首页 > 期刊论文知识库 > 多边形演示器研究论文

多边形演示器研究论文

发布时间:

多边形演示器研究论文

关于虚拟现实的科技论文1500字篇二 医学虚拟现实技术研究 【摘要】医学虚拟现实技术(MedicalVirtual Reality Technology),作为一门新兴学科目前正在逐步形成之中,它是集医学,生物力学,机械学,材料学,计算机图形学,计算机视觉,数学分析,机械力学机器人等多学科为一体的新型交叉研究领域。而医学虚拟现实技术是一种悄然进入医疗教育领域的全新技术策略,它势将为未来医疗技术的发展提供了更为广泛的前景。 【关键词】数据过滤;数据转换;虚拟视觉环境显示;立体影像 Abstract:Medical Virtual Reality Technology(Medical Virtual RealityTechnology),as an emerging discipline is now being gradually isa new multi-disciplinary field of cross-over study with aspects in medicine,biomechanics,mechanics,materials science,computer graphics,computer vision,robotics,and mathematical medical virtual reality technology isprogressively becoming an essential part the medical is an importantfield that will lead to the discovery of new medical technology. Keywords:data filtering;data conversion;VIVED;stereo image 1.虚拟视觉环境显示(Virtual Visual Environment Display-VIVED) 由美国宇航局约翰逊宇航中心(JSC)等部门,使用虚拟现实技术为人们提供了一个别出心裁的医学教育策略。它集成了所有囊括人类颅骨和心脏的虚拟现实技术,为人们提供了与其他多媒体(音频、视频等)的交互能力[1]。 2.虚拟手术(Virtual Surgery) 作为医学虚拟现实技术领域正在发展起来的一个研究方向,其目的是利用各种医学影像数据,采用虚拟现实技术,在计算机中建立一个摸拟环境,医生借助虚拟环境中信息进行手术计划制定,手术演练,手术教学,手术技能训练,术中引导手术,术后康复等工作,虚拟手术充分体现虚拟现实作为计算机图形学在医学治疗过程的作用。 3.硬件 一台由Silicon Graphics公司生产的Reality Engine计算机,被用来打开计算轴向体层摄影术(CAT/CT)和磁共振成像切片,放入三维容积图像和可产生身体"飞行"观察效果的电影中。在具有16M内存的Macintosh IICX计算机上观看最终的3D图像。之所以先择Mac是因为它的性价比和音像都优于同类PC,另外它在北美各学校系统被广泛使用,可以说它是桌面多媒体的领跑者,并且有各种各样的软件和硬件支持它。而VR电影可以存储在硬盘上,或转移到CD上,并通过红蓝眼镜观看。它也可以使用虚拟现实头戴式显示器(HMD)或双目全方位显示器(臂架系统)查看。最终图像可以存储在CD-ROM或激光视盘上。 4.软件 文件转换和数据准备 加尔维斯顿提供的厚度为的人类头骨CAT/CT切片和心脏的MRI的切片被用于创建3D图像。在对头骨的CT扫描过程中要经过一个泡沫带,因此会有一些无用数据被生成。颅骨扫描的结果是生成一个数据集,其中有超过120片通过颅骨,60片通过下颌骨(下巴),而心脏的MRI扫描可导出200片的数据集。将医学分会创建的数据文件,送至IGOAL公司(集成显卡,操作和分析实验室)。在那里进行扫描和筛选,去除无关数据,且尽可能不丢失任何重要信息。IGOAL公司开发出一种名为“Ctimager”的工具,用于阈值计算,从而把切片中不需要的噪声和无关数据去掉。 数据过滤和体数据转换为多边形数据 使用被IGOAL称为“dispfly”的开发工具,在稍后可将转换大量的数据直接由计算机显示出来。此工具用于多个过滤算法准备CT和磁共振成像数据转换为多边形的窗体。解剖模型是基于移动的多维数据集算法生成的。滤波处理通常包括阈值化的数据,以消除大部分噪声的。一个低通滤波器被用于最小化,将产生一个不规则的表面凹凸不平,当输入到算法中的高频噪声。这个过程产生相对平滑的表面,其近似扫描样品,并减少产生的噪声的多边形数量。一个独特的过滤器对心脏数据仅平滑扫描之间的数据创建,是不需要其他的过滤[2]。由于心脏和颅骨有大量的数据集切片,几种模式被建立,其中每一个代表一个少量切片。一个网格算法,“meshit”,后来发展到提高显示性能。这种算法转换成高效条状的三角形的原始集合。平均超过100三角形组成每个三角形条带。。 产生立体图像 建成模型后,立体声序列被渲染。IGOAL公司开发了一种名为OOM(面向对象操纵器)工具,用来把经过渲染的每一帧存储到磁盘上,这些图像用红色和蓝色的色彩分离为代表的立体图像。一旦这些序列被记录到磁盘上,数据的格式就被转换成格式,全彩色图像序列的按非立体观看转移到Mac上。 立体影像及多媒体 对Mac图像进行编辑,以产生所希望的效果,如数字化的尸体覆盖或插入文本描述什么正在被观看。使用Apple的QuickTime扩展,图像被转换为QuickTime电影动画在Mac上。 5.结论 CT扫描头骨的医疗图像,由Macintosh计算机通过处理头盔显示器或臂式系统的信息,最终生成高质量VR图像。目前科学家正试图用磁共振的成像数据生成了一个心脏VR模型。 初步结果显示,可以使用这种类型的成像数据开发出高分辨率模型。而为了保持高质量VR成像目标,大量的数据是用帧序列来描述的,由此会产生一些问题。为了缓解这个问题,科学家们正在探讨替代的硬件和软件解决方案。 另一个问题是该技术针对HMD的显示系统。为保持一个高品质的虚拟现实体验,液晶显示器对分辨率没有要求。在CRT显示器在多种教育平台上都可以满足分辨率的要求,但是成本过高。外科手术模拟可能成为例程,尤其是在制定综复杂和罕见的手术方案时。 6.在VIVED的应用和研究现状 当前的研究,强调创建一个高分辨率的人体虚拟现实模拟器用于教育目的的重要性。而应用这项技术必须充分理解其复杂的三维关系,如在下面的领域:解剖学教育,各类机械设备,生化,病理学研究,外科医生,模拟整形外科和利用内窥镜培训外科医生等。 7.其他应用程序 随着医学虚拟现实技术的发展,新的教育解决方案和策略如雨后春笋般不断出台。如北卡罗莱纳大学教堂山分校利用超声波,MRI和X射线创建的动态影像放射治疗的“预测”模型。达特茅斯医学院创造出人脸和下肢的数学模型,用于研究外科手术的效果评估。绿叶医疗系统在帕洛阿尔托开发出“EVAL”和“手套健谈”系统,作为实现“评估和演示”系统。使用传感器做衬里的数据手套和数据西装获取更大的使用范围,对运动损伤和残疾病人进行行之有效的损伤程度度量。“手套健谈”是帮助病人康复的数据手套的手语装置,让人无需发声(中风或脑性麻痹患者),仅使用计算机能够理解的手势。而使用头盔显示器使得需要康复的病人可以重新学习,如开关门,行走,点或转身的行为[3]。 8.结语 将CT扫描的头骨医学图像在Macintosh电脑上使用一个头盔显示器或臂架系统便可生成高质量的VR图像。目前科学家们正在开发根据磁共振成像数据生成心脏的VR模型。初步的研究结果表明,高分辨率模型可以使用这种方法的成像数据技术来实现。要想维持高质量虚拟现实的目标成像,必须适当调整“飞穿”的帧序列的数据量。而其它文明拟定的硬件和软件解决方案也正是为了探索缓解这一问题。再有就是该技术是针对HMD的显示系统技术。因为在各种医学教育平台中,LCD显示屏不涉及维持高质量的虚拟现实问题,而要实现高分辨率CRT显示器的成本又太高。 参考文献 [1]"NASA TECHNOLOGY TRANSFER Commercial Applications of Aerospace Technology",National Aeronautics and Space Administration,Technology Applications. [2]Porter,Stephen,"Virtual Reality",Computer Graphics World,(March,1992),42-54. [3]Sprague,Laurie A.,Bell,Brad,Sullivan,Tim,and Voss,Mark,"Virtural Reality In Medical Education and Assessment",Technology 2003,December 1993. 通讯作者:娄岩。 看了“关于虚拟现实的科技论文1500字”的人还看: 1. 大学科技论文2000字 2. vr技术论文2000字 3. vr虚拟现实技术论文 4. 计算机仿真技术论文范文 5. 虚拟与现实作文800字

最近,端到端场景文本识别已成为一个流行的研究主题,因为它具有全局优化的优点和在实际应用中的高可维护性。大多数方法试图开发各种感兴趣的区域(RoI)操作,以将检测部分和序列识别部分连接到两阶段的文本识别框架中。然而,在这样的框架中, 识别部分对检测到的结果高度敏感(例如,文本轮廓的紧凑性)。 为了解决这个问题,在本文中,我们提出了一种新颖的“Mask Attention Guided One-stage”文本识别框架,称为MANGO,在该框架中无需RoI操作就可以直接识别字符序列。具体而言:

值得注意的是,MANGO自有地适应于任意形状的文本识别,并且仅使用粗略的位置信息(例如矩形边界框)和文本注释就可以进行端到端的训练。实验结果表明,该方法在规则和不规则文本识别基准(即ICDAR 2013,ICDAR 2015,Total-Text和SCUT-CTW1500)上均达到了有竞争力甚至最新性能。

场景文本识别由于其各种实际应用而备受关注,例如发票/收据理解中的关键实体识别,电子商务系统中的产品名称识别以及智能运输系统中的车牌识别。传统的场景文字识别系统通常分三步进行:定位文字区域,从原始图像中裁剪文字区域并将其识别为字符序列。然而尽管这种文本识别模型带来了许多可考虑的问题,例如: (1)错误将在多个单独的任务之间累 (2)维护多个单独的模型的成本很高 (3)该模型难以适应各种应用程序。

因此,提出了许多工作以端到端的方式来最终优化文本识别过程。这些方法通常使用各种兴趣区域(RoI)操作以可微分的方式桥接文本检测和识别部分,从而形成了两阶段框架。粗略地说,早期的端到端方法将轴对齐的矩形RoI用作连接模块。这些方法处理不规则的(例如,透视图或弯曲的)文本实例能力有限,因为这种类型的RoI可能会带来背景或其他文本的干扰。为了解决这个问题,后来的方法(设计了一些形状自适应RoI机制来提取不规则物体。文本实例并将其校正为规则形状。

图1:传统的两阶段文本识别过程和提出的MANGO的图示。 图(a)显示了通过RoI操作连接检测和识别部分的两阶段文本识别策略。 图(b)是一种提出的单阶段文本识别方法,它可以直接输出最终的字符序列。

在两阶段方法中,识别部分高度依赖于定位结果,这就要求检测部分必须能够捕获准确的文本边界以消除背景干扰。因此,训练鲁棒的文本检测模型依赖于准确的检测注释,例如在不规则文本识别中使用的多边形或蒙版注释。自然地,标记这种注释是费力且昂贵的。另一方面,要确保紧紧封闭的文本区域(由检测注释进行监督)对于以下识别任务而言是最佳形式,这并不容易。例如,在图1(a)中,紧密的文本边界可能会擦除字符的边缘纹理并导致错误的结果。 通常,需要手动扩展这些严格的检测结果,以适应实际应用中的识别。 此外,在proposals之后执行带有非极大抑制(NMS)的复杂RoI操作也很耗时,尤其是对于任意形状的区域。尽管(Xing et )提出了一种单阶段采用字符分割策略的字符级别的识别框架, 但很难扩展到具有更多字符类别(例如汉字)的情况。 它还会丢失角色之间的关键上下文信息。

