官,积极思维,也有助于发展思维。设计北师大版小学数学三年级下册图形的运动(轴对称)一课时,注重让学生动手把心形卡、五角星、银杏树叶按教师要求对折,帮助学生认知对折后重合,从而了解这样的图形是轴对称图形。学生常常是一边操作一边思考,他们亲身经历了所学知识的发生发展过程,认知、掌握学习知识的方法和途径。通过思考问题培养认知能力,激活学生思维。问题是思维的动力。小学生需要在教师的引导下组织自己的思维活动。因而教师要在教学中精心设计具有启发性、思考性的问题,可以激活学生思维的浪花,调动学生思维的主动性和创造性。通过思考、讨论教师提出的问题,正确把握小学生的认知需求,激发学习兴趣、获得数学知识和技能。

(二)在课堂教学设计中科学运用认知能力培养方式

小学数学课堂教学设计要围绕教学目标来开展,认知能力培养作为课堂教学设计的一个重要部分,要始终坚持既定的教学目标,准确分析教学内容中的重点、难点,针对小学生知识水平和数学课程特点,摒弃过于繁复和抽象的认知概念,使认知能力培养方式符合教学需要,维护课堂教学设计的整体性、层次性、延续性和针对性。教学厘米的认识,让学生认识一厘米有多长时,我借助直尺上“厘米”这个长度单位,指导学生测量一个手指的宽度、衣服上纽扣的宽度,帮助学生建立“一厘米”的表象,让学生的认知活动直观、具体,初步感知长度单位、感受生活中处处有数学。

(三)认知能力培养要多与生活实际相联系

小学生由于表达和理解能力的限制,对于相对抽象的数学概念很难理解和掌握,因此,在教学中认知能力的培养更要注意与实际生活相联系。教师要养成换位思考的习惯,多从学生的角度想问题,选取学生普遍能够理解的例子进行讲授,由生活实际展开,提炼知识点,再与生活实际相联系,形成环状记忆,当学生在生活中再次遇到相关事物时自然会联想到相应的数学知识点,这将有助于学生真正掌握相关知识,活学活用,又能减少机械记忆复习所消耗的时间和精力,更有助于学生学习能力的提升。设计北师大版小学数学三年级下册《长方形面积》时,有意从猜一猜两位粉刷匠叔叔谁刷的墙面大导入新课,在学生获得长方形面积计算公式之后,让他们通过分别计算两块墙面的面积来验证课前的猜测。拓展练习时,注意设计应用性练习题:1.学校给老师新发了一张办公桌,长140厘米、宽80厘米。教师想给整个桌面铺上玻璃,要买多大玻璃板?2.班里小亮家要装修新房,客厅的长6米、宽4米,需要买多少平方米的地板?如果一平方米90元,需要多少钱?在数学教学中,充分创设生活情境、营造氛围,能够加深学生对所学知识的体验和认知,将所学知识转化为能力。让数学教学生活化、日常生活课堂化,用数学、学数学,引导学生用已有的认知解决实际问题,丰富学生生活体验,有利于帮助学生养成用数学的眼光看待身边事物的习惯,有利于提高学生的数学素养。

(四)注意观察学生的反馈

无论什么样的课堂教学设计,最终都要落在实践上,都要经过学生反馈的检验。数学课堂教学认知能力的培养,在科学分析学生学习能力和基础知识水平的基础上,设计出的创新型认知方案,实践过程中要注意收集学生的反馈,比如学生喜欢那个部分不喜欢那个部分,哪一类学生适应这种方案哪一类学生不适应,在创新方案下教学目标达到的比例是否有所提升等,根据收集到的反馈对既有方案进行改良,然后继续进行实践,再收集、再改良、再实践。教育上的创新不能是一蹴而就的,认知能力培养的创新应该是一个螺旋式上升的过程,在不断积累反馈的过程中,达到质的飞跃。

新课程改革强调学生在获取知识技能、构建知识体系、达成知识目标过程中的情感体验,这种体验就是数学情感。它是学生数学学习过程中的态度,是获得成功时的内心体验和心理感受,更是明确学习动机、激发学习兴趣以及克服困难和探索新知的意志品质,它贯穿于学习活动的始终。数学学习逻辑性、系统性强,要求学生思维严谨、缜密,为了避免学生因枯燥而产生厌烦和畏惧的心理,有些教师常用数学家的事迹、数学趣味故事等灵活多样的方法激发学生的兴趣,把数学情感、数学文化渗透于课堂,以培养学生良好的意志品质、积极的情感态度和严谨的思维习惯,从而使数学课堂更高效,使小学数学教学不仅成为引导学生获得数学知识和技能的过程,也成为学生感受、体验和领悟的过程,更成为对学生情感、态度和价值观进行感染、渗透的过程。

一、利用认知过程进行数学情感渗透

小学数学教学目标的达成有两条主线构成。一条是获得知识和技能(结果)的明线,另一条是大胆质疑、积极探索、取得成功的情感体验(过程),即暗线。这两条线交织在一起,相依共存,互为补充。在教学过程中,认知因素与情感因素密切相关、相互作用,积极的学习情感能够促进知识技能的形成,而知识技能形成的过程中又可升华这种情感体验。如解决“鸡兔同笼”“平行四边形、三角形、梯形的面积计算”等具有严密逻辑性的数学问题,对于年龄小、注意力持续时间短、自控能力差的小学生来说是一个艰难的过程,此时应巧妙穿插学习情感和态度教育,鼓励学生理清学习思路,不怕困难认真思考,采取问题推导的形式,引导学生寻找数量、图形之间的关系,以及相互关系转化,推导出结论,促使学生在“山重水复疑无路”的困难面前,感受到“柳暗花明又一村”的新境界。在此过程中,学生通过独立思考、合作交流等形式,举一反三,不断总结发现解决问题的思路及方法,完成知识的迁移,体验到了成功的喜悦。由此可见,在数学认知过程中,认知与情感相互依存、相互促进、相互发展。在课堂中进行情感渗透,有助于培养浓厚的数学兴趣和良好的思维习惯,为逐步提升学习能力,形成高效课堂打下坚实的基础。

二、通过背景知识进行数学情感渗透

“初步认识数学与人类生活的密切联系并感受数学对人类历史发展的作用,对学生进行数学价值与数学历史发展的渗透。”这是新课标提出的要求,也是高效课堂的需要。通过对数学发展历史的了解,学生可以接触到广泛的数学知识,可以体会到数学在人类发展历史中的作用和价值,可以感受到学好数学知识的重要性。在学习“万以内数的认识”一课时,可以先引导学生了解数字的由来,即原始人用小石子、绳子打结或在树木上刻出划痕表示简单的数概念,当有了10块小石子后,用大一点的物体表示一个十即“逢十进一”。接着引导学生了解文字出现后,记录方法虽然有效但不统一,对于很大的数字记录十分不便,于是发明了罗马数字表示。最后了解公元八世纪印度人发明了只含有1,2,3,4,5,6,7,8,9九个符号的记数法,并且约定数字位置决定数值大小,例如,数字89中8表示8个十,9表示9个一,这一发明被商人带入阿拉伯后称为阿拉伯数字,使用至今成为世界数学的通用语言,恩格斯称它为“最美妙的发明”。又如,在认识“方向”时,结合认识东、南、西、北方位,向学生介绍“指南针”这一背景知识,让学生了解指南针是我国古代四大发明之一,它的出现为人类文明与进步做出了巨大贡献。渗透这些数学背景知识引导学生了解历史,感受古人的聪慧以及对科学知识的追求和向往,增强学生的民族自豪感和求知责任感,激发学生学好数学的自信心,促进学生进一步体会到数学的神奇与价值,使课堂更加高效。

三、挖掘生活素材进行数学情感渗透

数学是为了适应高速发展的现代社会而生成的应用性学科,主要解决现实生活中的各种问题,是一切学科的基础。数学新课标要求,“数学内容要更加生活化”。那些从人们的日常生活中提炼而成数字、图形、符号、公式方便了人们生活,形成了独特的魅力。通过“认识图形”的教学,使学生感受到图形的变化组合丰富了我们的生活,美化了我们的环境。通过“统筹方法”“认识时间”的学习,帮学生初步树立合理安排时间的意识,使学生明白珍惜时间的重要性;通过回收废品的情景教学解决比多比少的问题,通过捐书、买书情景教学解决进位加法问题;通过种树活动情景教学解决除法问题等,这些情景的设计蕴涵着一种思想,把品德教育渗透在具体的数学情景中,通过创设情景,在解决问题的过程中即时对学生进行环保、爱心、安全等思想情感的渗透,促使学生形成健康发展的情感态度。经常在数学活动中进行正面教育引导,能够培养学生树立正确的人生观和价值观,提高学习有效性并以此指导自己的行为,使积极的态度情感成为学生学习的动力源泉。

四、借助典型事例进行数学情感渗透

数学文化为主题的论文

数学作为一种文化现象,早已是人们的常识。历史地看,古希腊和文艺复兴时期的文化名人,往往本身就是数学家。最著名的如柏拉图和达·芬奇。晚近以来,爱因斯坦、希尔伯特、罗素、冯·诺依曼等文化名人也都是20世纪数学文明的缔造者。数学文化的存在价值在即将公布的高中数学课程标准中,数学文化是一个单独的板块,给予了特别的重视。许多老师会问为什么要这样做?一个重要的原因是,20世纪初年的数学曾经存在着脱离社会文化的孤立主义倾向,并一直影响到今天的中国。数学的过度形式化,使人错误地感到数学只是少数天才脑子里想象出来的“自由创造物”,数学的发展无须社会的推动,其真理性无须实践的检验,当然,数学的进步也无须人类文化的哺育。于是,西方的数学界有“经验主义的复兴”。怀特()的数学文化论力图把数学回归到文化层面。克莱因()的《古今数学思想》、《西方文化中的数学》、《数学:确定性的丧失》相继问世,力图营造数学文化的人文色彩。国内最早注意数学文化的学者是北京大学的教授孙小礼,她和邓东皋等合编的《数学与文化》,汇集了一些数学名家的有关论述,也记录了从自然辩证法研究的角度对数学文化的思考。稍后出版的有齐民友的《数学与文化》,主要从非欧几何产生的历史阐述数学的文化价值,特别指出了数学思维的文化意义。郑毓信等出版的专著《数学文化学》,特点是用社会建构主义的哲学观,强调“数学共同体”产生的文化效应。以上的著作以及许多的论文,都力图把数学从单纯的逻辑演绎推理的圈子中解放出来,重点是分析数学文明史,充分揭示数学的文化内涵,肯定数学作为文化存在的价值。认识和实施数学文化教育进入21世纪之后,数学文化的研究更加深入。一个重要的标志是数学文化走进中小学课堂,渗入实际数学教学,努力使学生在学习数学过程中真正受到文化感染,产生文化共鸣,体会数学的文化品位,体察社会文化和数学文化之间的互动。那么,如何在中小学数学教学中进行数学文化教育呢?笔者认为应该从以下几个方面加以认识和实施。认识数学文化的民族性和世界性每个民族都有自己的文化,也就一定有属于这个文化的数学。古希腊的数学和中国传统数学都有辉煌的成就、优秀的传统。但是,它们之间有着明显的差异。古希腊和古代中国的不同政治文明孕育了不同的数学。古希腊是奴隶制国家。当时希腊的雅典城邦实行奴隶主的民主政治(广大奴隶不能享受这种民主)。男性奴隶主的全体大会选举执政官,对一些战争、财政大事实行民主表决。这种政治文明包含着某些合理的因素。奴隶主之间讲民主,往往需要用理由说服对方,使学术上的辩论风气浓厚。为了证明自己坚持的是真理,也就需要证明。先设一些人人皆同意的“公理”,规定一些名词的意义,然后把要陈述的命题,称为公理的逻辑推论。欧氏的《几何原本》正是在这样的背景下产生的。 中国在春秋战国时期也有百家争鸣的学术风气,但是没有实行古希腊统治者之间的民主政治,而是实行君王统治制度。春秋战国时期,也是知识分子自由表达见解的黄金年代。当时的思想家和数学家,主要目标是帮助君王统治臣民、管理国家。因此,中国的古代数学,多半以“管理数学”的形式出现,目的是为了丈量田亩、兴修水利、分配劳力、计算税收、运输粮食等国家管理的实用目标。理性探讨在这里退居其次。因此,从文化意义上看,中国数学可以说是“管理数学”和“木匠数学”,存在的形式则是官方的文书。古希腊的文化时尚,是追求精神上享受,以获得对大自然的理解为最高目标。因此,“对顶角相等”这样的命题,在《几何原本》里列入命题15,借助公理3(等量减等量,其差相等)给予证明。在中国的数学文化里,不可能给这样的直观命题留下位置。 同样,中国数学强调实用的管理数学,却在算法上得到了长足的发展。负数的运用、解方程的开根法,以及杨辉(贾宪)三角、祖冲之的圆周率计算、天元术那样的精致计算课题,也只能在中国诞生,而为古希腊文明所轻视。 我们应当充分重视中国传统数学中的实用与算法的传统,同时又必须吸收人类一切有益的数学文化创造,包括古希腊的文化传统。当进入21世纪的时候,我们作为地球村的村民,一定要溶入世界数学文化,将民族性和世界性有机地结合起来。揭示数学文化内涵,走出数学孤立主义的阴影数学的内涵十分丰富。但在中国数学教育界,常常有“数学=逻辑”的观念。据调查,学生们把数学看作“一堆绝对真理的总集”,或者是“一种符号的游戏”。“数学遵循记忆事实-运用算法-执行记忆得来的公式-算出答案”的模式[1],“数学=逻辑”的公式带来了许多负面影响。正如一位智者所说,一个充满活力的数学美女,只剩下一副X光照片上的骨架了!数学的内涵,包括用数学的观点观察现实,构造数学模型,学习数学的语言、图表、符号表示,进行数学交流。通过理性思维,培养严谨素质,追求创新精神,欣赏数学之美。半个多世纪以前,著名数学家柯朗()在名著《数学是什么》的序言中这样写道:“今天,数学教育的传统地位陷入严重的危机。数学教学有时竟变成一种空洞的解题训练。数学研究已出现一种过分专门化和过于强调抽象的趋势,而忽视了数学的应用以及与其他领域的联系。教师学生和一般受过教育的人都要求有一个建设性的改造,其目的是要真正理解数学是一个有机整体,是科学思考与行动的基础。” 2002年8月20日,丘成桐接受《东方时空》的采访时说:“我把《史记》当作歌剧来欣赏”,“由于我重视历史,而历史是宏观的,所以我在看数学问题时常常采取宏观的观点,和别人的看法不一样。” 这是一位数学大家的数学文化阐述。 《文汇报》2002年8月21日摘要刊出钱伟长的文章《哥丁根学派的追求》,其中提到:“这使我明白了:数学本身很美,然而不要被它迷了路。应用数学的任务是解决实际问题,不是去完善许多数学方法,我们是以解决实际问题为己任的。从这一观点上讲,我们应该是解决实际问题的优秀‘屠夫’,而不是制刀的‘刀匠’,更不是那种一辈子欣赏自己的刀多么锋利而不去解决实际问题的刀匠。”这是一个力学家的数学文化观。和所有文化现象一样,数学文化直接支配着人们的行动。孤立主义的数学文化,一方面拒人于千里之外,使人望数学而生畏;另一方面,又孤芳自赏,自言自语,令人把数学家当成“怪人”。学校里的数学,原本是青少年喜爱的学科,却成为过滤的“筛子”、打人的“棒子”。优秀的数学文化,会是美丽动人的数学王后、得心应手的仆人、聪明伶俐的宠物。伴随着先进的数学文化,数学教学会变得生气勃勃、有血有肉、光彩照人。多侧面地开展数学文化研究谈到数学文化,往往会联想到数学史。确实,宏观地观察数学,从历史上考察数学的进步,确实是揭示数学文化层面的重要途径。但是,除了这种宏观的历史考察之外,还应该有微观的一面,即从具体的数学概念、数学方法、数学思想中揭示数学的文化底蕴。以下将阐述一些新视角,力求多侧面地展现数学文化。1. 数学和文学。数学和文学的思考方法往往是相通的。举例来说,中学课程里有“对称”,文学中则有“对仗”。对称是一种变换,变过去了却有些性质保持不变。轴对称,即是依对称轴对折,图形的形状和大小都保持不变。那么对仗是什么?无非是上联变成下联,但是字词句的某些特性不变。王维诗云:“明月松间照,清泉石上流”。这里,明月对清泉,都是自然景物,没有变。形容词“明”对“清”,名词“月”对“泉”,词性不变。其余各词均如此。变化中的不变性质,在文化中、文学中、数学中,都广泛存在着。数学中的“对偶理论”,拓扑学的变与不变,都是这种思想的体现。文学意境也有和数学观念相通的地方。徐利治先生早就指出:“孤帆远影碧空尽”,正是极限概念的意境。2.欧氏几何和中国古代的时空观。初唐诗人陈子昂有句云:“前不见古人,后不见来者,念天地之悠悠,独怆然而涕下。”这是时间和三维欧几里得空间的文学描述。在陈子昂看来,时间是两头无限的,以他自己为原点,恰可比喻为一条直线。天是平面,地是平面,人类生活在这悠远而空旷的时空里,不禁感慨万千。数学正是把这种人生感受精确化、形式化。诗人的想象可以补充我们的数学理解。3. 数学与语言。语言是文化的载体和外壳。数学的一种文化表现形式,就是把数学溶入语言之中。“不管三七二十一”涉及乘法口诀,“三下二除五就把它解决了”则是算盘口诀。再如“万无一失”,在中国语言里比喻“有绝对把握”,但是,这句成语可以联系“小概率事件”进行思考。“十万有一失”在航天器的零件中也是不允许的。此外,“指数爆炸”“直线上升”等等已经进入日常语言。它们的含义可与事物的复杂性相联系(计算复杂性问题),正是所需要研究的。“事业坐标”“人生轨迹”也已经是人们耳熟能详的词语。4. 数学的宏观和微观认识。宏观和微观是从物理学借用过来的,后来变成一种常识性的名词。以函数为例,初中和高中的函数概念有变量说和对应说之分,其实是宏观描述和微观刻画的区别。初中的变量说,实际上是宏观观察,主要考察它的变化趋势和性态。高中的对应则是微观的分析。在分段函数的端点处,函数值在这一段,还是下一段,差一点都不行。政治上有全局和局部,物理上有牛顿力学与量子力学,电影中有全景和细部,国画中有泼墨山水画和工笔花鸟画,其道理都是一样的。是否要从这样的观点考察函数呢?5. 数学和美学。“1/2+1/3=2/5 ?”是不是和谐美?二次方程的求根公式美不美?这涉及到美学观。三角函数课堂上应该提到音乐,立体几何课总得说说绘画,如何把立体的图形画在平面上。欣赏艾舍尔()的画、计算机画出的分形图,也是数学美的表现。总之,数学文化离不开数学史,但是不能仅限于数学史。当数学文化的魅力真正渗入教材、到达课堂、溶入教学时,数学就会更加平易近人,数学教学就会通过文化层面让学生进一步理解数学、喜欢数学、热爱数学。