实际上,当人们阅读时,他们不需要描绘文本实例的准确轮廓。通过视觉注意力关注的粗略文本位置来识别文本实例就足够了。在这里,我们将场景文本识别重新考虑为注意力和阅读的问题,即,一次直接读出粗略注意的文本区域的文本内容。

在本文中,我们提出了一种名为MANGO的“Mask Attention Guided One stage”文本监视程序,称为MANGO,这是一种紧凑而强大的单阶段框架,可直接从图像中同时预测所有文本,而无需进行任何RoI操作。具体来说,我们引入了一个位置感知蒙版注意力(PMA)模块以在文本区域上生成空间注意力,该模块包含实例级蒙版注意力(IMA)部分和字符级蒙版注意力(CMA)部分。 IMA和CMA分别负责感知图像中文本和字符的位置。可以通过位置感知注意力谱直接提取文本实例的特征,而不必进行显式的裁剪操作,这尽可能保留了全局空间信息。 在这里,使用动态卷积将不同文本实例的特征映射到不同的特征谱通道(Wang等人,2020c),如图1(b)所示。之后,应用轻量级序列解码器一次批量生成字符序列特征。

请注意,MANGO可以仅使用粗略的位置信息(例如,矩形边界框,甚至是文本实例的中心点)进行端到端优化,还可以使用序列注释。 受益于PMA,该框架可以自适应地识别各种不规则文本,而无需任何纠正机制,并且还能够了解任意形状的文本的阅读顺序。

本文的主要贡献如下: (1)我们提出了一种名为MANGO的紧凑而强大的一阶段文本识别框架, 该框架可以以端到端的方式进行训练。 (2)我们开发了位置感知蒙版注意力模块,以将文本实例特征生成为一个batch,并与最终字符序列建立一对一的映射。 只能使用粗略的文本位置信息和文本注释来训练该模块。 (3)广泛的实验表明,我们的方法在规则和不规则文本基准上均获得了有竞争甚至最新的性能。

早期场景文本发现方法(Liao,Shi,and Bai 2018; Liao et ; Wang et )通常首先使用训练有素的检测器来定位每个文本,例如(Liao et ; Zhou et ; He et ; Ma et ; Xu et ; Baek et ),然后使用序列解码器识别裁剪后的文本区域(Shi et ; Shi,Bai和Yao 2017; Cheng et ; Zhan and Lu 2019; Luo,Jin and Sun 2019)。为了充分利用文本检测和文本识别之间的互补性,已经提出了一些工作以端到端的方式优化场景文本发现框架,其中使用了模块连接器(例如RoI Pooling(Ren等人,2015a))在(Li,Wang,and Shen 2017; Wang,Li,and Shen 2019)中,(He等人2018)中使用的RoI-Align和(Liu等人2018)中使用的RoI-Rotate的开发是为了文本检测和文本识别部分。请注意,这些方法无法发现任意形状的文本。 为了解决不规则问题,已经提出了许多最近的工作来设计各种自适应RoI操作以发现任意形状的文本。 Sun等人(2018年)采用了透视图RoI转换模块来纠正透视图文本,但是该策略仍然难以处理弯曲度较大的文本。 (Liao et )提出了受两阶段Mask-RCNN启发的mask textspotter,用于逐个字符地检测任意形状的文本,但是这种方法会丢失字符的上下文信息,并且需要字符级位置注释。 Qin等人(2019)直接采用Mask-RCNN和基于注意力的文本识别器,该模型使用RoI-Masking模块在识别之前消除了背景干扰。 (Feng et )将文本实例视为一组特征块,并采用RoI-Slide操作来重建直线特征图。 (Qiao et al。2020)和(Wang et al。2020a)都检测到文本周围的关键点,并应用薄板样条变换(Bookstein 1989)纠正不规则实例。为了获得弯曲文本的平滑特征(Liu et ),使用Bezier曲线表示文本实例的上下边界,并提出了Bezier-Align操作以获取校正后的特征图。 上述方法在两阶段框架中实现了端到端场景文本点,其中需要设计基于RoI的连接器(例如RoI-Align,RoI-Slide和Bezier-Align等),以实现以下目的:明确裁剪特征图。 在两阶段框架中,性能很大程度上取决于RoI操作获得的文本边界精度。但是,这些复杂的多边形注释通常很昂贵,并且并不总是适合识别部分,如前所述。

在一般的对象定位领域,许多最新进展证明了在对象检测中研究的一阶段框架的效率和有效性(Redmon等人2016; Liu等人2016; Lin等人2017b; Tian等人2019;段等人(2019)或实例分割(Wang等人2019b; Tian,Shen和Chen 2020; Wang等人2020c; Xie等人2020; Chen等人2020)。但是,场景文本发现是一项更具挑战性的任务,因为它涉及序列识别问题而不是单个对象分类。这是因为场景文本具有许多特殊特征:任意形状(例如,曲线,倾斜或透视图等),数百万个字符组合,甚至是不受限制的阅读顺序(例如,从右到左)。最近,(Xing et )提出了一种通过直接分割单个字符的一种舞台场景文本识别方法。但是,它丢失了各个字符之间的序列上下文信息,并且很难传递给更多的字符类。据我们所知,以前没有工作可以在一个阶段的框架中处理序列级别的场景文本发现任务。

图2:MANGO的工作流程。 我们以S = 6为例。 将输入特征输入到位置感知蒙版注意力模块中,以将实例/字符的不同特征映射到不同通道。 识别器最终一次全部输出字符序列。 Centerline Segmentation分支用于生成所有文本实例的粗略位置。 前缀“ R-”和“ C-”分别表示网格的行和列。

我们提出了一个名为MANGO的单阶段场景文本查找器,如图2所示。其深层特征是通过ResNet-50(He等人,2016)和特征金字塔网络(FPN)(Lin等人,2017a)的主干提取的。 然后将生成的特征图馈送到三个可学习的模块中: (1)用于学习单个文本实例的位置感知蒙版注意力(PMA)模块,其中包括实例级蒙版注意力( IMA)子模块和字符级掩码注意力(CMA)子模块。 (2)识别器用于将注意力实例特征解码为字符序列。 (3)全局文本中心线分割模块,用于在推理阶段提供粗略的文本位置信息。

单阶段的文本识别问题可以视为原始图像中的纯文本识别任务。关键步骤是在文本实例到最终字符序列之间以固定顺序建立直接的一对一映射。在这里,我们开发了位置感知注意力(PMA)模块,以便为接下来的序列解码模块一次捕获所有表示文本的特征。受(Wang等人2019b)中使用的网格映射策略的启发,我们发现可以将不同的实例映射到不同的特定通道中,并实现实例到特征的映射。也就是说,我们首先将输入图像划分为S×S的网格。然后,通过提出的PMA模块将网格周围的信息映射到特征图的特定通道中。

具体来说,我们将特征提取后获得的特征图表示为x∈R C×H×W ,其中C,H和W分别表示为特征图的通道数量,宽度和高度。然后我们将特征图x送入PMA(包括IMA和CMA模块)模块,以生成文本实例的特征表示(如下所述)。

Instance-level Mask Attention MA负责生成实例级注意力蒙版遮罩,并将不同实例的特征分配给不同的特征图通道。 它是通过在切片网格上操作一组动态卷积内核(Wang等人2020c)来实现的,表示为G S×S×C 。卷积核大小设置为1×1。

因此可以通过将这些卷积核应用于原始特征图来生成实例级注意力掩码:

Character-level Mask Attention 正如许多工作 (Chenget等人2017; Xing等人2019)所表明的那样, 字符级位置信息可以帮助提高识别性能。 这激励我们设计全局字符级注意力子模块, 以为后续的识别任务提供细粒度的特征。

如图2所示,CMA首先将原始特征图x和实例级注意力蒙版x ins 连接在一起,然后是两个卷积层(卷积核大小= 3×3)遵循下式来预测字符级注意力蒙版:

由于将不同文本实例的注意蒙版分配给不同的特征通道,因此我们可以将文本实例打包为一批。 一个简单的想法是进行(Wang等人2020b)中使用的注意力融合操作,以生成批处理的连续特征x seq ,即

该模型现在能够分别输出S 2 网格的所有预测序列。 但是,如果图像中有两个以上的文本实例,我们仍然需要指出哪个网格对应于那些识别结果。

由于我们的方法不依赖准确的边界信息,因此我们可以应用任何文本检测策略(例如RPN(Ren等人2015b)和YOLO(Redmon等人。 2016)),以获取文本实例的粗略的几何信息。 考虑到场景文本可能是任意形状的,我们遵循大多数基于分割的文本检测方法(Long等人2018; Wang等人2019a)来学习单个文本实例的全局文本中心线区域分割(或缩小ground truth)。

IMA和CMA模块都用于使网络聚焦于特定的实例和字符位置,这在理论上只能通过最后的识别部分来学习。 但是,在复杂的场景文本场景中,如果没有位置信息的辅助,网络可能难以收敛。 但是,我们发现,如果模型已经在合成数据集上进行了预先的字符级监督,则可以轻松转移模型。 因此,可以分两步对模型进行优化。

首先,我们可以将IMA和CMA的学习视为纯分割任务。 结合中心线区域分割,所有分割任务都使用二进制Dice系数损失进行训练(Milletari,Navab和Ahmadi 2016),而识别任务仅使用交叉熵损失。 全局优化可以写成

请注意,预训练步骤实际上是一次性的任务,然后将主要学习CMA和IMA以适应该识别任务。 与以前需要平衡检测和识别权重的方法相比,MANGO的端到端结果主要由最终识别任务监督。

在推断阶段,网络输出一批(S×S)概率矩阵(L×M)。 根据中心线分割任务的预测,我们可以确定哪些网格应视为有效。 我们首先进行“广度优先搜索”(BFS),以找到各个相连的区域。 在此过程中,可以过滤许多类似文本的纹理。 由于每个连接区域可能与多个网格相交,因此我们采用字符加权投票策略来生成最终的字符串,如图3所示。

具体来说,我们计算连接区域i与网格j之间的连接率o i,j 作为每个字符的权重。 对于实例i的第k个字符,其字符加权投票结果通过

我们列出了本文使用的数据集如下:训练数据。我们使用SynthText 800k(Gupta,Vedaldi和Zisserman 2016)作为预训练数据集。利用实例级注释和字符级注释对PMA模块进行预训练。在微调阶段,我们旨在获得一个支持常规和非常规场景文本读取的通用文本点。在这里,我们构建了一个用于微调的通用数据集,其中包括来自Curved SynthText的150k图像(Liu等人2020),从COCO-Text过滤的13k图像(Veitet等人2016),从ICDAR-MLT过滤的7k图像(Nayefet等人2019)以及ICDAR2013(Karatzas等人2013),ICDAR2015(Karatzas等人2015)和Total-Text(Ch'ng and Chan 2017)中的所有训练图像。请注意,这里我们仅使用实例级别的注释来训练网络。测试数据集。我们在两个标准文本点标基准ICDAR2013(Karatzas等人2013)(IC13)和ICDAR2015(Karatzas等人2015)(IC15)中评估了我们的方法,其中主要包含水平和透视文本,以及两个不规则的基准Total-Text(Ch'ng和Chan 2017)和SCUT-CTW1500(Liu等人2019)(CTW1500),其中包含许多弯曲文本。车牌识别数据集CCPD中我们方法的能力(Xuet )。