数学文化是指人类在数学行为活动的过程所创造的物质产品和精神产品的总和。下文是我为大家整理的关于数学文化论文投稿的范文,欢迎大家阅读参考!数学文化论文投稿篇1 浅谈我国基础数学文化教育的历程 一、何谓数学文化 对于数学文化的界定很多,“数学文化是指,不仅数学自身属于人类社会的一种文化现象,而且数学还拥有广泛的超越数学自身意义的因素以及这些因素对人类的巨大影响,从而应把数学的发生、发展以及数学教育放到整个社会文化背景中去观察和认识。” “由于数学对象并非物质世界中的真实存在,而是人类抽象思维的产物,因此,数学就是一种文化。” 特别是一部数学史可以反映出数学文化的发生发展过程,具体的数学概念、数学方法、数学思想中都有丰富的文化底蕴,都是值得我们在教学中一一展示给大家的素材。 二、数学文化教育提出的背景 1.激发学生学习兴趣,提高数学教育质量。 不管是在哪个国家,数学教育都是基础教育的重点,然而数学一直以来被大部分学生视为比较枯燥单调难学,对数学学习缺乏兴趣甚至畏惧且望而却步。但是数学教育对每位合格的社会公民的培养又有着不可替代的重要作用,兴趣是最好的老师,怎样提高学生的学习数学的兴趣,是所有教育者都很注重的,该怎样激发学生学习数学的兴趣,其中挖掘发挥数学本身的文化内涵并实现在数学教学中成了数学教育中的热点问题,因此,提高数学教育质量是提倡数学教育中重视文化教育的原因之一。 2.素质教育的需要。 中国是数学大国,但是很长一段时间,我们过于重视数学教育的工具价值,而忽略了其作为一种文化陶冶情操的文化审美教育价值。应试教育轰轰烈烈,学生的学业负担过重,中国学生在世界上是最勤奋的学生群体,但是中国学生的创新能力不高,基础教育没有体现它最基本的功能:为社会培养高素质的合格公民。我们不需要只会读死书的书呆子,所以,为了提高国民素质,提高数学素质和数学教育质量,数学教育中的文化教育开始被大家提倡。 3.数学本身是一种文化,本来就具有文化教育的价值和功能。 20世纪初年的数学曾经存在着脱离社会文化的孤立主义倾向,并一直影响到今天的中国。数学的过度形式化,使人错误地感到数学只是少数天才脑子里想象出来的“自由创造物”,数学的发展无须社会的推动,其真理性无须实践的检验,当然,数学的进步也无须人类文化的哺育。于是,西方的数学界有“经验主义的复兴”。怀特(White)的数学文化论力图把数学回归到文化层面。克莱因(Kline)的《古今数学思想》、《西方文化中的数学》、《数学:确定性的丧失》相继问世,力图营造数学文化的人文色彩[3]。近年来,数学文化成了当今探讨数学发展的新视角,人们愈来愈认识到,数学的发展与人类文化息息相关,数学一直是人类文明主要的文化力量,同时人类文化发展又极大地影响了数学的进步。数学本身不仅仅是一门科学,也是一种文化,具有文化教育的价值和功能。“优秀的数学文化,会是美丽动人的数学王后、得心应手的仆人、聪明伶俐的宠物。伴随着先进的数学文化,数学教学会变得生气勃勃、有血有肉、光彩照人。” 三、我国基础教育中数学文化教育所经历的三个阶段 第一个阶段:基础数学文化教育的被忽视阶段(1949年至20世纪90年代) 我国刚刚成立之时,百废待兴,基础教育还在起步发展,一时连合格的数学老师都难以保证,更何况数学教育中的文化教育的重视了。从解放初期的全盘照搬苏联数学教育,直到1958年的很长一段时间的数学教育目的的对比我们发现,数学教育重视了运用已经学到的知识和技巧去解答算术应用题和日常生活中的简单计算问题,而对知识、能力和思想品德三方面的教学目的提得不够全面、明确。 之后受赶美超英的大跃进运动和十年“”的影响,我国的教育事业受到严重冲击,直到1978年年颁布了《中学数学教学大纲(试行草案)》,使我国的数学科学教育事业重新回到正常的轨道上来。然而,此次修订的大纲,增加了很多高等数学内容,显然与当时基础数学水平较低的现实不符,加重了学生们的学习负担。针对这种情况,于1982年又拟定了《六年制重点中学数学教学大纲(草案)》,对中学数学的内容进行了适当地调整,编写了几套深度和广度不同的教材,以供不同地区根据当地的具体基础选择相应的教材,同时积极稳妥地进行了大量地教材改革试验。1986年颁布了《全日制中学数学教学大纲》,对教育的目标提出了适应当时具体情况和未来发展的新要求[4]。很显然,相对于今天,对于基础教育中的数学文化教育,大家还一时无暇顾及和提及。 第二个阶段:基础数学文化教育被热烈探讨阶段(20世纪90年代至2004年) 随着国力的增强,对教育的足够重视和投入,中国的数学教育,特别是基础教育,也在世界上处于领先地位。然而,应试教育也愈演愈烈,很多学者和教师发现,由于受应试教育的影响,数学课程注重知识传授,忽略了情感态度与价值观的教育,特别是数学这样的理科科目,在学生眼里就是难题,更何况全民奥数热。很大程度上奥数毁坏了中国学生对数学学习的兴趣和热情,增加了他们对数学学习的恐惧,占用了学生们发展其他素质的宝贵时间,浪费了太多人力物力。 1993年2月13日,中共中央、国务院在总结广大教育工作者改革实践经验的基础上制定发布的《中国教育改革和发展纲要》(以下简称《纲要》)中指出:“中小学要从‘应试教育’转向全面提高国民素质的轨道”,为了贯彻和落实《纲要》,中共中央于1994年召开的全国教育工作会议上提出:“基础教育必须从‘应试教育’转到素质教育的轨道上来,全面贯彻教育方针,全面提高教育质量。” 伴随着素质教育观念的广泛深入,大家对怎样提高素质教育的研究越来越广泛。具备学习的愿望、兴趣和方法,比记住一些知识更为重要,这也是素质教育所倡导的。怎样提高数学教育质量,使数学教育也完全符合素质教育的宗旨,成了大家探讨的热点,首先怎样激发学生学习数学的兴趣,还原数学本身的教育价值成了大家深思的问题。在这样的背景下,一直被忽视的数学文化教育被大家发现是贯彻数学素质教育的一个重要手段,很显然我们的数学教育中忽略了数学的文化价值,数学独特的美,数学教育中的文化教育,数学教育独特的素质教育功能,在大力提倡素质教育的同时,数学教育不再是简单的计算证明推理,也要重视数学教育中的文化教育,从而提高素质教育。 对数学教育中怎样开展文化教育的研究成为热点,其中华东师范大学张奠宙教授经过对这一阶段的研究,发表了以下看法,他认为当时的研究“都力图把数学从单纯的逻辑演绎推理的圈子中解放出来,重点是分析数学文明史,充分地揭示了数学的文化内涵,肯定数学作为文化存在的价值。这是必要的”。同时,张教授还指出两点不足,其中之一便是,“数学文化的研究,不能只说数学的重要性,强调数学对人类文明的贡献。与此同时,还应观察数学受到社会文化的影响,借助社会文明阐述数学的文化含义。这有助于人们贴近数学。” 在中学老师层面,这种思想也得到了很多人的认同,在他们 发表的教学研究的 论文中,如何恰当地将 文化 教育融入数学教育之中,以此来提高学生的学习兴趣的文章有 很多。但不是所有的领导和教师在实际的教学中都足够重视数学文化的价值和重要性或者以此贯穿于自己的课堂教学之中,也没有官方 的课程标准或者教材给予数学文化相应的地位。 第三个阶段:基础数学文化教育高度被重视并出现在教材中和实际的教学中(2004年至今) “数学是一种文化,数学教育是数学文化的教育。” 2004年开始的新课改中提出“关注数学文化的价值”,“数学文化教育在教学中要有意识的穿插,且数学史以 专题形式出现在选修教材中。”这些观念在2003年颁发的《普通高中数学课程标准(实验)》中有所体现。新的课改指出,数学教育不仅是知识的教育,也是素质的教育。新课程将数学文化作为高中数学课程内容的一个方面,并且给出了一定数量的选题,提出了具体目的和要求,教学中要恰当把握好有关选题的内容和要求。例如,如何结合 统计思想方法的学习去把握“广告中的数据与可靠性”;如何在恰当的地方设计恰当的“黄金分割引出的数学问题”,使学生通过实际问题,认识数学在 建筑、 艺术、美学、优选等方方面面的广泛 应用, 体会数学文化的价值。 新的课改后,以往无意识的数学文化的教学转化为有意识的数学文化的教学,关于数学文化的教学不单再是有关资料的介绍,而是应将资料中蕴涵的文化价值体现出来。数学教育中的文化教育以下面两种形式出现在实际的教学中。 1.数学文化内容的介绍穿插于数学知识的教学中。 “教师在课堂上可以介绍一些重要的基本概念的发生、 发展,使学生认识数学发生、发展的规律,同时也了解人类从数学的角度认识客观世界的过程。例如,关于解析几何与微积分的创立、发展的资料比比皆是,选取和整理成数学素材时应关注那些体现 社会发展和数学发展相互促进的内容,或反映数学家为追求真理表现出来的那种锲而不舍的精神,求真务实、说理、批判、质疑等方面的内容。通过恰当的提示、引导,让学生从对相关资料了解的基础上,上升到对其中蕴涵的数学文化价值的认识”。 “几句话,一个故事,一个片段等,总之,我们在知识教育的同时,以知识为载体使学生体会和认识数学的文化价值,促进学生科学观的形成,全面提高学生的数学素养。” 2.数学史作为数学文化的载体出现在新教材中。 新课程中选修系列之中包括数学史选讲,数学史选讲作为选修课程已经进入高中数学新课程。选讲教材告别了过去那种单一的数学学习内容和方式,跳出数学知识和技能训练的题海,从宏观上审视数学的历史演变,感悟数学发展史的风雨历程,了解各种数学思想方法如何产生、发展和应用。 数学史是数学文化融入数学课程的最好载体,数学史展示了数学产生和发展的过程,它是劳动人民勤劳智慧的集中体现,是数学知识、数学思想和数学方法的宝库。“通过数学发展进程中的主要人物、事件及其背景的介绍,可以使学生掌握数学的脉络,懂得数学发展的客观规律,以及数学于人类社会发展之间的相互作用;通过了解古今中外数学家的生平简介以及基本数学思想方法,从中吸取丰富的营养和 经验教训,有助于学生形成正确的数学思想观念,树立独立思考、勇于探索的进取精神;通过不同文化背景的数学的比较,引入多元文化的数学,可以使学生从更广阔的视野去认识人类文明的数学成就,欣赏丰富多彩的数学 文化。”总之,数学史有助于我们全面认识数学 教育的文化价值,探索数学文化为主导的数学教育,数学史的教育价值在课程改革的实验区已经显现出来。 四、结束语 数学是人类文化的重要组成部分,是人类 社会进步的产物,也是推动社会 发展的动力。作为一种文化,数学文也是公民必备的科学家养。在美国数学教育中,教材也强调数学史知识的介绍,在介绍中注意数学家的闪光点,可教育性的材料,有引起学生学习数学兴趣的材料,也有关于世界各国的重要数学史实, 力图使学生对数学的历史发展有比较完善的认识,以扩大学生的眼界[8]。 在中国这样一个曾经的世界四大文明古国,一度在数学教育中缺失的数学文化教育被重视起来,“数学文化”已是新课程的重要内容之一,数学教育是数学文化的教育。在此思想指导下的中国基础数学教育,才能更好地激发学生的数学学习兴趣,改变他们的数学观,树立学习的自信心,真正了解数学的美、数学的历史,进而促进他们人格的健康成长,扩宽他们的视野,了解多元文化的数学,这样的数学教育才是才是真正的素质教育[9]。 数学文化论文投稿篇2 浅析高中数学教学中的数学文化 摘 要:数学文化是人类知识宝库的重要组成部分,在数学教学中只是传授数学知识,解决数学问题是不够的,还应渗透数学文化,通过数学文化教育,展示数学的美和数学精神的魅力,进而激发学生学习数学的兴趣,培养学生良好的数学精神和意志品质。本文在介绍数学文化主要特征的基础上,对高中数学教学中如何渗透数学文化进行了分析。 关键词:高中数学;数学文化;主要功能;渗透 数学文化是指人类在数学行为活动的过程所创造的物质产品和精神产品的总和,其中物质产品主要指数学语言、数学命题、数学问题以及数学方法等方面,精神产品主要指数学思想、数学意识、数学精神等方面。在高中数学教学中渗透数学文化,是学生数学学习的基本需要,其目的是使学生在学习数学的过程中受到文化感染,领略数学的美,体悟数学文化的价值,进而激发学生学习数学的兴趣,培养学生良好的数学精神和意志品质,促进学生个性的良好发展。 1 数学文化的主要特征 数学是一种文化,数学文化是人类知识宝库的重要组成部分,其特征主要包括以下几个方面: (1)历史性。数学的发展离不开历史的积淀过程,人们对数学本质的认识也是源于数学史的发展,因此,可以说数学文化具有一定的社会历史性。数学学习要讲究数学方法,而数学史是研究数学方法的重要依据,因而从某种意义上说,一切与数学有关的研究,与数学史息息相关。了解数学史,既可以增强全局观念,又可以调动学习热情。 (2)思维性。数学文化的主体是数学知识以及运用这些知识所形成的数学思想和数学方法,它们都是人类通过数学语言总结出来的可应用于现实世界的空间形式及数学关系的思维成果,因此,可以说思维是数学的内在灵魂,数学是思维的基本体现。 (3)审美性。数学是一门科学,也是一门艺术。数学中的简单性、对称性、统一性、协调性等基本特征都是数学美的重要内容。在我国古代,数学是“礼、乐、射、御、书、数”六艺之一,在西方,数学与和谐曾被认为是宇宙的主要根源,因此,可以说数学具有很强的审美性,数学世界充满了美感。而数学的美感正是数学文化对人类意志品质、高尚情操陶冶的一种体现。 2 数学文化在高中数学教学中的渗透 渗透数学史,培养数学文化意识 在高中数学教学中,教师要有意识地渗透数学史,在了解数学史的过程中,培养学生的数学文化意识。对此,可通过开设数学史选修课渗透数学史。在选修课中可以介绍一些与数学有关的具有深远意义的历史事件,如数学思想逐渐演变的历史事件,数学家逐渐纠错的历史事件等。或通过推荐有价值的与数学息息相关的作品,如张景中院士的《新概念几何》、西奥妮・帕帕斯写的《数学的奇妙》等,抑或引导学生通过网络、报刊等各种资源搜集、查找有关古今中外著名数学家的事迹,了解他们对数学做出的主要贡献,拓宽学生的数学视野,体会数学的文化品位。 渗透数学思想方法,提高学生的数学素养 数学思想方法是指对数学知识和方法形成的规律性理性认识,为分析、处理和解决数学问题提供了指导方针和解题策略。高中数学教学不能仅满足于单纯的知识传授,而是要帮助学生把握数学知识的本质,引导学生借助数学思想方法解决实际数学问题,提高自身的数学素养。如: 已知当x∈[0,1]时,不等式x2cosa-x(1-x)+(1-x)2sina>0恒成立,求a的取值范围。分析:本题通过构造的思想方法,即可轻易地求出结果。可设f(x)=x2cosa-x(1-x)+(1-x)2sina=(cosa+sina+1)x2-(1+2sina)x+sina,由题意可知:f(0)=sina>0 ①; f(1)=cosa>0 ②,在条件①②下对称轴x=∈[0,1],此时只要△<0,即sin2a> ③, 再联立①②③即可求出a的取值范围。 发展学生的数学思维,培养数学的理性精神 数学教学的关键在于发展学生的数学思维,培养数学的理性精神。数学思维是理性思维的重要形式,注重学生数学思维的培养对于提高学生的思维能力,增强学生的解题能力有着十分重要的作用。发展学生的数学思维一方面要注意培养学生的数学意识,理清学生的思维脉络。数学的知识点是前后衔接、环环紧扣的, 因此,在教学中对于每一个问题,教师要既要考虑学生原有的知识基础,又要考虑与它相关联的知识内容。只有这样,才能更好地激发学生的思维,并逐步形成知识脉络。另一方面要注意激发学生的思维动机,提高学生思维的水平。动机是人们行为活动的内趋力。激发学生思维的动机,是培养其思维能力的重要因素。在数学教学中,教师可以通过创设合理的问题情景,使学生产生情感上的共鸣,进而引发学生最强烈的思考动机和最佳的思维定向,形成良好的数学思维品质。 开展数学课题研究性学习,体悟数学文化的真正价值 在实际数学教学过程中,教师可将某些数学定理、公式作为研究性课题开展研究性学习,让学生主动去发现、检验、论证,体验到数学家发现数学的真实过程,了解数学概念、定理、公式、结论形成的过程,获得再创造的快乐,进而把握数学的本质,体悟数学文化的真正价值。同时在进行研究性学习活动的过程中,教师应给予学生适当的指导。如在进行“直线方程的推导”时,教师可以适当地提出一些问题,引导学生思考:a.在我们生活中,常通过什么方法固定一条直线?b.要想确定一条直线的方程,需要给定什么样的条件?如何求出其直线方程的一般式?当学生完成课题研究后,教师可及时展示学生的研究成果,进行合作交流,提出不同的意见,以保持学生学习数学的积极性。 总之,数学文化是数学的精髓,重视学生对数学文化的感悟,能帮助学生加深对数学的认识与理解,从而帮助学生更好地学好数学,进而爱上数学。猜你喜欢: 1. 关于数学文化的论文投稿 2. 数学文化方面的论文发表 3. 关于数学文化的论文优秀范文 4. 关于数学文化的论文免费参考 5. 数学文化的论文范文参考

数学是一种文化,数学文化是人类社会优秀的、先进的文化。下文是我为大家整理的关于数学文化的论文范文的内容,欢迎大家阅读参考!

浅谈数学文化建设

摘要 随着新课改的不断深入,数学文化在小学数学教学中的地位和作用显得越来越重要。本文从教师数学文化素养、教材数学文化建设、教学数学文化渗透三个方面对小学数学文化建设作了探索,希望能给新课改提供借鉴和启示。

关键词 小学数学教学;数学文化;数学文化建设

数学是人类的文化,数学文化表现在数学的起源、发展、完善和应用的过程中。新课标指出:“数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。”数学文化的核心是数学产生、发展的历史进程中,逐步沉淀下来的数学思考,数学观念,数学品质。因此,就小学数学教学而言,小学数学文化的建设显得尤为重要。下面是我关于小学数学文化建设的几点思考。

一、小学数学教师数学文化素养

数学新课程精神强调:数学课程应展示数学文化的魅力,即展示数学文化的悠久历史,展示数学文化的博大精深,展示数学家的探索精神,展示数学文化的美学价值。作为数学文化传播者的小学数学教师,其自身的数学文化素养是决定小学数学文化建设的关键因素。

1.强化数学文化意识

数学之于文化好比种子之于土壤,是厚重的人类历史文化孕育了今天的数学。无论是从数学本身的发展看,还是从数学对社会与人类进步的作用看,数学文化的教育功能都是非常重要的。数学文化的教育功能主要包括四个方面:(1)使学生真正理解数学的本质;(2)发展学生理性精神;(3)培养学生创新精神;(4)培养学生审美能力。所以,小学数学教师首先要强化自身的“数学文化”意识,树立学生的“数学文化”意识。如果只掌握专业知识而没有深厚的数学文化底蕴,那他的数学王国将成为无源之水、无本之木。数学家们有这样一种观点:三流的教师传授知识,二流的教师传授技巧,一流的教师传授思想方法,而超级大师传播数学文化。

2.加强数学文化学习研究

小学数学教师仅仅具有“数学文化”意识是远远不够的,还必须认真地系统学习与研究数学文化,切实把它当做一项系统工程来做。

学习研究数学文化的发展历史,可以从中汲取丰富的数学文化养分,提高自身的数学素养。比如,最早系统提出数学文化观的美国数学家怀尔德()的《数学概念的进化》和《作为文化体系的数学》、美国著名数学教育家M・克莱因的《西方文化中的数学》、《古今数学思想》和《数学―――确定性的丧失》,郑毓信的《数学文化学》,方延明的《数学文化导论》,黄秦安的《数学哲学与数学文化》,齐民友的《数学与文化》,张顺燕的《数学的源与流》,张奠宙的《20世纪数学经纬》等国内外著作,都为我们的数学文化研究指明了方向。其次,学校要通过数学文化的知识培训、讲课比赛、外出交流等方式,切实为小学数学教师提供更多学习研究展示数学文化的机会与平台。

二、小学数学教材数学文化建设

除了应该不断加强数学文化的研究学习,自觉提高自身数学文化素养外,还必须认真进行教材研究,并着力推进教材数学文化校本化建设。

1.教材数学文化建设研究

在自身具有一定数学文化素养基础上,小学数学教师还需要下大力气深入研究小学数学教材,充分挖掘教材中数学文化的丰富内涵。只有将课本中枯燥的、抽象的数学问题经过自己的“加工、提炼、再创造”,才能还原成原汁原味的生活问题生动地呈现给学生,把他们带进一个绚丽多彩的数学皇宫,让他们感受数学丰富的方法、深邃的思想、独特的艺术之美,分享数学前行足迹中的创造、超越及其背后折射出的人类智慧和人性光芒,真正实现探索数学本质的理性回归。

2.教材数学文化校本化建设

鉴于地域不同和学生差异,地区的发展状况、学生的生活背景不尽相同,因此教师通常需要对手头使用的教材加以改进,适应自己的课堂教学的需求。为此宜在本地区组织数学骨干教师,充分挖掘教材中所隐藏的数学文化意蕴,使数学内容充满浓郁的生活气息和文化气息,从而使学生体会到数学与自然、与社会、与生活的密切相关性,重视学生数学知识与现实生活的有机结合,重视学生的情感、态度、价值观等人本教育,重视学生动手实践、合作交流、自主探索、创新能力的培养,彰显数学的文化价值和教育价值。只要不断探索和完善,就能开发出适合本地区特色的数学校本教材。

三、小学数学教学数学文化渗透

为加强小学数学文化建设,学校要采取多种方法形成“数学文化场”,使数学文化真正走进校园、走进课堂。

1.校园数学文化渗透

数学文化是校园文化的一个重要组成部分,数学文化是培养学生文化素养的重要载体。学校可通过校园文化平台、校园网络平台、多媒体平台等多种方式倾力打造“数学文化场”,形成浓郁的数学文化氛围,使数学文化真正走进校园。学校可通过数学板报、班级数学网页、数学角、数学晚会、数学文化节、数学文化读本、数学长廊等多种形式丰富学生的校园生活,推进校园数学文化建设,提升数学文化的品位,潜移默化地渗透数学文化。

2.课堂数学文化渗透

传统的数学教学忽视了数学文化的重要作用。在教学目标上,往往只重视数学知识传授和技能训练而忽视情感、态度、价值观等人文教育;在教学内容上,过分拘泥于知识的逻辑性,思维的抽象性,忽视数学知识与学生生活的有机结合,忽视数学学习和学生情感体验的有机融合;在学习方式上,学生往往是被动接受、机械练习,缺少动手实践、自主探索的机会,忽视挖掘数学文化内涵,培养学生主动参与数学学习的意识和兴趣。

数学教师只有不断提高自身的数学文化素养、加强数学文化研究,才能更好地将数学文化渗透于课堂教学中,让学生更好地体验数学、理解数学、热爱数学,实现数学文化的科学价值和人文价值的真正回归。

参考文献:

[1]M・克莱因著.张祖贵译.西方文化中的数学[M].上海:复旦大学出版社,2010.

[2]郑毓信,王宪昌,蔡仲.数学文化学[M].成都:四川教育出版社,2011.

浅析数学教育中渗透数学文化

摘 要:随着新课改的深入,数学课堂中的种种问题凸显出来。本文从数学文化的角度来反思了我国的数学教育,得出了一些结果。我们的数学教育不光是要教学生们加减乘除,更多的是要通过我们的数学教育,培养学生具有数学的精神、数学的思维、数学解决问题的方法。

中关键词:数学文化 价值 精神 兴趣

古老的中华民族早就有数学文化的传统,并闪闪发光,而我们在初高中所接触的数学却是丝毫提不起学生的精神,那我们的数学教育究竟有什么问题呢?为什么在别人的眼里我们国家的数学教育是那么成功,而我们国人却把我们的数学教育批评得一文不值、学生学得那么痛苦?通过学习数学文化这门课,我对这个问题有了深入的思考。

很多中学生认为数学不好,没什么用,只是考试的工具,每天把他们的头都学疼了。是我们的数学无用无趣,还是我们的学生意识不到数学的价值与乐趣?以前的我,也是对数学厌烦,没有好感,像很多学生一样,只是迫于高考才学习数学。但是自从学了数学文化这门课后,我才知道原来数学这么有价值、有用,而且历史悠久。数学的魅力让我赞叹。蜗牛、波浪、植物、蜘蛛网、建筑物,几乎一切事物都有数学的影子。

数学无处不在。有了数学才让建筑物妙不可言,有了数学才让预测如此准确,有了数学才让科学的宝塔如此坚固。我们的哲学家赞美数学,我们的科学家喜欢数学,可是怎么才能让我们的中小学生热爱数学呢?

数学作为一种文化,它不仅仅包括我们中小学生每天接触的加减乘除,还包括其他宝贵丰富的内容。例如,数学精神,它也是数学文化的一部份。日本数学家、数学教育家米山国藏就曾提出过七种数学精神,其中包括应用化的精神、扩张化的精神、系统化的精神、致力于发明发现的精神、统一建设的精神、严密化的精神以及思想经济化的精神。[1]虽然说我们不能完全体会到数学的所有精神,但是数学所具有的独特的精神足可以让我们赞叹不已。

没有一个学科可以像数学这样言简意赅却严密、不可击破。我们要学会欣赏数学这种简单、严密的美。这就要求我们教育工作者,不仅仅教授我们学生那些运算、定理,还要传递给我们学生数学的精神、数学的美。记得上数学文化课时,梅老师曾说:“我们的传统数学教育的一个弊端就是向我们的学生提供的更多的是符号变换方面的知识与技能。”其实,我们完全可以去教给学生那些知识,但是当我们在教的时候,应该引导学生去欣赏数学的美。

数学有了符号去抽象表达事物、定理,数学就有了这种简单、朴素的美。我们知道一种知识它越抽象,它就越具有概括性与普适性,也就越有用、越高级。当我们的学生学会欣赏数学的这种简单美,他也就不会那么讨厌数学了,同时,我们的数学教育也会更进一步。

数学家的理性思维、锲而不舍的探索精神也是值得学生去学习的。例如,欧拉是科学史上最多产的一位数学家,他十九岁开始发表论文,直到七十六岁,他一生共有八百多本著作和论文。他三十一岁右眼失明,晚年视力极差,最终双目失明,也没有停止对数学的研究与创作。如果我们的学生了解了欧拉,再来学习他的公式定理,那么我们的教学一定会取得成功。[2]学生要在数学这块土壤上汲取的营养太多太多,而不仅仅是课本上的定理。数学文化需要去丰富我们的数学课堂,我们的数学教育要多方面开展。

数学作为一种文化,它有着悠久的历史。从古至今,在这漫长的时间旅途中,出现了多少数学伟人,创造了多少有利于人类发展的文明成果。例如,欧拉公式和欧拉解决的著名哥尼斯堡七桥问题,黄金分割比的发现,我们中国的祖冲之与他的圆周率、刘徽的割圆术等等这些数学成果都为我们人类的文明发展做出了卓越贡献。就像我上高中时一样,有很多学生和我一样都不知道数学这些悠久灿烂的文明以及它们的重大意义。