所有实验均在Pytorch中使用8×32 GB-Tesla-V100 GPU进行。网络详细信息。特征提取器使用ResNet-50(He等人2016)和FPN(Lin等人2017a)从不同的特征图中获取融合特征水平。这里,C = 256的(4×)特征图用于执行后续的训练和测试任务.Lis设置为25以覆盖大多数场景文本单词。 BiLSTM模块有256个隐藏单元,训练详细信息,所有模型均由SGDoptimizer进行训练,批处理大小= 2,动量= 和重量衰减= 1×10−4。在预训练阶段,以10个周期的初始学习比率1×10-2训练网络。每3个周期将学习率除以10.在微调阶段,初始学习率设置为1×10-3。为了平衡每批中的合成图像和真实图像的数量,我们将Curved SynthText数据集与其他真实数据集的采样比率保持为1:1。微调过程持续250k次迭代,其中学习率在120k迭代和200k迭代时除以10.我们还对所有训练过程进行数据扩充,包括1)将输入图像的较长边随机缩放为长度在[720,1800]范围内,2)将图像随机旋转[-15°,15°]范围内的角度,以及3)对输入图像应用随机的亮度,抖动和对比度。在不同的数据集中,我们将IC15的评估值设置为S = 60,将IC13,Total-Text和CTW1500的评估值设置为S = 40。我们将所有权重参数简单地设置为λ1=λ2=λ3=λ= 1。测试细节。由于输入图像的尺寸是重要的重要影响性能,因此我们将报告不同输入比例下的性能,即保持原始比例和将图像的较长边调整为固定值。所有图像都在单一尺度上进行测试。由于当前的实现方式仅提供了粗略的定位,因此,我们通过考虑IoU> 的所有检测结果,修改(Wang,Babenko和Belongie 2011)的端到端评估指标。在这种情况下,由于某些低等级的建议匹配而导致精度下降,先前方法的性能甚至会下降。

常规文本的评估我们首先根据常规评估指标(Karatzas等,2015)对IC13和IC15的方法进行评估,然后基于三种不同的lexi-cons(强)对两个评估项目( 端到端''和 单词斑点'')进行评估,弱和通用)。表1显示了评估结果。与使用常规词典评估的先前方法相比,我们的方法在“通用”项目上获得了最佳结果(除了IC15的端到端通用结果之外),并在其余评估项目上获得了竞争结果(强”和“弱”)。与最近使用特定词典的最新MaskMaskTextSpotter(Liao et )相比,我们的方法在所有评估项目上均明显优于该方法。尽管推理速度很高,但FOTS的FPS最高(帧数第二),它无法处理不正常的情况。与基于不规则的方法相比,我们的方法获得了最高的FPS。不规则文本的评估我们在Total-Text上测试了我们的方法,如表2所示。我们发现我们的方法比最先进的方法高出%和 “无”和“满”指标中的百分比。请注意,即使没有明确的纠正机制,我们的模型也只能在识别监督的驱动下才能很好地处理不规则文本。尽管在1280的测试规模下,推理速度约为ABCNet的1/2,但我们的方法取得了显着的性能提升。我们还在CTW1500上评估了我们的方法。报告端到端结果的作品很少,因为它主要包含行级文本注释。为了适应这种情况,我们在CTW1500的训练集上对检测分支进行了重新训练,以学习线级中心线分割,并确定主干和其他分支的权重。请注意,识别不会受到影响,仍然会输出单词级序列。最终结果将根据推断的连接区域简单地从左到右连接起来。汉字设置为NOT CARE。结果如表3所示。我们发现,在“无”和“满”度量标准下,我们的方法明显比以前的提升了%和%。因此,我们相信,如果只有行级注解的数据足够多,我们的模型就可以很好地适应这种情况。

图4可视化了IC15和Total-Text上的端到端文本发现结果。 我们详细显示了字符投票之前每个正网格(oi,j> )的预测结果。 我们看到我们的模型可以正确地专注于相应的位置并学习任意形状(例如弯曲或垂直)文本实例的字符序列的复杂读取顺序。 采取字符投票策略后,将生成具有最高置信度的单词。我们还用可视化的CMA演示了CTW1500的一些结果,如图5所示。请注意,我们仅根据数据集的位置微调线级分割部分 标签,同时固定其余部分。在这里,我们通过将所有网格的注意图覆盖在相同的字符位置(k)上来可视化CMA的特征图:

网格编号的消除网格编号S2是影响最终结果的关键参数。如果太小,则占据相同网格的文本太多。否则,太大的S会导致更多的计算成本。在这里,我们进行实验以找到不同数据集的S的可行值。从表4中,我们发现IC13和TotalText的bestS均为40。 IC15的值为60。这是因为IC15包含更多密集和较小的实例。总而言之,当S> = 40时,总体性能随沙的增加而稳定。当然,FPS随S的增加而略有下降。信息。为了证明这一点,我们还进行了实验,以矩形边框的形式转移所有本地化注释。我们仅采用RPN头作为检测分支。表5显示了IC15和Total-Text的结果。即使进行严格的位置监控,MANGO的性能也只能降低0%到3%,并且可以与最新技术相比。请注意,粗略位置仅用于网格选择,因此可以根据特定任务的要求尽可能简化它。

为了证明模型的泛化能力,我们进行了实验以评估CCPD公共数据集上的端到端车牌识别结果(Xu et )。为了公平起见,我们遵循相同的实验设置,并使用带有250k图像的数据集的初始版本。 CCPD-Base数据集分为两个相等的部分:用于训练的100k样本和用于测试的100k样本。有6个复杂的测试集(包括DB,FN,旋转,倾斜,天气和挑战)用于评估算法的鲁棒性,总共有50k张图像。由于CCPD中的每个图像仅包含一个板,因此可以通过删除来进一步简化我们的模型检测分支直接预测最终字符序列。因此,网格数减少为S = 1,最大序列长度设置为L =8。我们直接对模型进行微调(已通过SynthText进行了预训练)在CCPD训练集上仅使用序列级注释,然后评估上述七个测试数据集的最终识别准确性。测试阶段是对尺寸为720×1160的原始图像执行的。 表6显示了端到端识别结果。尽管所提出的方法不是为车牌识别任务设计的,但仍然可以轻松地转移到这种情况下。我们看到,提出的模型在7个测试集中的5个中优于以前的方法,并达到了最高的平均精度。图6显示了CCPD测试集的一些可视化结果。故障样本主要来自图像太模糊而无法识别的情况。该实验表明,在许多情况下,只有一个文本实例(例如,工业印刷识别或仪表拨盘识别),可以使用良好的端到端模型无需检测注释即可获得。

在本文中,我们提出了一种名为MANGO的新颖的单阶段场景文本查找器。 该模型删除了RoI操作,并设计了位置感知注意模块来粗略定位文本序列。 之后,应用轻量级序列解码器以将所有最终字符序列成批获取。 实验表明,我们的方法可以在流行基准上获得具有竞争力的,甚至最先进的结果。

多边形面积研究论文

数 学 概 览数学是研究现实世界中数量关系和空间形式的科学。简单地说,就是研究数和形的科学。由于生活和劳动上的需求,即使是最原始的民族,也知道简单的计数,并由用手指或实物计数发展到用数字计数。在中国,最迟在商代,即已出现用十进制数字表示大数的方法;至秦汉之际,即已出现完满的十进位制。在不晚于公元一世纪的《九章算术》中,已载了只有位值制才有可能进行的开平方、开立方的计算法则,并载有分数的各种运算以及解线性联立方程组的方法,还引入了负数概念。刘徽在他注解的《九章算术》中,还提出过用十进制小数表示无理数平方根的奇零部分,但直至唐宋时期(欧洲则在16世纪斯蒂文以后)十进制小数才获通用。在这本著作中,刘徽又用圆内接正多边形的周长逼近圆周长,成为后世求圆周率的一般方法。    虽然中国从来没有过无理数或实数的一般概念,但在实质上,那时中国已完成了实数系统的一切运算法则与方法,这不仅在应用上不可缺,也为数学初期教育所不可少。至于继承了巴比伦、埃及、希腊文化的欧洲地区,则偏重于数的性质及这些性质间的逻辑关系的研究。    早在欧几里得的《几何原本》中,即有素数的概念和素数个数无穷及整数惟一分解等论断。古希腊发现了有非分数的数,即现称的无理数。16世纪以来,由于解高次方程又出现了复数。在近代,数的概念更进一步抽象化,并依据数的不同运算规律,对一般的数系统进行了独立的理论探讨,形成数学中的若干不同分支。    开平方和开立方是解最简单的高次方程所必须用到的运算。在《九章算术》中,已出现解某种特殊形式的二次方程。发展至宋元时代,引进了“天元”(即未知数)的明确观念,出现了求高次方程数值解与求多至四个未知数的高次代数联立方程组的解的方法,通称为天元术与四元术。与之相伴出现的多项式的表达、运算法则以及消去方法,已接近于近世的代数学。    在中国以外,九世纪阿拉伯的花拉米子的著作阐述了二次方程的解法,通常被视为代数学的鼻祖,其解法实质上与中国古代依赖于切割术的几何方法具有同一风格。中国古代数学致力于方程的具体求解,而源于古希腊、埃及传统的欧洲数学则不同,一般致力于探究方程解的性质。16世纪时,韦达以文字代替方程系数,引入了代数的符号演算。对代数方程解的性质进行探讨,是从线性方程组引出的行列式、矩阵、线性空间、线性变换等概念与理论的出现;从代数方程导致复数、对称函数等概念的引入以至伽罗华理论与群论的创立。而近代极为活跃的代数几何,则无非是高次联立代数方程组解所构成的集合的理论研究。形的研究属于几何学的范畴。古代民族都具有形的简单概念,并往往以图画来表示,而图形之所以成为数学对象是由于工具的制作与测量的要求所促成的。规矩以作圆方,中国古代夏禹泊水时即已有规、矩、准、绳等测量工具。    墨经》中对一系列的几何概念,有抽象概括,作出了科学的定义。《周髀算经》与刘徽的《海岛算经》给出了用矩观测天地的一般方法与具体公式。在《九章算术》及刘徽注解的《九章算术》中,除勾股定理外,还提出了若干一般原理以解决多种问题。例如求任意多边形面积的出入相补原理;求多面体的体积的阳马鳖需的二比一原理(刘徽原理);5世纪祖(日恒)提出的用以求曲形体积特别是球的体积的“幂势既同则积不容异”的原理;还有以内接正多边形逼近圆周长的极限方法(割圆术)。但自五代(约10世纪)以后,中国在几何学方面的建树不多。    中国几何学以测量和计算面积、体积的量度为中心任务,而古希腊的传统则是重视形的性质与各种性质间的相互关系。欧几里得的《几何原本》,建立了用定义、公理、定理、证明构成的演绎体系,成为近代数学公理化的楷模,影响遍及于整个数学的发展。特别是平行公理的研究,导致了19世纪非欧几何的产生。欧洲自文艺复兴时期起通过对绘画的透视关系的研究,出现了射影几何。18世纪,蒙日应用分析方法对形进行研究,开微分几何学的先河。高斯的曲面论与黎曼的流形理论开创了脱离周围空间以形作为独立对象的研究方法;19世纪克莱因以群的观点对几何学进行统一处理。此外,如康托尔的点集理论,扩大了形的范围;庞加莱创立了拓扑学,使形的连续性成为几何研究的对象。这些都使几何学面目一新。在现实世界中,数与形,如影之随形,难以分割。中国的古代数学反映了这一客观实际,数与形从来就是相辅相成,并行发展的。例如勾股测量提出了开平方的要求,而开平方、开立方的方法又奠基于几何图形的考虑。二次、三次方程的产生,也大都来自几何与实际问题。至宋元时代,由于天元概念与相当于多项式概念的引入,出现了几何代数化。    在天文与地理中的星表与地图的绘制,已用数来表示地点,不过并未发展到坐标几何的地步。在欧洲,十四世纪奥尔斯姆的著作中已有关于经纬度与函数图形表示的萌芽。十七世纪笛卡尔提出了系统的把几何事物用代数表示的方法及其应用。在其启迪之下,经莱布尼茨、牛顿等的工作,发展成了现代形式的坐标制解析几何学,使数与形的统一更臻完美,不仅改变了几何证题过去遵循欧几里得几何的老方法,还引起了导数的产生,成为微积分学产生的根源。这是数学史上的一件大事。    在十七世纪中,由于科学与技术上的要求促使数学家们研究运动与变化,包括量的变化与形的变换(如投影),还产生了函数概念和无穷小分析即现在的微积分,使数学从此进入了一个研究变量的新时代。    十八世纪以来,以解析几何与微积分这两个有力工具的创立为契机,数学以空前的规模迅猛发展,出现了无数分支。由于自然界的客观规律大多是以微分方程的形式表现的,所以微分方程的研究一开始就受到很大的重视。    微分几何基本上与微积分同时诞生,高斯与黎曼的工作又产生了现代的微分几何。19、20世纪之交,庞加莱创立了拓扑学,开辟了对连续现象进行定性与整体研究的途径。对客观世界中随机现象的分析,产生了概率论。第二次世界大战军事上的需要,以及大工业与管理的复杂化产生了运筹学、系统论、控制论、数理统计学等学科。实际问题要求具体的数值解答,产生了计算数学。选择最优途径的要求又产生了各种优化的理论、方法。    力学、物理学同数学的发展始终是互相影响互相促进的,特别是相对论与量子力学推动了微分几何与泛函分析的成长。此外在19世纪还只用到一次方程的化学和几乎与数学无缘的生物学,都已要用到最前沿的一些数学知识。    十九世纪后期,出现了集合论,还进入了一个批判性的时代,由此推动了数理逻辑的形成与发展,也产生了把数学看作是一个整体的各种思潮和数学基础学派。特别是1900年,德国数学家希尔伯特在第二届国际数学家大会上的关于当代数学重要问题的演讲,以及三十年代开拓的,以结构概念统观数学的法国布尔巴基学派的兴起,对二十世纪数学的发展产生了巨大、深远的影响,科学的数学化一语也开始为人们所乐道。    数学的外围向自然科学、工程技术甚至社会科学中不断渗透扩大,并从中吸取营养,出现了一些边缘数学。数学本身的内部需要也孽生了不少新的理论与分支。同时其核心部分也在不断巩固提高并有时作适当调整以适应外部需要。总之,数学这棵大树茁壮成长,既枝叶繁茂又根深蒂固。    在数学的蓬勃发展过程中,数与形的概念不断扩大且日趋抽象化,以至于不再有任何原始计数与简单图形的踪影。虽然如此,在新的数学分支中仍有着一些对象和运算关系借助于几何术语来表示。如把函数看成是某种空间的一个点之类。这种做法之所以行之有效,归根结底还是因为数学家们已经熟悉了那种简易的数学运算与图形关系,而后者又有着长期深厚的现实基础。而且,即使是最原始的数字如1、2、3、4,以及几何形象如点与直线,也已经是经过人们高度抽象化了的概念。因此如果把数与形作为广义的抽象概念来理解,则前面提到的把数学作为研究数与形的科学这一定义,对于现阶段的近代数学,也是适用的。    由于数学研究对象的数量关系与空间形式都来自现实世界,因而数学尽管在形式上具有高度的抽象性,而实质上总是扎根于现实世界的。生活实践与技术需要始终是数学的真正源泉,反过来,数学对改造世界的实践又起着重要的、关键性的作用。理论上的丰富提高与应用的广泛深入在数学史上始终是相伴相生,相互促进的。    但由于各民族各地区的客观条件不同,数学的具体发展过程是有差异的。大体说来,古代中华民族以竹为筹,以筹运算,自然地导致十进位值制的产生。计算方法的优越有助于对实际问题的具体解决。由此发展起来的数学形成了一个以构造性、计算性、程序化与机械化为其特色,以从问题出发进而解决问题为主要目标的独特体系。而在古希腊则着重思维,追求对宇宙的了解。由此发展成以抽象了的数学概念与性质及其相互间的逻辑依存关系为研究对象的公理化演绎体系。    中国的数学体系在宋元时期达到高峰以后,开始陷于停顿且几至消失。而在欧洲,经过文艺复兴运动、宗教革命、资产阶级革命等一系列的变革,导致了工业革命与技术革命。机器的使用,不论中外都由来已久。但在中国,则由于明初被帝王斥为奇技淫巧而受阻抑。    在欧洲,则由于工商业的发展与航海的刺激而得到发展,机器使人们从繁重的体力劳动中解放出来,并引导到理论力学和一般的运动和变化的科学研究。当时的数学家都积极参与了这些变革以及相应数学问题的解决,产生了积极的效果。解析几何与微积分的诞生,成为数学发展的一个转折点。17世纪以来数学的飞跃,大体上可以看成是这些成果的延续与发展。    20世纪出现了各种崭新的技术,产生了新的技术革命,特别是电子计算机的出现,使数学又面临了一个新的时代。这一时代的特点之一就是部分脑力劳动的逐步机械化。与17世纪以来以围绕连续、极限等概念为主导思想与方法的数学不同,由于计算机研制与应用的需要,离散数学与组合数学开始受到重视。    计算机对数学的作用已不仅仅只限于数值计算,也开始更多的涉及符号运算(包括机器证明等数学研究)。为了与计算机更好地配合,数学对于构造性、计算性、程序化与机械化的要求也显得颇为突出。例如,代数几何是一门高度抽象化的数学,而最近出现的计算性代数几何与构造性代数几何的提法,即其端倪之一。总之,数学正随着新的技术革命而不断发展