其实,每一次数学的重大发现,都会推动历史的脚步向前发展。我们的学生要更多地了解数学的历史,了解数学家的事迹,了解那些对我们有过重大意义的数学发明发现。历史是一面镜子,如果我们不知道历史,我们就会对现在的东西不相信,不感兴趣,不珍惜。如果我们知道了它的历史,我们就会更好地认识今天的事物,去珍惜、学习它。我们的教师要多让我们的学生了解数学的历史,给学生们提供学习的机会。例如,在高一数学第一章《集合与函数概念》时,我们的教师可以先插入康托创立的集合论的历史知识。

这样的教学,就会改变传统的一味授受知识的境况,不仅教师讲得有趣,学生听得也有味。虽然说这样的教学好,但是这给我们的教师带来了难度与挑战,所以很多教师即使知道这样好也不愿意这样做。我们的教育者要真正担负起教书育人的职责,既然你来当教师,你就要对你的学生负责,对你自己负责。不要应付教学的差事,而是要在平常课余时间多看些有关自己科目的书,了解一下它的历史,它的名人趣事,这样才会在教学时有话可讲。我们的学生才会愿意听课,愿意学习,这样才能使我们的数学课堂生气盎然。

数学作为一种文化,它的作用、价值无处不在。我们要让学生了解数学的价值,从而给予他们学习数学的动力。可以这样说,如果一个人不懂得数学,不懂得数学文化,他将不能在未来这个世纪生存。数学促进了整个社会的发展,同时社会的发展离不开数学。数学被应用在各个领域,艺术品的设计、建筑物的创造、国家财政的预算、统计工作的完成都离不开数学。我们的学生知道了数学的价值如此之大,他就会自觉自动地去学习数学了。

当学生看到了他所要学习的东西的效益,他就会对它抱以积极的兴趣。那么就需要我们的教育工作者在传递知识的同时,还要向我们学生展示数学的价值。比如我们在讲授数学知识时,可以联系生活中的实例来激发学生的学习兴趣,例如购房分期付款问题等。总之,数学教育就是要贴近生活、贴近自然,让学生自己去体会数学的价值。

没有数学的创新,也就没有科技的创新。我们的教育工作者也可以在上课时多教授学生依靠数学科技进步的例子,让学生认识到数学的巨大价值,意识到数学离我们不远,数学就在我们身边。同学们可以自己利用数学去创新,可以是在学科内部,也可以是跨学科的,我们现在就可以学以致用。如果我们同学都意识到这一点了,我们民族也就有了希望。

年过花甲、有着四十年教龄的天津著名教师王连笑曾经说过:“数学不仅是计算、解题,数学中还包括学科思想文化、科学的思维方法以及人生哲理。对于学生来说,这些比数学知识本身更重要。教师不可能将每一个学生都培养成数学家,但是可以做到使每一个学生学会欣赏数学之美,感受数学带来的快乐。作为一名数学教师,不仅要教会学生数学的理性思维,更应将美好的人类情感交给学生,滋润学生的心灵。”[3]是的,我们的数学教育并不是把学生都培养成数学家,我们的教育工作者要开阔学生的视野,丰富课堂教育,提高我们学生对数学的认识,增强他们对数学的好感。

总结

我们国家今天的中小学生数学基础教育已经很成功了,人们都说我们到任何一个国家去,我们国家的小孩数学过硬。但为什么我们的数学教育不好呢?我们的数学教育缺的已不是那些加减乘除,缺的更多的是数学精神、数学思维、数学方法。数学文化需要灌注课堂,课堂需要数学文化。只有充满了数学文化气息的数学课堂才是飞舞的,洋溢着活力的。

参考文献:

[1]数学课程教材研究开发中心.数学文化[M].人民教育出版社,2003,第49页.

[2]徐秀兰.数学教学中如何渗透数学文化[J].科教文汇,2007,(3).

[3]天津教育.2007,(1).

以节水为主题的数学小论文

我家原来有个水龙头坏了,时时刻刻在漏水,别看滴滴的水少,我计算过,一滴水1克,一分钟360滴水,就是360克一天720分钟,就是千克,如果一个人一天喝100千克,虽然只能够一个人喝3天,,别看少,一年有93312千克够让一个人解决喝934天水的问题。真是小问题成大事故,不算不算不知道,一算吓一跳。如果再不换水龙头,今后两年,三年,四年,五年------滴滴的水不将汇成一条长河了吗?还有那么多人喝不上干净卫生的水,而我还在浪费水,真对不起自来水。我立刻叫来爸爸,就换了一个水龙头,水龙头再也不漏水了。我曾经在电视上看到这样一则关于节约用水的报道,说有个人家中洗澡用后的废水储存在浴室地砖下一个大储水器里,这废水是来冲洗马桶的。我觉得这非常节约用水,如果家家户户都装有这种装置,洗澡的水就不会白白浪废。假设一下,如果一次洗澡用水350千克水,一年洗180次,一年一共用水63000千克水,如果冲一次马桶要用水900千克,那就能冲马桶70次,真是惊人的数字呀。在看看这样一组数据:中国的人均水资源占有量低于500立方米,远远低于国际公认的人均所需1000立方米的临界值。北方许多城市因缺水造成工厂停产,损失的年产值达1200亿元,南方城市出现水荒。目前全国600多座城市中,有300多家缺水,其中严重缺水的有108个,缺水量约为1000万吨/天左右。几百万人生活用水紧张……

农业高效利用水资源的目标就是农作物高产与高水分利用效率相结合的节水型农业。节水农业的中心问题是提高水分(包括降水和灌溉水)利用效率。我国是农业大国,农业用水量占全国总用量的80%左右,其中90%的种植业用水都需经过土壤水的转化而被植物吸收利用。如何充分利用土壤水分,提高土壤水高效利用的综合农艺措施,已成为当前农业用水可持续发展的紧迫任务。下面介绍节水农业中调节干旱的几项措施:一、减少不必要的降水流失,保住天上水。丘陵山区要大力加强工程措施和耕作技术措施建设,工程措施主要有兴修水平梯田,沟坝,水窖等。耕作技术措施有水平沟种植、垄沟种植、蓄水聚肥种植等。通过深耕或深松,耕深15-20厘米,打破犁底坚硬土层,降低了土壤容量,增加了孔隙度,从而增加了降雨的入渗速度和土体的蓄水容量。少耕免耕对减少风蚀、水蚀、增强土壤蓄水保墒能力,减少地表径流起到良好作用。免耕可使降水流失量减少,土壤流失量减少,土壤含水量增加。二、选择避旱和适应土壤干旱的措施,巧用土壤水。根据不同地区土壤特点,选耐旱优良品种。通过一些耕作措施,减缓干旱时期的旱情如延长蹲苗时间以错过旱情期;在限水灌溉条件下,磷肥集中深施效果最好。有地表水源的地区,限额灌溉,以水防旱。三、防止不必要的蒸发,减少消耗,多用土壤水。防止不必要的水分蒸发可采取覆盖、应用抗旱保水剂等措施。(1)覆盖。有麦糠覆盖、生物覆盖、地膜覆盖、秸秆覆盖、留高茬覆盖、沙石覆盖等几种方式 ,保墒增温效果好。生产实践证明,麦田采用麦糠覆盖蓄水量提高毫米,比对照增产。覆盖栽培具有明显而稳定的聚水、保墒、增温作用,改善土壤理化性状,提高土壤肥力及其有效性,提高作物有效耗水比,抑蒸减耗,节水抗旱,促进早熟和增产等作用。(2)利用抗旱保水剂,延长土壤水分持续供应。抗旱保水剂可直接改善土壤理化性质,明显提高土壤水分含量,在旱作大田上,全生育期土壤水分平均可高出5 个百分点以上,在灌溉地上,可明显可提高土壤抗旱能力,延缓灌水时间,减少灌水1—2次。四、提高土壤现有水分的利用效率,用好土壤水。土壤深层贮水具有较高的稳定性和有效性,它在作物生育期降水不足时,可通过毛管运动或根系的吸收调节水分的供应。采用轮作平衡调水,推广良种,间作套种,铺膜提高地温增加水分的有效性,增加施肥量,合理利用N、P配合,无机肥与有机肥配合提高土壤水的利用,增施P、K肥,“以肥调水,以水调肥”充分利用深层水。

我家原来有个水龙头坏了,时时刻刻在漏水,别看滴滴的水少,我计算过,一滴水1克,一分钟360滴水,就是360克一天720分钟,就是千克,如果一个人一天喝100千克,虽然只能够一个人喝3天,,别看少,一年有93312千克够让一个人解决喝934天水的问题。真是小问题成大事故,不算不算不知道,一算吓一跳。如果再不换水龙头,今后两年,三年,四年,五年------滴滴的水不将汇成一条长河了吗?还有那么多人喝不上干净卫生的水,而我还在浪费水,真对不起自来水。我立刻叫来爸爸,就换了一个水龙头,水龙头再也不漏水了。 我曾经在电视上看到这样一则关于节约用水的报道,说有个人家中洗澡用后的废水储存在浴室地砖下一个大储水器里,这废水是来冲洗马桶的。我觉得这非常节约用水,如果家家户户都装有这种装置,洗澡的水就不会白白浪废。假设一下,如果一次洗澡用水350千克水,一年洗180次,一年一共用水63000千克水,如果冲一次马桶要用水900千克,那就能冲马桶70次,真是惊人的数字呀。 在看看这样一组数据:中国的人均水资源占有量低于500立方米,远远低于国际公认的人均所需1000立方米的临界值。北方许多城市因缺水造成工厂停产,损失的年产值达1200亿元,南方城市出现水荒。目前全国600多座城市中,有300多家缺水,其中严重缺水的有108个,缺水量约为1000万吨/天左右。几百万人生活用水紧张…… 在教大家一些小窍门:1、洗衣:用洗衣机洗少量衣服时,水位不要太高;2、洗澡:不要将喷头的水自始至终开着,尽可能先从头到脚淋湿一下,全身涂肥皂搓洗, 最后一次冲洗干净;3、厕所节水:如果厕所水箱过大,可以在水箱里放一块砖头或一只装满水的大可乐瓶,以减少每一次的冲水量;4、一水多用。洗脸水用后可以洗脚,养鱼的水可以用来浇花,淘米水、煮过面条的水用来洗碗筷;洗菜水、洗衣水和洗澡水等可以用来冲马桶或擦洗地板。5、收集废水:家中预备一个收集废水的大桶,收集洗衣、洗菜后的家庭废水冲厕所;6、洗餐具:最好先用纸把餐具上的油污擦去,用热水洗一遍,最后才用较多的温水或冷水冲洗干净;7、空调滴水:使用空调时,一晚上滴下的水能接一桶,完全可以变废为宝;8、生活习惯:刷牙、取洗手液、抹肥皂时要及时关掉水龙头;不要用抽水马桶冲掉烟头和碎细废物;洗土豆、萝卜等应先削皮后清洗;正在用水时,如需开门、接电话等应及时关水龙头。9不要用水冲食物化冰,改用微波炉解冻或及早将食物从冰箱冷冻室中取出,放置于冷藏室内解冻。