把自己对多边形的认识写下来。

由在同一平面且不在同一直线上的三条或三条以上的线段首尾顺次连结且不相交所组成的封闭图形叫做多边形。在不同平面上的多条线段首尾顺次连结且不相交所组成的图形也被称为多边形,是广义的多边形。

组成多边形的线段至少有3条,三角形是最简单的多边形。组成多边形的每一条线段叫做多边形的边;相邻的两条线段的公共端点叫做多边形的顶点;多边形相邻两边所组成的角叫做多边形的内角;连接多边形的两个不相邻顶点的线段叫做多边形的对角线。

多边形内角的一边与另一边反向延长线所组成的角,叫做多边形的外角。

在多边形的每一个顶点处取这个多边形的一个外角,它们的和叫做多边形的外角和。

多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

多边形分平面多边形和空间多边形。平面多边形的所有顶点全在同一个平面上,空间多边形至少有一个顶点和其它的顶点不在同一个平面上。

中国数学发展史概述中国是世界文明古国之一,地处亚洲东部,濒太平洋西岸。黄河流域和长江流域是中华民族文化的摇篮,大约在公元前2000年,在黄河中下游产生了第一个奴隶制国家——夏朝(前2033-前1562),共经历十三世、十六王。其后又有奴隶制国家商(前562年—1066年,共历十七世三十一王)和西周[前1027年—前771年,共历约二百五十七年,传十一世、十二王]。随后出现了中国历史上的第一次全国性大分裂形成的时期——春秋(前770年-前476年)战国(前403年-前221年),春秋后期,中国文明进入封建时代,到公元前221年秦王赢政统一全国,出现了中国历史上第一个封建帝制国家——秦朝(前221年—前206年),在以后的时间里,中国封建文明在秦帝国的封建体制的基础不断完善地持续发展,经历了统一强盛的西汉(公元前206年—公元8年)帝国、东汉王朝(公元25年—公元220年)、战乱频仍与分裂的三国时期(公元208年-公元280年)、西晋(公元265年—公元316年)与东晋王朝(公元317年—公元420年)、汉民族以外的少数民族统治的南朝(公元420年—公元589年)与北朝(公元386年—公元518年)。到了公元581年,由隋再次统一了全国,建立了大一统的隋朝(公元581—618年),接着经历了强大富庶文化繁荣的大唐王朝(公元618年—907年)、北方少数民族政权辽(公元916年-公元1125年)、经济和文化发达的北宋(公元960年~公元1127年)与南宋(公元1127年-公元1279年)、蒙古族建立的控制范围扩张至整个西亚地区的疆域最大的元朝(公元1271年-1368年)、元朝灭亡后,汉族人在华夏大地上重新建立起来的封建王朝——明朝(公元1368年-公元1644年),明王朝于17世纪中为少数民族女真族(满族)建立的清朝(公元1616年-公元1911年)所代替。清朝是中国最后一个封建帝制国家。自此之后,中国脱离了帝制而转入了现代民主国家。中国文明与古代埃及、美索不达米亚、印度文明一样,都是古老的农耕文明,但与其他文明截然不同,它其持续发展两千余年之久,在世界文明史上是绝无仅有的。这种文明十分注重社会事务的管理,强调实际与经验,关心人和自然的和谐与人伦社会的秩序,儒家思想作为调解社会矛盾、维系这一文明持续发展的重要思想基础。 一、中国数学的起源与早期发展据《易•系辞》记载:「上古结绳而治,后世圣人易之以书契」。在殷墟出土的甲骨文卜辞中有很多记数的文字。从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万。算筹是中国古代的计算工具,而这种计算方法称为筹算。算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。用算筹记数,有纵、横两种方式: 表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间[法则是:一纵十横,百立千僵,千、十相望,万、百相当],并以空位表示零。算筹为加、减、乘、除等运算建立起良好的条件。筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的。在几何学方面《史记•夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现「勾三股四弦五」这个勾股定理[西方称勾股定理]的特例。战国时期,齐国人着的《考工记》汇总了当时手工业技术的规范,包含了一些测量的内容,并涉及到一些几何知识,例如角的概念。战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。著名的有《墨经》中关于某些几何名词的定义和命题,例如:「圆,一中同长也」、「平,同高也」等等。墨家还给出有穷和无穷的定义。《庄子》记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想,例如「至大无外谓之大一,至小无内谓之小一」、「一尺之棰,日取其半,万世不竭」等。这些许多几何概念的定义、极限思想和其它数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的继承和发展。此外,讲述阴阳八卦,预言吉凶的《易经》已有了组合数学的萌芽,并反映出二进制的思想。 二、中国数学体系的形成与奠基这一时期包括从秦汉、魏晋、南北朝,共400年间的数学发展历史。秦汉是中国古代数学体系的形成时期,为使不断丰富的数学知识系统化、理论化,数学方面的专书陆续出现。现传中国历史最早的数学专著是1984年在湖北江陵张家山出土的成书于西汉初的汉简《算数书》,与其同时出土的一本汉简历谱所记乃吕后二年(公元前186年),所以该书的成书年代至晚是公元前186年(应该在此前)。西汉末年[公元前一世纪]编纂的《周髀算经》,尽管是谈论盖天说宇宙论的天文学著作,但包含许多数学内容,在数学方面主要有两项成就:(1)提出勾股定理的特例及普遍形式;(2)测太阳高、远的陈子测日法,为后来重差术(勾股测量法)的先驱。此外,还有较复杂的开方问题和分数运算等。《九章算术》是一部经几代人整理、删补和修订而成的古代数学经典著作,约成书于东汉初年[公元前一世纪]。全书采用问题集的形式编写,共收集了246个问题及其解法,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章。主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。在代数方面,《方程》章中所引入的负数概念及正负数加减法法则,在世界数学史上都是最早的记载;书中关于线性方程组的解法和现在中学讲授的方法基本相同。就《九章算术》的特点来说,它注重应用,注重理论联系实际,形成了以筹算为中心的数学体系,对中国古算影响深远。它的一些成就如十进制值制、今有术、盈不足术等还传到印度和阿拉伯,并通过这些国家传到欧洲,促进了世界数学的发展。魏晋时期中国数学在理论上有了较大的发展。其中赵爽(生卒年代不详)和刘徽(生卒年代不详)的工作被认为是中国古代数学理论体系的开端。三国吴人赵爽是中国古代对数学定理和公式进行证明的最早的数学家之一,对《周髀算经》做了详尽的注释,在《勾股圆方图注》中用几何方法严格证明了勾股定理,他的方法已体现了割补原理的思想。赵爽还提出了用几何方法求解二次方程的新方法。263年,三国魏人刘徽注释《九章算术》,在《九章算术注》中不仅对原书的方法、公式和定理进行一般的解释和推导,系统地阐述了中国传统数学的理论体系与数学原理,而且在其论述中多有创造,在卷1《方田》中创立割圆术(即用圆内接正多边形面积无限逼近圆面积的办法),为圆周率的研究工作奠定理论基础和提供了科学的算法,他运用“割圆术”得出圆周率的近似值为3927/1250(即);在《商功》章中,为解决球体积公式的问题而构造了“牟合方盖”的几何模型,为祖暅获得正确结果开辟了道路;为建立多面体体积理论,运用极限方法成功地证明了阳马术;他还撰著《海岛算经》,发扬了古代勾股测量术----重差术。南北朝时期的社会长期处于战争和分裂状态,但数学的发展依然蓬勃。出现了《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作。约于公元四-五世纪成书的《孙子算经》给出「物不知数」问题并作了解答,导致求解一次同余组问题在中国的滥畅;《张丘建算经》的「百鸡问题」引出三个未知数的不定方程组问题。 公元五世纪,祖冲之、祖暅父子的工作在这一时期最具代表性,他们在《九章算术》刘徽注的基础上,将传统数学大大向前推进了一步,成为重视数学思维和数学推理的典范。他们同时在天文学上也有突出的贡献。其著作《缀术》已失传,根据史料记载,他们在数学上主要有三项成就:(1)计算圆周率精确到小数点后第六位,得到 <π< ,并求得π的约率为22/7,密率为355/113,其中密率是分子分母在1000以内的最佳值,欧洲直到十六世纪德国人鄂图(valentinus otto)和荷兰人安托尼兹()才得出同样结果;(2)祖暅在刘徽工作的基础上推导出球体体积的正确公式,并提出"幂势既同则积不容异"的体积原理,即二立体等高处截面积均相等则二体体积相等的定理。欧洲十七世纪意大利数学家卡瓦列利(bonaventura cavalieri)才提出同一定理;(3)发展了二次与三次方程的解法。同时代的天文历学家何承天创调日法,以有理分数逼近实数,发展了古代的不定分析与数值逼近算法。 三、中国数学教育制度的建立隋朝大兴土木,客观上促进了数学的发展。唐初王孝通撰《缉古算经》,主要是通过土木工程中计算土方、工程的分工与验收以及仓库和地窖计算等实际问题,讨论如何以几何方式建立三次多项式方程,发展了《九章算术》中的少广、勾股章中开方理论。隋唐时期是中国封建官僚制度建立时期,随着科举制度与国子监制度的确立,数学教育有了长足的发展。656年国子监设立算学馆,设有算学博士和助教,由太史令李淳风等人编纂注释《算经十书》[包括《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《张丘建算经》、《夏侯阳算经》、《缉古算经》、《五曹算经》、《五经算术》和《缀术》],作为算学馆学生用的课本。对保存古代数学经典起了重要的作用。由于南北朝时期的一些重大天文发现在隋唐之交开始落实到历法编算中,使唐代历法中出现一些重要的数学成果。公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式,这在数学史上是一项杰出的创造,唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式。唐朝后期,计算技术有了进一步的改进和普及,出现很多种实用算术书,对于乘除算法力求简捷。四、中国数学发展的高峰唐朝亡后,五代十国仍是军阀混战的继续,直到北宋王朝统一了中国,农业、手工业、商业迅速繁荣,科学技术突飞猛进。从公元十一世纪到十四世纪[宋、元两代],筹算数学达到极盛,是中国古代数学空前繁荣,硕果累累的全盛时期。这一时期出现了一批著名的数学家和数学著作,列举如下:贾宪的《黄帝九章算法细草》[11世纪中叶],刘益的《议古根源》[12世纪中叶],秦九韶的《数书九章》[1247],李冶的《测圆海镜》[1248]和《益古演段》[1259],杨辉的《详解九章算法》[1261]、《日用算法》[1262]和《杨辉算法》[1274-1275],朱世杰的《算学启蒙》[1299]和《四元玉鉴》[1303]等等。 宋元数学在很多领域都达到了中国古代数学,也是当时世界数学的巅峰。其中主要的工作有:公元1050年左右,北宋贾宪(生卒年代不详)在《黄帝九章算法细草》中创造了开任意高次幂的“增乘开方法”,公元1819年英国人霍纳(william george horner)才得出同样的方法。贾宪还列出了二项式定理系数表,欧洲到十七世纪才出现类似的“巴斯加三角”。(《黄帝九章算法细草》已佚)公元1088—1095年间,北宋沈括从“酒家积罂”数与“层坛”体积等生产实践问题提出了“隙积术”,开始对高阶等差级数的求和进行研究,并创立了正确的求和公式。沈括还提出“会圆术”,得出了我国古代数学史上第一个求弧长的近似公式。他还运用运筹思想分析和研究了后勤供粮与运兵进退的关系等问题。公元1247年,南宋秦九韶在《数书九章》中推广了增乘开方法,叙述了高次方程的数值解法,他列举了二十多个来自实践的高次方程的解法,最高为十次方程。欧洲到十六世纪意大利人菲尔洛(scipio del ferro)才提出三次方程的解法。秦九韶还系统地研究了一次同余式理论。公元1248年,李冶(李治,公元1192一1279年)著的《测圆海镜》是第一部系统论述“天元术”(一元高次方程)的著作,这在数学史上是一项杰出的成果。在《测圆海镜?序》中,李冶批判了轻视科学实践,以数学为“九九贱技”、“玩物丧志”等谬论。公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式。郭守敬还运用几何方法求出相当于现在球面三角的两个公式。公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(etienne bezout)才提出同样的解法。朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(james gregory)和公元1676一1678年间牛顿(issac newton)才提出内插法的一般公式。公元十四世纪我国人民已使用珠算盘。在现代计算机出现之前,珠算盘是世界上简便而有效的计算工具。五、中国数学的衰落与日用数学的发展这一时期指十四世纪中叶明王朝建立到明末的1582年。数学除珠算外出现全面衰弱的局面,当中涉及到中算的局限、十三世纪的考试制度中已删减数学内容、明代大兴八段考试制度等复杂的问题,不少中外数学史家仍探讨当中涉及的原因。明代最大的成就是珠算的普及,出现了许多珠算读本,及至程大位的《直指算法统宗》[1592]问世,珠算理论已成系统,标志着从筹算到珠算转变的完成。但由于珠算流行,筹算几乎绝迹,建立在筹算基础上的古代数学也逐渐失传,数学出现长期停滞。六、西方初等数学的传入与中西合璧十六世纪末开始,西方传教士开始到中国活动,由于明清王朝制定天文历法的需要,传教士开始将与天文历算有关的西方初等数学知识传入中国,中国数学家在“西学中源”思想支配下,数学研究出现了一个中西融合贯通的局面。十六世纪末,西方传教士和中国学者合译了许多西方数学专着。其中第一部且有重大影响的是意大利传教士利马窦和徐光启合译的《几何原本》前6卷[1607],其严谨的逻辑体系和演译方法深受徐光启推崇。徐光启本人撰写的《测量异同》和《勾股义》便应用了《几何原本》的逻辑推理方法论证中国的勾股测望术。此外,《几何原本》课本中绝大部份的名词都是首创,且沿用至今。在输入的西方数学中仅次于几何的是三角学。在此之前,三角学只有零星的知识,而此后获得迅速发展。介绍西方三角学的著作有邓玉函编译的《大测》[2卷,1631]、《割圆八线表》[6卷]和罗雅谷的《测量全义》[10卷,1631]。在徐光启主持编译的《崇祯历书》[137卷,1629-1633]中,介绍了有关圆椎曲线的数学知识。入清以后,会通中西数学的杰出代表是梅文鼎,他坚信中国传统数学「必有精理」,对古代名著做了深入的研究,同时又能正确对待西方数学,使之在中国扎根,对清代中期数学研究的高潮是有积极影响的。与他同时代的数学家还有王锡阐和年希尧等人。 清康熙帝爱好科学研究,他「御定」的《数理精蕴》[53卷,1723],是一部比较全面的初等数学书,对当时的数学研究有一定影响。七、传统数学的整理与复兴乾嘉年间形成一个以考据学为主的干嘉学派,编成《四库全书》,其中数学著作有《算经十书》和宋元时期的著作,为保存濒于湮没的数学典籍做出重要贡献。在研究传统数学时,许多数学家还有发明创造,例如有「谈天三友」之称的焦循、汪莱及李锐作出不少重要的工作。李善兰在《垛积比类》[约1859]中得到三角自乘垛求和公式,现在称之为「李善兰恒等式」。这些工作较宋元时期的数学进了一步。阮元、李锐等人编写了一部天文学家和数学家传记《畴人传》46卷[1795-1810],开数学史研究之先河。 八、西方数学再次东进1840年鸦战争后,闭关锁国政策被迫中止。同文馆内添设「算学」,上海江南制造局内添设翻译馆,由此开始第二次翻译引进的高潮。主要译者和著作有:李善兰与英国传教士伟烈亚力合译的《几何原本》后9卷[1857],使中国有了完整的《几何原本》中译本;《代数学》13卷[1859];《代微积拾级》18卷[1859]。李善兰与英国传教士艾约瑟合译《圆锥曲线说》3卷,华蘅芳与英国传教士傅兰雅合译《代数术》25卷[1872],《微积溯源》8卷[1874],《决疑数学》10卷[1880]等。在这些译着中,创造了许多数学名词和术语,至今仍在应用。 1898年建立京师大学堂,同文馆并入。1905年废除科举,建立西方式学校教育,使用的课本也与西方其它各国相仿。 九、中国现代数学的建立这一时期是从20世纪初至今的一段时间,常以1949年新中国成立为标志划分为两个阶段。中国近现代数学开始于清末民初的留学活动。较早出国学习数学的有1903年留日的冯祖荀,1908年留美的郑之蕃,1910年留美的胡明复和赵元任,1911年留美的姜立夫,1912年留法的何鲁,1913年留日的陈建功和留比利时的熊庆来[1915年转留法],1919年留日的苏步青等人。他们中的多数回国后成为著名数学家和数学教育家,为中国近现代数学发展做出重要贡献。其中胡明复1917年取得美国哈佛大学博士学位,成为第一位获得博士学位的中国数学家。随着留学人员的回国,各地大学的数学教育有了起色。最初只有北京大学1912年成立时建立的数学系,1920年姜立夫在天津南开大学创建数学系,1921年和1926年熊庆来分别在东南大学[今南京大学]和清华大学建立数学系,不久武汉大学、齐鲁大学、浙江大学、中山大学陆续设立了数学系,到1932年各地已有32所大学设立了数学系或数理系。1930年熊庆来在清华大学首创数学研究部,开始招收研究生,陈省身、吴大任成为国内最早的数学研究生。三十年代出国学习数学的还有江泽涵[1927]、陈省身[1934]、华罗庚[1936]、许宝騤[1936]等人,他们都成为中国现代数学发展的骨干力量。同时外国数学家也有来华讲学的,例如英国的罗素[1920],美国的伯克霍夫[1934]、奥斯古德[1934]、维纳[1935],法国的阿达马[1936]等人。1935年中国数学会成立大会在上海召开,共有33名代表出席。1936年〈中国数学会学报〉和《数学杂志》相继问世,这些标志着中国现代数学研究的进一步发展。 解放以前的数学研究集中在纯数学领域,在国内外共发表论着600余种。在分析学方面,陈建功的三角级数论,熊庆来的亚纯函数与整函数论研究是代表作,另外还有泛函分析、变分法、微分方程与积分方程的成果;在数论与代数方面,华罗庚等人的解析数论、几何数论和代数数论以及近世代数研究取得令世人瞩目的成果;在几何与拓扑学方面,苏步青的微分几何学,江泽涵的代数拓扑学,陈省身的纤维丛理论和示性类理论等研究做了开创性的工作:在概率论与数理统计方面,许宝騤在一元和多元分析方面得到许多基本定理及严密证明。此外,李俨和钱宝琮开创了中国数学史的研究,他们在古算史料的注释整理和考证分析方面做了许多奠基性的工作,使我国的民族文化遗产重放光彩。1949年11月即成立中国科学院。1951年3月《中国数学学报》复刊[1952年改为《数学学报》],1951年10月《中国数学杂志》复刊[1953年改为《数学通报》]。1951年8月中国数学会召开建国后第一次国代表大会,讨论了数学发展方向和各类学校数学教学改革问题。建国后的数学研究取得长足进步。50年代初期就出版了华罗庚的《堆栈素数论》[1953]、苏步青的《射影曲线概论》[1954]、陈建功的《直角函数级数的和》[1954]和李俨的《中算史论丛》5集[1954-1955]等专着,到1966年,共发表各种数学论文约2万余篇。除了在数论、代数、几何、拓扑、函数论、概率论与数理统计、数学史等学科继续取得新成果外,还在微分方程、计算技术、运筹学、数理逻辑与数学基础等分支有所突破,有许多论着达到世界先进水平,同时培养和成长起一大批优秀数学家。60年代后期,中国的数学研究基本停止,教育瘫痪、人员丧失、对外交流中断,后经多方努力状况略有改变。1970年《数学学报》恢复出版,并创刊《数学的实践与认识》。1973年陈景润在《中国科学》上发表《大偶数表示为一个素数及一个不超过二个素数的乘积之和》的论文,在哥德巴赫猜想的研究中取得突出成就。此外中国数学家在函数论、马尔可夫过程、概率应用、运筹学、优选法等方面也有一定创见。1978年11月中国数学会召开第三次代表大会,标志着中国数学的复苏。1978年恢复全国数学竞赛,1985年中国开始参加国际数学奥林匹克数学竞赛。1981年陈景润等数学家获国家自然科学奖励。1983年国家首批授于18名中青年学者以博士学位,其中数学工作者占2/3。1986年中国第一次派代表参加国际数学家大会,加入国际数学联合会,吴文俊应邀作了关于中国古代数学史的45分钟演讲。近十几年来数学研究硕果累累,发表论文专着的数量成倍增长,质量不断上升。1985年庆祝中国数学会成立50周年年会上,已确定中国数学发展的长远目标。代表们立志要不懈地努力,争取使中国在世界上早日成为新的数学大国。十、中国数学的特点(1)以算法为中心,属于应用数学。中国数学不脱离社会生活与生产的实际,以解决实际问题为目标,数学研究是围绕建立算法与提高计算技术而展开的。(2)具有较强的社会性。中国传统数学文化中,数学被儒学家培养人的道德与技能的基本知识---六艺(礼、乐、射、御、书、数)之一,它的作用在于“通神明、顺性命,经世务、类万物”,所以中国传统数学总是被打上中国哲学与古代学术思想的烙印,往往与术数交织在一起。同时,数学教育与研究往往被封建政府所控制,唐宋时代的数学教育与科举制度、历代数学家往往是政府的天文官员,这些事例充分反映了这一性质。(3)寓理于算,理论高度概括。由于中国传统数学注重解决实际问题,而且因中国人综合、归纳思维的决定,所以中国传统数学不关心数学理论的形式化,但这并不意味中国传统仅停留在经验层次而无理论建树。其实中国数学的算法中蕴涵着建立这些算法的理论基础,中国数学家习惯把数学概念与方法建立在少数几个不证自明、形象直观的数学原理之上,如代数中的“率”的理论,平面几何中的“出入相补”原理,立体几何中的“阳马术”、曲面体理论中的“截面原理”(或称刘祖原理,即卡瓦列利原理)等等。十一、中国数学对世界的影响数学活动有两项基本工作----证明与计算,前者是由于接受了公理化(演绎化)数学文化传统,后者是由于接受了机械化(算法化)数学文化传统。在世界数学文化传统中,以欧几里得《几何原本》为代表的希腊数学,无疑是西方演绎数学传统的基础,而以《九章算术》为代表的中国数学无疑是东方算法化数学传统的基础,它们东西辉映,共同促进了世界数学文化的发展。中国数学通过丝绸之路传播到印度、阿拉伯地区,后来经阿拉伯人传入西方。而且在汉字文化圈内,一直影响着日本、朝鲜半岛、越南等亚洲国家的数学发展。