随机事件出现的可能性的量度。概率论最基本的概念之一。人们常说某人有百分之多少的把握能通过这次考试,某件事发生的可能性是多少,这都是概率的实例。 在一个特定的随机试验中,称每一可能出现的结果为一个基本事件,全体基本事件的集合称为基本空间。随机事件(简称事件)是由某些基本事件组成的,例如,在连续掷两次骰子的随机试验中,用Z,Y分别表示第一次和第二次出现的点数,Z和Y可以取值1、2、3、4、5、6,每一点(Z,Y)表示一个基本事件,因而基本空间包含36个元素。“点数之和为2”是一事件,它是由一个基本事件(1,1)组成,可用集合{(1,1)}表示“点数之和为4”也是一事件,它由(1,3),(2,2),(3,1)3个基本事件组成,可用集合{(1,3),(3,1),(2,2)}表示。如果把“点数之和为1”也看成事件,则它是一个不包含任何基本事件的事件,称为不可能事件。在试验中此事件不可能发生。如果把“点数之和小于40”看成一事件,它包含所有基本事件 ,在试验中此事件一定发生,所以称为必然事件。若A是一事件,则“事件A不发生”也是一个事件,称为事件A的对立事件。实际生活中需要对各种各样的事件及其相互关系、基本空间中元素所组成的各种子集及其相互关系等进行研究。 古典概率 古典概率讨论的对象局限于随机试验所有可能结果为有限个等可能的情形,即基本空间由有限个元素或基本事件组成,其个数记为n,每个基本事件发生的可能性是相同的。若事件A包含m个基本事件,则定义事件A发生的概率为p(A)=m/n,也就是事件A发生的概率等于事件A所包含的基本事件个数除以基本空间的基本事件的总个数,这是.拉普拉斯的古典概率定义,或称之为概率的古典定义。历史上古典概率是由研究诸如掷骰子一类赌博游戏中的问题引起的。计算古典概率,可以用穷举法列出所有基本事件,再数清一个事件所含的基本事件个数相除,即借助组合计算可以简化计算过程。 几何概率 若随机试验中的基本事件有无穷多个,且每个基本事件发生是等可能的,这时就不能使用古典概率,于是产生了几何概率。几何概率的基本思想是把事件与几何区域对应,利用几何区域的度量来计算事件发生的概率,布丰投针问题是应用几何概率的一个典型例子。 概率的频率定义 随着人们遇到问题的复杂程度的增加,等可能性逐渐暴露出它的弱点,特别是对于同一事件,可以从不同的等可能性角度算出不同的概率,从而产生了种种悖论。另一方面,随着经验的积累,人们逐渐认识到,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示一定的稳定性。米泽斯把这个固定数定义为该事件的概率,这就是概率的频率定义。从理论上讲,概率的频率定义是不够严谨的。.柯尔莫哥洛夫于1933年给出了概率的公理化定义。

以春节为主题的数学小论文

生活中的数学平安夜,妈妈带我去逛商场.到了商场一看,今天商场里到处都在搞活动.妈妈对我说;“今天在搞活动,商场的东西一定比平时便宜,看看我们有没有什么想买的.”在商场逛了一圈,我看中了一双鞋子,标价318元,这个柜台搞的活动时满166减61元,妈妈对我说:“平时不搞活动时这种鞋打8折.”营业员告诉我们今天搞活动买鞋可划算了,说完就要帮我们按照活动价开票,这时妈妈突然说:“等一下.”转身又对我说:“你算一下按照活动价到底有没有便宜.”我心想:搞活动嘛肯定比平时要便宜,还要算什么呢?但是妈妈让我算,我只能勉为其难,算一下呗.按照活动价算,满166减61元,318元里只有一个166,也就是只能减一个61元,318-61=257(元),按照平时的价格打8折计算,318*80%=(元).一算真的还是平时不搞活动时的价格便宜,于是妈妈对营业员说还是按照平时的价格开票吧.付过钱后,我们就拿了鞋走开了.离开了柜台,妈妈就对我说:“我们平时做什么事情都要认真考虑,别被一些表面现象所迷惑了.”看来数学在生活中还真是无处不在啊.

生活中的数学平安夜,妈妈带我去逛商场.到了商场一看,今天商场里到处都在搞活动.妈妈对我说;“今天在搞活动,商场的东西一定比平时便宜,看看我们有没有什么想买的.”在商场逛了一圈,我看中了一双鞋子,标价318元,这个柜台搞的活动时满166减61元,妈妈对我说:“平时不搞活动时这种鞋打8折.”营业员告诉我们今天搞活动买鞋可划算了,说完就要帮我们按照活动价开票,这时妈妈突然说:“等一下.”转身又对我说:“你算一下按照活动价到底有没有便宜.”我心想:搞活动嘛肯定比平时要便宜,还要算什么呢?但是妈妈让我算,我只能勉为其难,算一下呗.按照活动价算,满166减61元,318元里只有一个166,也就是只能减一个61元,318-61=257(元),按照平时的价格打8折计算,318*80%=(元).一算真的还是平时不搞活动时的价格便宜,于是妈妈对营业员说∶“还是按照平时的价格开票吧。”付过钱后,我们就拿了鞋走了。离开了柜台,妈妈就对我说:“我们平时做什么事情都要认真考虑,别被一些表面现象所迷惑了.”看来数学在生活中还真是无处不在啊!

打的过搞的广告费沟沟壑壑好尴尬飞飞哥vvv现代风格v不会太丰富非常v比较运费搭错车滚滚滚哈哈哈吃的

数学与我们的生活息息相关,数学的脚步无处不在。 随着市场经济的逐步完善,人们日常生活中的经济活动越来越丰富多彩.买与卖,存款与保险,股票与债券……都已进入我们的生活.同时与这一系列经济活动相关的数学,利比和比例,利息与利率,统计与概率,运筹与优化,以及系统分析和决策,都将成为数学课程中的“座上客”。在现实生活中,人们的生活越来越趋向于经济化,合理化。马上就要过年了,家家户户都在置办年货。作为销售商应该摸清顾客在这个阶段主要需要什么。在这一期间,大家需要的就是过年时的用品,例如:装饰用的窗花、年画、对联、灯笼等;用来招待客人用的糖果,干货等;走亲访友时用的礼品等;小孩子过年时要的新衣服,用来装压岁钱的红包等……这些商品我们可以适当调高价格。为了满足顾客需求,还可以适当延长店铺工作时间。对于那些销量大的商品进货要快,还要根据当前消费趋势的变化来进不同种类,不同数量的货。当然,对于过季产品,我们也要适当调剂价格,作为促销手段同时也避免货物积压。可以打出“春节促销”这类词语,并在经营允许的情况下降价,以“薄利多销”的方式回笼资金用来购买更多春节热销商品。“薄利多销”是有条件的,只有对那些价格弹性大的物品才能实行薄利多销,薄利代表着会以较低的价格出售物品,但是又要多销,那么这种物品就要是弹性大的那种, 弹性是表示一定时期内当一种商品的价格变化百分之一时所引起的该商品的需求量变化的百分比。这样我们就保证了我们日常开销,比如:场地租用费、水电费、员工工资等等……还可以尽可能的获得更多利润。对于刚刚上市的新品,我们是要调高价格的。比方说服装,现在是冬末春初,春装已经上市,那么新款式的春装一定更吸引顾客的眼球。我们就可以利用这一点把新款春装摆在显眼处。当然新款服装是要调高价格的,只要抓住顾客心理,适当的高价是不会影响销售的。调价也是要有技巧的。我们卖出时的标价可以比进价高出百分之五六十甚至高出两三倍,然后打个折扣。既迎合了顾客的心理,我们还能从中获得大量利润。

议科技与数学为主题的小论文

是不是要科学小论文啊,我就不给!!!自己的事情自己做!!!!呵呵~~~~~~~!!!