如何抉择搬家公司呢?下面给大家指出多少点: (一)通常我们都是通过互联网来得悉搬家公司的电话,与搬家公司接洽!在搬家公司的网站上会留有搬家公司的电话,如果咱们知道搬家公司的网址就能够直接输入域名拜访搬家网站。然而,相信大局部人都是不知道搬家公司的网址的,即便你有过搬家的阅历,信任你也不会记下请过搬家的搬家公司的网站(电话也不必定也还记者,除非先前的搬家公司对你个人来说十分满足,有保存的电话号码);那么在不晓得网站的情形下我们都会去应用搜索引擎了查找搬家公司网站与电话,北京婚庆。那下面我就以百度搜寻来举例: 大部门的人都愿望能找个既便宜服务又好的搬家公司,北京搬家公司,然而大家在搜索搬家公司时都会使用地区+搬家公司哪家好、地域+搬家公司哪廉价等等这些要害词,这时候你就搜到很准确匹配的百度问答的这个题目(在这里我就不发图了)点击进去之后仔细的友人就会发明问答的时光有点错误劲的处所。答复与作为最佳谜底的时间不会超过1分钟!这就是阐明很可能这个问题是由枪手在操作的,他们是在自问自答,通过这种方式来推广自己罢了!所以我提示大家须要留神!大家不要贪小便宜,省得最后受伤的仍是本人! 那么我们该如何筛选搜索得出的结果,我们都会优先选择搜索成果的第一页(能在搜索第一页的搬家公司网站都是比较花心理的),在挑网站的时候我们看搬家公司的名称,是否是比较著名的或者是大品牌的搬家公司,不外这也是有点难辨别得出虚实的,因为在目前的搬家公司很多都是山寨,都是些小公司打着至公司的品牌者网友市民,那么在这滥竽充数的搬家市场怎么找到正规的搬家公司呢?那么下面就告知大家几个技能(1)热词搜索排名是否靠前,越靠前越好;(2)搬家公司网站域名是否简短,北京婚礼策划,越短越好;(3)搬家公司的网站描写是否清楚合乎自己想要的,还有是否呈现良多最好最便宜这些强调词(前面有提到过,这都是很假的)!那么就推举一个比拟标准的如下图:在挑选搬家品牌的同时也可以先搜下该公司是否有负面消息,有被投诉的,有被网友反映不好的也尽量不要选。 也不一定要选大品牌的,由于仿冒的许多,只有找到合适自己就行!这次就写到这,下次我将会在如何准确的取舍搬家公司(二)中教大家如何辨认正规的搬家网站,盼望我写的这些对大家有所辅助,谢谢大家的浏览!

我对多边形的研究论文

关于图形镶嵌的研究论文姓名:徐浩凡 学校:北京市十一学校 班级:初一三班2007年5月17日星期四关键词:完全覆盖、平面镶嵌、数学的角度引言:数学是无处不在的,生活中我们常常会遇到一些有关数学的问题,在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙。这些形状的地砖或瓷砖为什么能铺满地面而不留一点空隙呢?换一些其他的形状行不行?为了解决这些问题,我们得探究一下其中的道理。从数学的角度看,用不重叠摆放的多边形把平面的一部分完全覆盖;通常把这类问题叫做用多边形的平面镶嵌。内容:我们得探究一下图形镶嵌中在日常生活中的道理,研究一下多边形的有关概念,性质。例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。通过实验和研究,我们知道,三角形的内角和是180度,外角和是360度。用6个正三角形就可以铺满地面。再来看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度。用4个正四边形就可以铺满地面。正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度。它不能铺满地面。六边形,它可以分成4个三角形,内角和是720度,一个内角的度数是120度,外角和是360度。用3个正四边形就可以铺满地面。七边形,它可以分成5个三角形,内角和是900度,一个内角的度数是900/7度,外角和是360度。它不能铺满地面。……由此,我们得出了:n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷n度,外角和是360度。若(n-2)*180÷n能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面。我们不但可以用一种正多边形铺满地面,我们还可以用两种、三种等更多的图形组合起来铺满地面。例如:正三角形和正方形、正三角形和正六边形、正方形和正八边形、正五边形和正八边形、正三角形和正方形和正六边形……现实生活中,我们已经看到了用正多边形拼成的各种图案,实际上,有许多图案往往是用不规则的基本图形拼成的。以上,我们采用了生活中的实例,地砖来证明了图形镶嵌的奇妙,下面,我再讲一个版画家对图形镶嵌的兴趣:埃舍尔被每种镶嵌图形迷住了,不论是常规的还是不规则的; 并且对一种他称为变形的形状特别感兴趣,这其中的图形相互变化影响,并且有时突破平面的自由。他的兴趣是从1936年开始的,那年他旅行到了西班牙并且在Alhambra看到了当地使用的瓦的图案。他花了好几天勾画这些瓦面,过后宣称这些 是我所遇到的最丰富的灵感资源,1957年他写了一篇关于镶嵌图形的文章,其中评论道:在数学领域,规则的平面分割已从理论上研究过了. . . ,难道这意味着它只是一个严格的数学的问题吗?按照我的意见, 它不是。数学家们打开了通向一个广阔领域的大门,但是他们自己却从未进入该领域。从他们的天性来看他们更感兴趣的是打开这扇门的方式,而不是门后面的花园。埃舍尔在他的镶嵌图形中利用了这些基本的图案,他用几何学中的反射、平滑反射、变换和旋转来获得更多的变化图案。他也精心地使这些基本图案扭曲变形为动物、鸟和其他的形状。这些改变不得不通过三次、四次甚至六次的对称以便得到镶嵌图形。这样做的效果既是惊人的,又是美丽的。这里还有一些关于埃舍尔德图形镶嵌的图片。怎么样,这些用镶嵌得来的形状是不是很美啊,让我们更好的学习图形的镶嵌,在数学与艺术中徜徉吧!论文所谓图形镶嵌就是用一种或几种同样大小的图形来铺平面,要求图形之间即不要留空隙有不能彼此重叠。在这方面,埃舍尔取得了突出的成就,比如下面几幅图就是他的杰作。下面我就来介绍图形的镶嵌。规则的平面分割叫做镶嵌,镶嵌图形是完全没有重叠并且没有空隙的封闭图形的排列。一般来说, 构成一个镶嵌图形的基本单元是多边形或类似的常规形状, 例如经常在地板上使用的方瓦。然而, 埃舍尔被每种镶嵌图形迷住了,不论是常规的还是不规则的; 并且对一种他称为metamorphoses(变形)的形状特别感兴趣,这其中的图形相互变化影响,并且有时突破平面的自由。无论这对数学家是否公平, 有一点是真实的--他们指出了在所有的常规的多边形中,仅仅三角形,正方形,和正六边形能被用于镶嵌。但许多其他不规则多边形平铺后也能形成镶嵌,例如有许多镶嵌就使用了不规则的五角星形状。埃舍尔在他的镶嵌图形中利用了这些基本的图案,他用几何学中的反射、平滑反射、变换和旋转来获得更多的变化图案。他也精心地使这些基本图案扭曲变形为动物、鸟和其他的形状。这些改变不得不通过三次、四次甚至六次的对称以便得到镶嵌图形。这样做的效果既是惊人的,又是美丽的。图形的镶嵌——平面正多边形镶嵌如果用不同边数的正多边形镶嵌,同样要满足两点:一是边长相等,二是一个顶点处的内角之和为360°由哪几种正多边形组合那么如果只用一种正多边形来铺满平面,是不是任何一种正多边形都可以呢?事实不是这样的,比如用正五边形,只能拼成如下的形状那么到底那些正多边形可以用来铺平面呢?我们可以设这个正多边形的边数是 ,在同一个顶点处共有 个这样的正多边形,由于在同一个顶点处这些正多边形围成一个周角,且每一个正 边形的内角是 ,所以得到:( 为正整数, 为不小于3的整数)∴∴∴∴∴ ……(*)∵ 为正整数, 为不小于3的整数 ∴∴ 使(*)式成立的条件是:∴∴只用一种正多边形铺地板,只有等边三角形、正方形和正六边形三种情况,如下图所示:用正多边形镶嵌的规律用三个正多边形来排列最小的边数: 3排列: (3,7,42) (3,8,24) (3,9,18) (3,10,15) (3,12,12)最小的边数: 4排列: (4,5,20) (4,6,12) (4,8,8)最小的边数: 5排列: (5,5,10)最小的边数: 6排列: (6,6,6)用四个正多边形来排列最小边数: 33,3,4,12的组合结果导致了两种截然不同的排列3,3,6,6的组合结果导致了两种截然不同的组合3,4,4,6的组合结果导致了两种截然不同的组合排列: (3,3,4,12), (3,4,3,12) --- (3,3,6,6), (3,6,3,6) --- (3,4,4,6), (3,4,6,4)最小的边数: 4排列: (4,4,4,4)用五个正多边形来排列最小边数: 33,3,3,3,6的组合只能产生一种排列3,3,3,4,4的组合产生两种截然不同的组合排列: (3,3,3,3,6) --- (3,3,3,4,4), (3,3,4,3,4)用六个正多边形排列最小的边数: 3排列: (3,3,3,3,3,3)要注意:上面的图显示了围绕一个点填充成一个360°的角,用正多边形来排列的话,有21种排法,但事实上他们只有17种不同的组合。其中有四种组合各自有两种不同的排列。使用正多边形镶嵌的分类;镶嵌的分类:(1) 正多边形的镶嵌(I) 正则镶嵌(II) 半正则镶嵌(III) 非正则镶嵌(2) 非正多边形的镶嵌定义:只使用一种正多边形的镶嵌我们叫正则镶嵌(Regular Tessellations )有前面的讨论我们知道:正则镶嵌只有3种:即用正三角形、正方形和正六边形来镶嵌。如下图:使用一种以上的正多边形来镶嵌,并且在每个顶点处都有相同的正多边形的排列,我们叫半正则镶嵌(Semiregular Tessellations)如下图:还有一些镶嵌包含着正则镶嵌,我们称这种镶嵌为:非正则镶嵌(demiregular tessellations),这些镶嵌是正则镶嵌或半正则镶嵌的混合镶嵌例如:下图中,在点1处是3,6,3,6的排列,而在点2处是3,3,6,6的排列,在这个镶嵌中在每一个顶点处的正多边形排列不完全相同,而是存在着两种排列,因此即不是正则镶嵌也不是半正则镶嵌,我们称之为非正则镶嵌。在点1处是3,6,3,6的排列,而在点2处是3,3,6,6的排列同样,我们仍然使用正则镶嵌或半正则镶嵌的排列来表示这种新的非正则镶嵌的类型,我们在每个正则或半正则镶嵌的排列之间使用符号“/”来分隔开,例如,上图的镶嵌记作: / .数学家已经定义那些由两个或三个不同的正则镶嵌的排列而构成的镶嵌为非正则镶嵌,至少有14种非正则镶嵌,这是怎么确定的呢?事实上只要我们花一点耐心,使用已知的21种(见前面的介绍)正则或半正则排列来实验,我们就可以得到上述结论。下面我们来具体看一看这些非正则镶嵌的图案有哪些由两个或三个不同的正则排列的正多边形镶嵌下面是使用两种不同的正则排列(9种不同的镶嵌) / / / / / # / #2注意:尽管上面的两种镶嵌使用的是相同的正则排列,但他们还是从整体构成上有所不同足球表面由什么图形拼接而成? 足球的表面是由12个正五边形和20个正六边形构成因为正五边形一个内角是108度,正六边形内角是120度,共348度,不能作成平面。不一样,为了衔接成的一个球体地板的镶嵌其实,生活中人们更多的是研究有关铺地板砖的问题,我们观察各种建筑物的地板,就能发现地板常用各种正多边形镶嵌成美丽的图案。我们观察各种建筑物的地板,就能发现地板常用各种正多边形镶嵌成美丽的图案.平时在家里、在商店里、在中心广场、进入宾馆、饭店等等许多地方都会看到瓷砖。他们通常都是有不同的形状和颜色。其实,这里面就有数学问题,“瓷砖中的数学”。在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙。这些形状的地砖或瓷砖为什么能铺满地面而不留一点空隙呢?换一些其他的形状行不行?为了解决这些问题,我们得探究一下其中的道理,研究一下多边形的有关概念,性质。例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。通过实验和研究,我们知道,三角形的内角和是180度,外角和是360度。用6个正三角形就可以铺满地面。再来看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度。用4个正四边形就可以铺满地面。正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度。它不能铺满地面。六边形,它可以分成4个三角形,内角和是720度,一个内角的度数是120度,外角和是360度。用3个正六边形就可以铺满地面。七边形,它可以分成5个三角形,内角和是900度,一个内角的度数是900/7度,外角和是360度。它不能铺满地面。……由此,我们得出了。n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度。若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面。我们不但可以用一种正多边形铺满地面,我们还可以用两种、三种等更多的图形组合起来铺满地面。例如:正三角形和正方形、正三角形和六方形、正方形和正八边形、正五边形和正八边形、正三角形和正方形和正六边形……现实生活中,我们已经看到了用正多边形拼成的各种图案,实际上,有许多图案往往是用不规则的基本图形拼成的。瓷砖,这样一种平常的东西里都存在了这么有趣的数学奥秘,更何况生活中的其它呢?生活中,数学无处不在。一、用一种正多边形铺地板的情况:3种(3,3,3,3,3,3)拼地板图案(4,4,4,4)拼地板图案 (6,6,6)拼地板图案二、用两种正多边形铺地板的情况:6种(3,12,12)拼地板图案三、用三种正多边形铺地板的情况:8种如果用两种不同边数的正多边形镶嵌,同样,必须在重合的顶点处,正多边形的内角之和为360°.为了简化研究,我们来看一看用两个具体的多边形来铺地板的情况。问题一:现在一位工人师傅手中有正三角形和正方形两种正多边形瓷砖,你能帮助他设计一种地板图案吗?同学们请你们自己动手用硬纸板剪出边长相等的多个大小相同的的正三角形和正方形,然后试着动手拼一拼,相信你们一定能拼出来。你们拼出下面的图形来了吗?问题2若这位工人师傅手中只有正六边形和正三角形的瓷砖用来拼地板,能否实现?若有,有几种情况;若没有,说明理由思考,你们能否利用方程计算而不是动手拼图来研究上述问题吗?事实上,我们可以如下计算设在一个点处有正三角形x个、有正六边形y个则60x+120y=360x+2y=6有两组整数解因此应该有三种方案如图问题三:若这位工人师傅手中只有用正方形和正六边形能否拼地板!这个问题请读者自己思考(2)如果用多余两种的正多边形来铺地板,情况如何?我们来回答以上问题.假定m种正多边形,边数分别为 , , ,……, ,能镶嵌成整个平面,必须:∵ , , ,……,∴∴所以,就是说,最多有六个正多边形的组合。

瓷砖中的数学 在生活中遇到了许多的问题,其实有很大一部分都和数学有关系。 这给我们创造了众多的自主探索的好机会,使我们的聪明才智得到发挥。 平时在家里、在商店里、在中心广场、进入宾馆、饭店等等许多地方都会看到瓷砖。他们通常都是有不同的形状和颜色。其实,这里面就有数学问题,“瓷砖中的数学”。 在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙。这些形状的地砖或瓷砖为什么能铺满地面而不留一点空隙呢?换一些其他的形状行不行?为了解决这些问题,我们得探究一下其中的道理,研究一下多边形的有关概念,性质。 例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。通过实验和研究,我们知道,三角形的内角和是180度,外角和是360度。用6个正三角形就可以铺满地面。 再来看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度。用4个正四边形就可以铺满地面。 正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度。它不能铺满地面。 六边形,它可以分成4个三角形,内角和是720度,一个内角的度数是120度,外角和是360度。用3个正四边形就可以铺满地面。 七边形,它可以分成5个三角形,内角和是900度,一个内角的度数是900/7度,外角和是360度。它不能铺满地面。 …… 由此,我们得出了。n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度。若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面。 我们不但可以用一种正多边形铺满地面,我们还可以用两种、三种等更多的图形组合起来铺满地面。 例如:正三角形和正方形、正三角形和六方形、正方形和正八边形、正五边形和正八边形、正三角形和正方形和正六边形…… 现实生活中,我们已经看到了用正多边形拼成的各种图案,实际上,有许多图案往往是用不规则的基本图形拼成的。 瓷砖,这样一种平常的东西里都存在了这么有趣的数学奥秘,更何况生活中的其它呢?

我们现在已经学过多边形的内角和了,只不过我们学过的内容不是今天的主角。我有了一点小想法:既然它们都是多边形,那为什么不能求那种带弯边的图形呢?我们求的都是那些直边的封闭图形的内角和。我的意思是说,如果它们那边都是弧形的话,它们就不可能有角。今天的主角既带弯边又有直边的那种O! 就像图1所示的图形一样,这个图形只有一个角,那么只有一个角的不就是知道它的度数就行了?嗯,假如角A是60度的话,那么这个图形的内角和肯定就是60度啦!而有两个角的那种图形呢,我已经把三角形当成工具,然后画图2了(这个三角形的2个角和它有的2个角度数相等)。三角形的内角和不是180度吗?它这两个角加起来可不是180度哦。也就是说,我们得把多余的角(角C)剪掉!如图显示,角C是20度,那么180度减20度等于160度,好了,这个图形的内角和是160度。三个角的图形就比上面两个简单多了,三个角不就是三角形的特点之一吗?看图3,这里已经有一个三角形了。三角形的内角和180度,而这里不用在加或者减了,所以这个图形的内角和就是180度了。呵呵!4个角可以用四边形,5个角可以用五边形……反正就是以此类推嘛,现在也不用多费口舌讲这些了吧。白白咯!

多边形面积研究的论文

“发现和研究多边形的面积”

这个应该是有一个面了解他是属于小论文,看开头的里面的内容非常的多也是非常精彩的。

把自己对多边形的认识写下来。

由在同一平面且不在同一直线上的三条或三条以上的线段首尾顺次连结且不相交所组成的封闭图形叫做多边形。在不同平面上的多条线段首尾顺次连结且不相交所组成的图形也被称为多边形,是广义的多边形。

组成多边形的线段至少有3条,三角形是最简单的多边形。组成多边形的每一条线段叫做多边形的边;相邻的两条线段的公共端点叫做多边形的顶点;多边形相邻两边所组成的角叫做多边形的内角;连接多边形的两个不相邻顶点的线段叫做多边形的对角线。