人类对时空认识的探讨 摘要:人类对时空的认识经历了一个漫长、复杂和曲折的过程,在远古时代人们认为天方地圆,后来有了牛顿的绝对时空观,又有了爱因斯坦的相对论时空观,建立了在混沌分形理论基础上的时空观,近年又出现了在“光速改变”(VSL)理论基础上的新时空观,而建立在“超弦理论”基础上的多维时空更让人感到人类对时空的认识是一个永无止境又难以定论的话题。 关键词:天方地圆 绝对时空 相对时空 混沌分形 光速改变 超弦理论 多维时空 物理学和现代高科技经过百年的飞速发展,人类已经进入了一个全新的时代。但是物理学仍然面临许多迫切需要解决的问题,爱因斯坦终生没有解决的统一理论至今没有解决,另外弦理论还需要完善,宇宙大爆炸学说对普朗克时间[宇宙诞生的0.(42个零)1秒前]和黑洞的无奈,还有一些重大物理实验和所观察的现象无法用现有理论进行解读。伴随着新世纪到来物理学所面对的也和百年前一样是层层迷雾,超越爱因斯坦理论的物理学理论有可能出现。人类对时空的认识是一部不断发现、纠正、完善和挑战前人理论成果的科学。下面笔者从天方地圆的平直时空观到爱因斯坦相对论时空观,以及建立在超弦理论基础上的多维时空理论进行简介和探讨如下。 一、古老“天圆地方”的平直时空观 人类至产生以来,就可望对自己生存的环境有一定的了解,对时空观念有一个初步的印象。在中国上古神话中就有盘古开天,清则上升为天。浊则下沉为地之说,他们认为天方地圆。因大神共工撞倒不周山撑天柱,所以天倾西北,地倾东南,则有日月星晨从东方升起,西方降落。人类从产生时起就不断地研究时间和空间的问题。人类为了生存和发展,要了解宇宙,了解天气的变化,想知道风雨雪雷电是怎样产生的,一年四季如何变化,何时播种,何时收获。天与地本来是个巨大的空间,激发了我们的无限的想象和兴趣,可在封建社会,人们一直认为他们生活的在绝对平面上,地球是平的。有人称之这一时期宇宙定律为毕达哥拉斯定理(国人称之为勾股定理),既a2+b2 = c2,“毕达哥斯拉定理不仅在数学上的美是合理的,同时通过近代对它的研究还产生了著名的费马定理。费马定理在上个世纪80年代和90年代才被证明。 a2+b2 = c2不仅具有几何的美,更反映了人类对时间和空间的美的认识。它是一种平面思维的时空观。是人类认识自然的第一个重大的完美的定理。”(转至朱伟勇 朱海松《热抽象》P7) 近代由于航海发达等因素,人们看到远处出现的船不是简单的由小到大,而是好像从远处海平面以下钻出来一样,于是人们开始对海平面是否真的平,地球是否真是无限大的平面开始的怀疑,由于对地球形状的各种猜测,其中毕达哥达斯从球形是最完美的几何体的观点出发,认为大地是球形的,太阳、月亮和行星作匀速圆周运动思想。他认为地球沿着一个球面围绕着空间一个固定的“中央火”转动,另一侧有一个“对地星”与之平衡。这个“中央火”是人类永远看不见的。他认为天上发光体必然有十个,这十个天体到中央火之间的距离同音节之间有同样的比例关系,以保持星球的和谐,从而奏出天体的音乐。这使人想起了目前的超弦理论。(参考朱伟勇 朱海松《热抽象》P5)。 二、以“经典力学”为理论基础的绝对时空观 希腊人用几何方法来解释行星的运动,公元2世纪时出现的托勒密地心体系就是这些学说的代表。这个体系统治了十四个世纪之久,直到16世纪哥白尼日心体系的出现,到了17世纪以惯性系为基础的伽利略相对性原理的出现。于是有了以牛顿三大运动定律和万有引力定律为基础的经典力学的建立,也有了以经典力学为基础的绝对时空观念。牛顿认为绝对真实的数学时间,就其本质而言,是永远均匀地流逝,与任何外界无关。绝对空间就其本质而言是与任何外界无关的,它从不运动,并且永远不变。认为空间是立体的,OX、OY、OZ构成三维立体的空间,而且他把空间和时间分割开来,空间对时间没有明确定义,而是一个自然流动的均匀变化轴。经典时空认为同时的绝对性,时间间隔的绝对性,空间距离的绝对性,质量的不变性。所以时间、长度和质量这三个基本物理量在经典力学中都与参考系(观察者)的运动无关。 3.以“光速不变”为理论基础上的相对论时空观 1905年,爱因斯坦连续发表了5篇文章中,狭义相对论彻底改变了人们的时空观念。根据这一理论,“时间或空间因时因地而异,会发生膨胀或收缴”。后来这个理论发展成为一种用来解释宇宙现象的引力理论,既广义相对论。狭义相对论两条基本假设是:一是相对性原理。在不同的惯性参考系中,一切物理规律都是相同的;二是光速不变原理,不管是有哪个惯性参考系中,测得真空中的光速都相同。 关于“同时的相对性原理”的说明要从“爱因斯坦的奶牛梦”说起,爱因斯坦在青少年时做了一个很特别的梦,其梦境如下,在一个风景如画的牧场上有许多奶牛在带电的栅栏附近懒散的吃着草。当农夫给栅栏通上电时,农夫看到三头牛依次跳起来,而站在对面的爱因斯坦却看到三头牛一起跳起来。(参考《比光速还快》/P11¬¬¬¬---P8/乔奥.马古悠(Joăo Magueijo)著)那么在以上现象中,农夫和爱因斯坦谁错了?答案是谁都没错,这就是相对性原理。如图1所示,当在A位置的农夫合上电源开关起,电流以光速向奶牛的方向运动,当B牛受到电击跳起的景象回到农夫眼前所用总的时间为: 其中C为光速,同理农夫看到C位置的牛跳起距开关合上的时间为: ;农夫看到D位置的牛跳起距开关合上的时间为 。由于三头牛距农夫的距离不同,所以对农夫来说三头并不是同时跳起的。对于在农夫对面的观察者E来说,由于光和电传播的速度相同,因此,他看到的是三头牛同时跳起,对于同一类事件,由于观察者的位置不同,看到的其发生的时间是不同的,这就是相对性原理。爱因斯坦认为宇宙中不会有绝对静止的场所,从而否定了牛顿的绝对坐标,他认为任何惯性系(静止或匀速运动的系统)都与静止场所(坐标)没有区别。这就是狭义相对论的基础之一“相对性原理”。而狭义相对论的另一个基础就是“光速不变原理”,既使观测者或光源在移动,光对于观测者总是以每秒30万千米的速度行进。 相对论一个核心问题就是认为时间并不是绝对的,高速运动(接近光速)的物体,时间流速变慢,用公式 表示。其基本原理如图2所示,若飞船以接近光速向前飞行,在飞船中有一束光由A射向B,根据相对性原理,在飞行过程中,飞船上的人观测到的光运动的时间为: ,既相对于飞船上的观测者光走的是直线;而在飞船外看到飞船运动的观测者来说,这条光线是由A射向D,光线运动所用的时间是: ;显然由于SAD≻SAB=SCD,则有t2≻t1,也就是说对于飞船外的观测者来说,相对于飞船内的观测者,光线运动的时间变长了。 相对论的另一个核心问题是认为高速运动物体(接近光速),空间(长度)将发生收缩。用公式 表示。其基本原理如图3所示,在A处的观测者首先看到飞船的船头C,而此时的船尾在E处,当观测者的目光看到船尾时,船尾已经运动到了D点,而此时船头运动到了C点,这样对观测者来说,他看到的飞船长度只是SCD长度,而不是飞船的原来SCE的长度,飞船在运动方向上被压缩了。 狭义相对论的一个令惊奇的预言就是宇宙间任何物体运动都有一个速度上限,这个上限就是光速。也就是说无论用多么先进和技术对物体怎样加速,物体的速度都不可能超过光速,物体被加速时,其质量增大,所以物体越接近光速,加速就越困难,根据公式 可知,要想使物体达到光速几乎是不可能的。这一点我们仅通过光子在运动时有质量,在静止时没有质量就可见一斑。质量和能量是一会事,用公式 ,既用很小的质量转化为非常大的能量,这也是狭义相对论的一个关键点。 综上所述爱因斯坦关于同时的相对性、运动的时钟变慢、运动的空间收缩和运动的质量变大这四个观点已经彻底颠覆了牛顿的绝对时空观念。而爱因斯坦在把狭义相对论加以发展,将引力也纳入考虑之中建立起来的广义相对论引入的四个原理让我们对时空有了新的认识。其广义相对性原理如下:一是等效原理既在加速运动的场所观测出现的惯性力在本质上与引力没有区别,如在下落的箱子中,引力被惯性力完全抵消,引力滑失,这就是等效原理。二是引力使光线弯曲,因为光在运动时有质量,所以也受到万有引力作用,因此光线在地球或太阳附近发生了弯曲,这可以通过日全食时对隐藏在太阳后面星体的观测得到证明。黑洞也是光线弯曲或受到引力作用的一个证明。三是引力使空间发生弯曲,质量大的天体使光线弯曲,光在空间弯曲的部分也是直线行进,其结果就是在大质量的天体附近空间发生了弯曲,或者说整个宇宙是一个卷曲的空间。四是引力使时间流动变慢,引力越强,时间流动的越慢,在引力特别强的黑洞附近的天体,离它越近,时间流动越慢。如果行进到黑洞视界,时间甚到会停止。与狭义相对论不同的是,在引力强的地点,时间流动不是相对变慢,而是必然变慢,这一点在全球定位系统的运行中,已经得到了证明,且科学家们如果不去修正由于引力变化引起的时钟效益,卫星系统定位就不会在准确了。 四、以“混沌分形”为理论基础上的新时空观 自然界中大部分不是有序的,平衡的,而是处于无序的、非平衡的和随机的状态之中,它存在着无数的无序状态。在非线性世界里随机性和复杂性是其主要特征。但在表现之下还存在着某种自然规律。混沌分形理论以新的手段来处理这些难题,透过扑朔迷离的无序混乱现象和不规则形态,提示隐匿在复杂系统内部的规律,以及局部和整体之间的联系。 大物理学家约翰•惠勒(黑洞的命名者)说过,将来一个人如果不能熟悉混沌与分形,他就不能被认为是科学上的文化人。分形理论是美国科学家曼德勃罗(B•B•Mandel brot)1975年第一次提出“分形Fractal” 作为一个集合提出来的。分形理论的建立和迅速发展,涉及到几乎整个自然科学和社会科学。分形从字面上来说,分形是极其零碎而复杂的,但又有自相似和自仿性,它们在自然界中普遍存在。如变幻莫测的云彩、雄浑壮阔的地貌、弯转曲折的海岸线、生物神经网络、不断分叉的树枝、江河及支流的走向网络等等。面对这些事物与现象,传统科学显得束手无策,而分形理论却大显身手,成为研究这些复杂事物的有力武器。所谓分形最简单的例子就是一棵树,如折其一主干、分枝、小杈,你会发现它们会有惊人的相似之处,小树杈很像大树的模型,大树又像小树的放大;又如江河的三角洲的相似之处,我们可以从地图上、飞机上、地面上看到从大到江河、小到小溪及细流,其分支形态与三角地带的几何形状成有很多相似之处;又如人体从大到动脉、静脉、小到毛细血管、其走向和分支形态都有同样的相似之处,这就是大自然让我们见到的分形理论。我国的一句名言“齐家、治国、平天下”是说一个人如果能治理好一个家庭,就能治理国家,也能平天下,这是分形理论在社会学上的体现;而“一叶知秋、一芽知春”也是分形理论的早期应用。就连《三国演义》的开篇“话说天下大势,合久必分,分久必合”也是分形理论在历史发展中的应用。综上所述,分形理论是我们对时空观的一次重新的认识。 关于混沌的探索早在二十世纪初许多科学家在研究三体问题中就提出来了,我们知道运用牛顿力学很容易计算出二体运动的轨道,而太阳、地球、月球这三个天体之间共同的运动规律到现在还没有很好的解释,这就是所谓三体问题,也是混沌问题研究的一个重要开始。因为在这个问题中包含许多我们认识自然界的基本的、原始的、直觉的、创新的东西在里面。这需要新思维、新理念、新方法、新理论。在这种历史背景下,人类从新认识自然和时空的理论混沌学出现了。“蝴蠂效应”作为研究混沌问题的著名例子,已经成为许多了解混沌学的一个窗口。“蝴蠂效应”是说明在已经建立的轨道上,在微小的干扰下,运动轨道会发生巨大的变化。为了描述混沌的复杂性系统的极端敏感性,洛沦兹打了个比喻,在南半球某地一只蝴蝶的偶然扇动翅膀所引起的小气流,几个星期后可能变成席卷北半球的一场龙卷风。“十月革命的一声炮响,给中国传来了马列主义”就是引起中国革命和世界社会主义革命的“蝴蠂效应”。而一棵马蹄钉跌倒一个王子,一个王子输掉了一场战争、一场战争失掉了一个王国,同时也改变了整个世界,这就是历史发展中的“蝴蠂效应”。混沌学研究的是无序中的有序,许多现象既使遵循严格的确定性的规律,但大体上仍然是无法预测的,混沌事件在不同的时间标度下表现的相似的变化模式,这与分形在空间标度下表现的相似性十分相似,混沌主要讨论非线性动力系统的不稳、发散的过程,但系统在相空间总是收敛于一定的吸引子,这与分形的生成过程十分相似。混沌学与分形理论在很大程度上依赖于计算机的进步,并向传统的数学提出了全新的挑战。由于混沌理论的不确定性,和未来的不可预测性和无序中的有序,难免让人想起中国的易经、外国的星象术和一些宗教活动及预测等是否可以归纳为人们经过几千年的探索所解决问题的一种混沌现象呢?而在扑朔迷离的宇宙学中,人们只想用现有普遍的规律解释所观测到的天文现象,而最新的研究在宇宙中有许多我们不可知和难以解释的现象,如2003年10月美国加州理工学院迈克.•布朗(Mike Brown)等科学家发现的新天体能否算做太阳系的第十大行星,在海王星外为什会有大角度倾角轨道天体,在海王星外发现的大约1000多棵行星运动有什么样的规律,在宇宙学中还多少现象也许只能用混沌和分形理论去探索和解释。 五、建立在“光速改变”(VSL)新理论基础上的时空观 伴随着新世纪到来,物理学所面对的也和百年前一样是层层迷雾,超越爱因斯坦学说的物理学理论有可能出现。而剑桥大学理论物理学博士乔奥.马古悠(Joăo Magueijo)提出的VSL理论(varying speed of light “光速改变”理论)是近年来出现的解读宇宙寘实本质的一个不凡的疯狂点子,因为他向爱因斯坦理论的核心发起了挑战。VSL理论是:光速在早期宇宙比现在快,这么假设的话,至少部分宇宙问题不需要暴胀理论就可以解释,事实上在运用光速改变理论解决宇宙之谜时,宇宙几乎在告诉我们,光在以前行进得较快,而最基本的物理学理论似乎必须构建在比相对论更宽的结构上。让人兴奋的是近期澳大利亚国立大学的物理学家们利用稀土元素镨的硅酸晶体,制造出一个“超级光陷阱”。成功将光束“冻住”一秒钟,既然光束能被冻住,那不就是从实验否定了光速是不可改变的理论,证明光速是可以改变的。 按VSL理论里,光速不仅会随宇宙演化而变化,也会在不同空间发生变化,在接近行星与恒星时,这种效应几乎察觉不到,但是靠近黑洞时会有更剧烈的事清发生,研究方程表明,在视界时光速本身可能变为零。根据保守的VSL理论,如同狭义相对论里,光速应是个速限,只是可能会随地点不同而相异,你的速度永远必须比当地的C小,所以当速度极限降到零时,你将遇上终极红灯,你必须停在VSL黑洞的视界前。在悬崖边,你的自杀企图将初被阻止。VSL黑洞会封闭防止灾难。无论我们如何定义时间,这些时钟在靠近黑洞时会滴答的不一样,然而生物过程本身便具有电磁本质,也就是说人们老化的速度事实上便是极佳的电子时钟。我们发现在接近黑洞时,我们会老化的更快,不是因为爱因斯坦所说的时间延滞效应所造成,而是因为电磁作用的发生速度更快所致。因此当我们接近一个VSL黑洞时,心跳会加速,老化也会更快,或者倒过来说,当我们以自己生命的步调来测量,会看到自己朝向视界的运动变慢了。也就是说,就我们来看,接近视界要花上永恒的时间,然而若是C维持恒常,则可能只有一秒闪过而已。在VSL之下,视界更近,但是也是更难达到。VSL黑洞的视界就像是无穷远的目标,像太空无法触及的边缘,界限之后存在着奇妙的永恒。 VSL理论更惊人的理论意义在于当C可能在时间我空间里改变之后,又可能出现一个“快速道路”,建立在VSL场理论和宇宙弦的形式出现,沿着这些弦的方向光速可能会更高,在靠近弦之处的光速会变得更大,仿佛是一个超光速覆盖包含宇宙弦,这会创造一个走廊,具有一个极端高的速度极限延伸到宇宙,而这正是太空旅行所企求的一条快车道。但这甚至比快车道更好!沿VSL宇宙弦,时间仍然延滞效应,但是唯有当旅行者的速度相比于光速时(在这个理论里意味关C当地值),这种效应才会变得明显,既然沿着一个VSL宇宙弦时,C值可能会更高,所以可能在已经是很高的速度移动时,却仍然比C的当地值慢得多,因此时间延滞将可忽略。所以人类可以沿着快速道路超速移动,探索宇宙最遥远角落,但仍然比当地光速慢的多,他将能够避开“双子佯谬”的效应,在他返回时还是跟自己的孪生兄弟一般年纪。他不仅能够在有生之年拜访远方的星系,也可以在同代人有生之年返回家园。VSL理论将会改变我们对自己在宇宙中的看法,也会改变我们对于外星生命接触的期望。 六、建立在“超弦理论”基础上的多维时空 目前,有一新的理论认为,在亚原子的世界里,也就是在极度小的超微空间中的基本粒子不在是我现实中能够观察到的粒子,所谓基本粒子的存在只是一种微小振动的弦在微观世界的表现,这就象我们现实生活中看到的弦乐器中的一根普通的弦,它能奏出多种美妙的音乐。而在超微观世界中,正是有许多我们用现代任何仪器都无法观察到的弦的振动,形成一个丰富多彩的微观基本粒子大家庭。超弦理论认为世界是多维的,我们现在是生活在三维空间,或加上时间轴的四维时空中,而按其理论推导,应当还存在六维甚至是十维时空,让人不解的是,按照这种多维时空理论,通过数学的方法不难推导出爱因斯坦的狭义和广义相对论,相对论理论不再是天才的爱因斯坦的假想为基础建立起来的理论,而是通过严谨的数学理论推导出来的结论。在建立弦理论基础的多维时空理论下,把宇宙中的四种基本的力(强相互作用、弱相互作用、电磁力和万有引力)得到了统一,困惑物理学界多年的大统一理论在这个多维的超时空理论基础上得到了完美的解决。超弦理论和多维时空理论虽然完美和令人着谜,由于需要巨大的人类近几个世纪都不可能获得的能量(1028电子伏,是我们现在加速器可获得最大能量的1015倍),因此,这种理论属人类似乎永远难以通过实验来验证的理论。这一理论能否长期存在下去也许就只有上帝才知道。 说到多维时空,我们不得不从一维世界讲起,这里我们假如存在一个“直线国”,那里生活的人,他们每个人都生活在直线这样的一维时空里,他们只能生活在直线上,在他们的国度里根本没有平面这个概念,假如有一天,有一个直线国的人突然离开了直线,于是在他们的国度里就很难理解,这个人为什么会突然消失,这对直线这个一维空间的人是不能理解的,这就是一维世界。二维世界应当只是一个平面,假如有这样一个“平面国”,那生活在这个国度的人只有平面的概念,对他们我们完全可以画地为牢,只要你用笔画一个圈,他们就永远无法离开这个圈,因为在他们的世界里,根本就没有向上这个概念,假如有一个球经过他们的世界,那他们也只能看到一个从小到大,又从大到小的圆,最后,变成一个点后消失,至于球从那里来,最后消失到什地方,那对他们来说是不可想象的。三维世界就是我们现在生活的世界,在这个世界里人们认为空间是绝对的,对于他们来说,四维是不可想象的,也是不存在的,这就象前面说过的牛顿绝对时空观,他把时间和空间割裂开来,认为空间是绝对的,时间是均匀流淌和永恒不变的。爱因斯坦打破了牛顿的绝对时空观,建立了空间,时间组成的四维时空,他认为时间和空间都是相对的。那么,存不存在五维时空呢?从数学的角度,早在十九世纪五十年代,德国数学家黎曼超越了欧几里几何学,提出了四维空间的概念,创造性的提出了一个全新的被后人称之为黎曼几何学,为统一物理学所有定律做好了理论准备。二十世纪,多维理论又一次成为科学界的热门话题,有科学家重新提出了多维时空的理念,并进行了有效的计算,值得一提的是爱因斯坦的相对论中美妙的质能方程,就是通过数学的早期弦理论推导出来的,这不得不让人感到大自然之奇妙。 近来,弦理论已经成为物理学界一个热门话题,物理学家们认为。宇宙中不但存在五维时空,还存在六维甚至是十维时空,在早期的宇宙中,处于一个绝对真空中的奇点,此时存在一个十维时空,但十维时空是不稳定的,于是产生了我们这个宇宙的创生,在宇宙创生时期,十维时空断裂为四维时空和六维时空,六维时空收缩为无限小的奇点,四维时空处于宇宙的大爆炸阶段,于是有了现在我们这个暴胀的宇宙,倡导十维时空学说的科学家们认为我们这个宇宙在爆炸中创生,将来会变成收缩中的宇宙,并再次收缩为一个奇点,然后在重复宇宙创生的一幕,这就是宇宙的未来。多维时空理论能够很好的把爱因斯坦终没能解决的大统一理论进行完美的解释,并统一了人类目前所认识的自然界的四种相互作用力。《时间简史》作者,物理学家霍金认为宇宙最终要用量子理论来解释,我们生活的这个宇宙是众多平行宇宙中的一个,对于宇宙就像是飘在空中的众多肥皂泡一样,每个肥皂泡都是一个宇宙,各个肥皂泡之间是没有任何联系的,这就是霍金近来提出的新的宇宙观,他认为我们只不过是生活在多维平行宇宙中的一个,如果有可能在两个宇宙之间打开一个洞,也就是所为的蛀洞,那么人类通过这个蛀洞就可以实现超越时空的旅行。 七、超越时空的外层空间的三类文明 在结束本文之前,让我们在了解一下前苏联天文学家卡尔谢夫(Nikolai Kardashev)曾经以下面方式对人类未来文明进行分类。他认为:一类文明控制了整个行星上的能源的那种文明。这种文明能够控制气候,阻止地震,在地壳中采矿,以及在海洋中收割。这种文明已经完成了其在太阳系的探险。二类文明是控制太阳本身能量的文明,并不意味着被动地获取太阳能。这种文明可以开采太阳能。这种文明的能量需求如此之巨大,它直接消耗太阳能量来驱动机器。这种文明将开始局部恒星系统的殖民化。三类文明是控制整个星系能量的文明。就能源而言,它控制数十亿个星系统的能量。它可能掌握了爱因斯坦方程组,能够随意操纵时空。也许这种对未来文明的分类是错误的,但他确实就能量方面对物理定律进行了合理的解释。我们人类科学技术进入高速发展只走过了短短的几百年的历史,目前,还没有具备第一类文明的条件,人类在距走进第一类文明还有许多的路要走,还有许多风险。如核危机,现在人类所储存的核武器已经足够毁灭几次地球上的现代文明,假如某个人类狂人发动核战争,那地球将在核冬天中走向荒漠,也许今天的火星就是明天地球的命运。现在伴随着人类现代化进程的加快,人类生存环境变的越来越脆弱,而人口的爆炸式增长和现代建筑的增多,人类赖以生存的土地将越来越少,地球将成为钢筋水泥组成的城堡,环境污染、能源危机、自然灾害等诸多因素使这看似强大的人类将变得空前脆弱,任何人类预想到的或预想不到的、自然的、人为的突发事件都可能使这个蓝色星球处于极度危险之中甚至是毁灭。最后笔者衷心的祝愿人类能够珍惜环境、珍惜和平、珍惜大自然的和谐发展,祝愿人类平安的走向高明文明和高度现代化。 主要参考资料: 1、《比光速还快》/乔奥.马古悠(Joăo Magueijo)著/赵文译/湖南科学出版社/2005年5月/长沙 2、《热抽象》/朱伟勇 朱海松/广东经济出版社/2003年9月/广州 3、《在爱因斯坦的时空旅行》/ Gott著/刘军译/长春出版社/2004年1月/长春 4、《超越时空》/加来道雄/刘玉玺 曹志良/上海科技教育出版社/1999年5月/上海 5、《现代物理与高新技术》/何宝鹏/“广义相对论原理与应用”/张学荣/广东科技出版社/2000年1月/广州

(一)论文名称论文名称就是课题的名字第一,名称要准确、规范。准确就是论文的名称要把论文研究的问题是什么,研究的对象是什么交待清楚,论文的名称一定要和研究的内容相一致,不能太大,也不能太小,要准确地把你研究的对象、问题概括出来。第二,名称要简洁,不能太长。不管是论文或者课题,名称都不能太长,能不要的字就尽量不要,一般不要超过20个字。(二)论文研究的目的、意义研究的目的、意义也就是为什么要研究、研究它有什么价值。这一般可以先从现实需要方面去论述,指出现实当中存在这个问题,需要去研究,去解决,本论文的研究有什么实际作用,然后,再写论文的理论和学术价值。这些都要写得具体一点,有针对性一点,不能漫无边际地空喊口号。主要内容包括:⑴研究的有关背景(课题的提出):即根据什么、受什么启发而搞这项研究。⑵通过分析本地(校)的教育教学实际,指出为什么要研究该课题,研究的价值,要解决的问题。(三)本论文国内外研究的历史和现状(文献综述)规范些应该有,如果是小课题可以省略。一般包括:掌握其研究的广度、深度、已取得的成果;寻找有待进一步研究的问题,从而确定本课题研究的平台(起点)、研究的特色或突破点。(四)论文研究的指导思想指导思想就是在宏观上应坚持什么方向,符合什么要求等,这个方向或要求可以是哲学、政治理论,也可以是政府的教育发展规划,也可以是有关研究问题的指导性意见等。(五)论文写作的目标论文写作的目标也就是课题最后要达到的具体目的,要解决哪些具体问题,也就是本论文研究要达到的预定目标:即本论文写作的目标定位,确定目标时要紧扣课题,用词要准确、精练、明了。常见存在问题是:不写研究目标;目标扣题不紧;目标用词不准确;目标定得过高, 对预定的目标没有进行研究或无法进行研究。

思路:根据题目数学科普小论文展开,并结合实际情况加以说明。

今天,我在做题时被一道应用题给难住了。这道题的题目是:小华今年3岁,今年爸爸26岁,几年后爸爸的年龄是小华的3倍,我百思不得其解。

后来妈妈回来了,我就请教妈妈。妈妈帮我分析:根据这个题目的条件可知,今年爸爸和小华的“年龄差”是26-4=24(岁)。再根据“爸爸的年龄是小华的3倍”这一关系,画张图试试。我们俩就开始画了起来。

画了图之后,我马上明白过来了:他们俩过了几年后,“年龄差”还是24岁。再根据差倍问题的解法求出几年后小华的年龄,用几年后小华的年龄减去2岁,就可以求出中间经过了几年了。

解是:26-2=24(岁)

24÷(3—1)=12(岁)

12-2=10(年)

答:10年后爸爸的年龄是小华的3倍。

妈妈又让我验算一下,10年后爸爸的年龄是不是小华的3倍。

(26+10)÷(2+10)=36÷12=3

耶!我答对了。看来做题先得画图,画了图就能就一目了然了。

  • 索引序列
  • 小学数学文化为主题的论文
  • 数学文化为主题的论文
  • 以节水为主题的数学小论文
  • 以春节为主题的数学小论文
  • 议科技与数学为主题的小论文
  • 返回顶部