多边形内角的一边与另一边反向延长线所组成的角,叫做多边形的外角。

在多边形的每一个顶点处取这个多边形的一个外角,它们的和叫做多边形的外角和。

多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

多边形分平面多边形和空间多边形。平面多边形的所有顶点全在同一个平面上,空间多边形至少有一个顶点和其它的顶点不在同一个平面上。

中国数学发展史概述中国是世界文明古国之一,地处亚洲东部,濒太平洋西岸。黄河流域和长江流域是中华民族文化的摇篮,大约在公元前2000年,在黄河中下游产生了第一个奴隶制国家——夏朝(前2033-前1562),共经历十三世、十六王。其后又有奴隶制国家商(前562年—1066年,共历十七世三十一王)和西周[前1027年—前771年,共历约二百五十七年,传十一世、十二王]。随后出现了中国历史上的第一次全国性大分裂形成的时期——春秋(前770年-前476年)战国(前403年-前221年),春秋后期,中国文明进入封建时代,到公元前221年秦王赢政统一全国,出现了中国历史上第一个封建帝制国家——秦朝(前221年—前206年),在以后的时间里,中国封建文明在秦帝国的封建体制的基础不断完善地持续发展,经历了统一强盛的西汉(公元前206年—公元8年)帝国、东汉王朝(公元25年—公元220年)、战乱频仍与分裂的三国时期(公元208年-公元280年)、西晋(公元265年—公元316年)与东晋王朝(公元317年—公元420年)、汉民族以外的少数民族统治的南朝(公元420年—公元589年)与北朝(公元386年—公元518年)。到了公元581年,由隋再次统一了全国,建立了大一统的隋朝(公元581—618年),接着经历了强大富庶文化繁荣的大唐王朝(公元618年—907年)、北方少数民族政权辽(公元916年-公元1125年)、经济和文化发达的北宋(公元960年~公元1127年)与南宋(公元1127年-公元1279年)、蒙古族建立的控制范围扩张至整个西亚地区的疆域最大的元朝(公元1271年-1368年)、元朝灭亡后,汉族人在华夏大地上重新建立起来的封建王朝——明朝(公元1368年-公元1644年),明王朝于17世纪中为少数民族女真族(满族)建立的清朝(公元1616年-公元1911年)所代替。清朝是中国最后一个封建帝制国家。自此之后,中国脱离了帝制而转入了现代民主国家。中国文明与古代埃及、美索不达米亚、印度文明一样,都是古老的农耕文明,但与其他文明截然不同,它其持续发展两千余年之久,在世界文明史上是绝无仅有的。这种文明十分注重社会事务的管理,强调实际与经验,关心人和自然的和谐与人伦社会的秩序,儒家思想作为调解社会矛盾、维系这一文明持续发展的重要思想基础。 一、中国数学的起源与早期发展据《易•系辞》记载:「上古结绳而治,后世圣人易之以书契」。在殷墟出土的甲骨文卜辞中有很多记数的文字。从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万。算筹是中国古代的计算工具,而这种计算方法称为筹算。算筹的产生年代已不可考,但可以肯定的是筹算在春秋时代已很普遍。用算筹记数,有纵、横两种方式: 表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间[法则是:一纵十横,百立千僵,千、十相望,万、百相当],并以空位表示零。算筹为加、减、乘、除等运算建立起良好的条件。筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的。在几何学方面《史记•夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现「勾三股四弦五」这个勾股定理[西方称勾股定理]的特例。战国时期,齐国人着的《考工记》汇总了当时手工业技术的规范,包含了一些测量的内容,并涉及到一些几何知识,例如角的概念。战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。著名的有《墨经》中关于某些几何名词的定义和命题,例如:「圆,一中同长也」、「平,同高也」等等。墨家还给出有穷和无穷的定义。《庄子》记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想,例如「至大无外谓之大一,至小无内谓之小一」、「一尺之棰,日取其半,万世不竭」等。这些许多几何概念的定义、极限思想和其它数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的继承和发展。此外,讲述阴阳八卦,预言吉凶的《易经》已有了组合数学的萌芽,并反映出二进制的思想。 二、中国数学体系的形成与奠基这一时期包括从秦汉、魏晋、南北朝,共400年间的数学发展历史。秦汉是中国古代数学体系的形成时期,为使不断丰富的数学知识系统化、理论化,数学方面的专书陆续出现。现传中国历史最早的数学专著是1984年在湖北江陵张家山出土的成书于西汉初的汉简《算数书》,与其同时出土的一本汉简历谱所记乃吕后二年(公元前186年),所以该书的成书年代至晚是公元前186年(应该在此前)。西汉末年[公元前一世纪]编纂的《周髀算经》,尽管是谈论盖天说宇宙论的天文学著作,但包含许多数学内容,在数学方面主要有两项成就:(1)提出勾股定理的特例及普遍形式;(2)测太阳高、远的陈子测日法,为后来重差术(勾股测量法)的先驱。此外,还有较复杂的开方问题和分数运算等。《九章算术》是一部经几代人整理、删补和修订而成的古代数学经典著作,约成书于东汉初年[公元前一世纪]。全书采用问题集的形式编写,共收集了246个问题及其解法,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章。主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。在代数方面,《方程》章中所引入的负数概念及正负数加减法法则,在世界数学史上都是最早的记载;书中关于线性方程组的解法和现在中学讲授的方法基本相同。就《九章算术》的特点来说,它注重应用,注重理论联系实际,形成了以筹算为中心的数学体系,对中国古算影响深远。它的一些成就如十进制值制、今有术、盈不足术等还传到印度和阿拉伯,并通过这些国家传到欧洲,促进了世界数学的发展。魏晋时期中国数学在理论上有了较大的发展。其中赵爽(生卒年代不详)和刘徽(生卒年代不详)的工作被认为是中国古代数学理论体系的开端。三国吴人赵爽是中国古代对数学定理和公式进行证明的最早的数学家之一,对《周髀算经》做了详尽的注释,在《勾股圆方图注》中用几何方法严格证明了勾股定理,他的方法已体现了割补原理的思想。赵爽还提出了用几何方法求解二次方程的新方法。263年,三国魏人刘徽注释《九章算术》,在《九章算术注》中不仅对原书的方法、公式和定理进行一般的解释和推导,系统地阐述了中国传统数学的理论体系与数学原理,而且在其论述中多有创造,在卷1《方田》中创立割圆术(即用圆内接正多边形面积无限逼近圆面积的办法),为圆周率的研究工作奠定理论基础和提供了科学的算法,他运用“割圆术”得出圆周率的近似值为3927/1250(即);在《商功》章中,为解决球体积公式的问题而构造了“牟合方盖”的几何模型,为祖暅获得正确结果开辟了道路;为建立多面体体积理论,运用极限方法成功地证明了阳马术;他还撰著《海岛算经》,发扬了古代勾股测量术----重差术。南北朝时期的社会长期处于战争和分裂状态,但数学的发展依然蓬勃。出现了《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作。约于公元四-五世纪成书的《孙子算经》给出「物不知数」问题并作了解答,导致求解一次同余组问题在中国的滥畅;《张丘建算经》的「百鸡问题」引出三个未知数的不定方程组问题。 公元五世纪,祖冲之、祖暅父子的工作在这一时期最具代表性,他们在《九章算术》刘徽注的基础上,将传统数学大大向前推进了一步,成为重视数学思维和数学推理的典范。他们同时在天文学上也有突出的贡献。其著作《缀术》已失传,根据史料记载,他们在数学上主要有三项成就:(1)计算圆周率精确到小数点后第六位,得到 <π< ,并求得π的约率为22/7,密率为355/113,其中密率是分子分母在1000以内的最佳值,欧洲直到十六世纪德国人鄂图(valentinus otto)和荷兰人安托尼兹()才得出同样结果;(2)祖暅在刘徽工作的基础上推导出球体体积的正确公式,并提出"幂势既同则积不容异"的体积原理,即二立体等高处截面积均相等则二体体积相等的定理。欧洲十七世纪意大利数学家卡瓦列利(bonaventura cavalieri)才提出同一定理;(3)发展了二次与三次方程的解法。同时代的天文历学家何承天创调日法,以有理分数逼近实数,发展了古代的不定分析与数值逼近算法。 三、中国数学教育制度的建立隋朝大兴土木,客观上促进了数学的发展。唐初王孝通撰《缉古算经》,主要是通过土木工程中计算土方、工程的分工与验收以及仓库和地窖计算等实际问题,讨论如何以几何方式建立三次多项式方程,发展了《九章算术》中的少广、勾股章中开方理论。隋唐时期是中国封建官僚制度建立时期,随着科举制度与国子监制度的确立,数学教育有了长足的发展。656年国子监设立算学馆,设有算学博士和助教,由太史令李淳风等人编纂注释《算经十书》[包括《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《张丘建算经》、《夏侯阳算经》、《缉古算经》、《五曹算经》、《五经算术》和《缀术》],作为算学馆学生用的课本。对保存古代数学经典起了重要的作用。由于南北朝时期的一些重大天文发现在隋唐之交开始落实到历法编算中,使唐代历法中出现一些重要的数学成果。公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式,这在数学史上是一项杰出的创造,唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式。唐朝后期,计算技术有了进一步的改进和普及,出现很多种实用算术书,对于乘除算法力求简捷。四、中国数学发展的高峰唐朝亡后,五代十国仍是军阀混战的继续,直到北宋王朝统一了中国,农业、手工业、商业迅速繁荣,科学技术突飞猛进。从公元十一世纪到十四世纪[宋、元两代],筹算数学达到极盛,是中国古代数学空前繁荣,硕果累累的全盛时期。这一时期出现了一批著名的数学家和数学著作,列举如下:贾宪的《黄帝九章算法细草》[11世纪中叶],刘益的《议古根源》[12世纪中叶],秦九韶的《数书九章》[1247],李冶的《测圆海镜》[1248]和《益古演段》[1259],杨辉的《详解九章算法》[1261]、《日用算法》[1262]和《杨辉算法》[1274-1275],朱世杰的《算学启蒙》[1299]和《四元玉鉴》[1303]等等。 宋元数学在很多领域都达到了中国古代数学,也是当时世界数学的巅峰。其中主要的工作有:公元1050年左右,北宋贾宪(生卒年代不详)在《黄帝九章算法细草》中创造了开任意高次幂的“增乘开方法”,公元1819年英国人霍纳(william george horner)才得出同样的方法。贾宪还列出了二项式定理系数表,欧洲到十七世纪才出现类似的“巴斯加三角”。(《黄帝九章算法细草》已佚)公元1088—1095年间,北宋沈括从“酒家积罂”数与“层坛”体积等生产实践问题提出了“隙积术”,开始对高阶等差级数的求和进行研究,并创立了正确的求和公式。沈括还提出“会圆术”,得出了我国古代数学史上第一个求弧长的近似公式。他还运用运筹思想分析和研究了后勤供粮与运兵进退的关系等问题。公元1247年,南宋秦九韶在《数书九章》中推广了增乘开方法,叙述了高次方程的数值解法,他列举了二十多个来自实践的高次方程的解法,最高为十次方程。欧洲到十六世纪意大利人菲尔洛(scipio del ferro)才提出三次方程的解法。秦九韶还系统地研究了一次同余式理论。公元1248年,李冶(李治,公元1192一1279年)著的《测圆海镜》是第一部系统论述“天元术”(一元高次方程)的著作,这在数学史上是一项杰出的成果。在《测圆海镜?序》中,李冶批判了轻视科学实践,以数学为“九九贱技”、“玩物丧志”等谬论。公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和。公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法。公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式。郭守敬还运用几何方法求出相当于现在球面三角的两个公式。公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(etienne bezout)才提出同样的解法。朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(james gregory)和公元1676一1678年间牛顿(issac newton)才提出内插法的一般公式。公元十四世纪我国人民已使用珠算盘。在现代计算机出现之前,珠算盘是世界上简便而有效的计算工具。五、中国数学的衰落与日用数学的发展这一时期指十四世纪中叶明王朝建立到明末的1582年。数学除珠算外出现全面衰弱的局面,当中涉及到中算的局限、十三世纪的考试制度中已删减数学内容、明代大兴八段考试制度等复杂的问题,不少中外数学史家仍探讨当中涉及的原因。明代最大的成就是珠算的普及,出现了许多珠算读本,及至程大位的《直指算法统宗》[1592]问世,珠算理论已成系统,标志着从筹算到珠算转变的完成。但由于珠算流行,筹算几乎绝迹,建立在筹算基础上的古代数学也逐渐失传,数学出现长期停滞。六、西方初等数学的传入与中西合璧十六世纪末开始,西方传教士开始到中国活动,由于明清王朝制定天文历法的需要,传教士开始将与天文历算有关的西方初等数学知识传入中国,中国数学家在“西学中源”思想支配下,数学研究出现了一个中西融合贯通的局面。十六世纪末,西方传教士和中国学者合译了许多西方数学专着。其中第一部且有重大影响的是意大利传教士利马窦和徐光启合译的《几何原本》前6卷[1607],其严谨的逻辑体系和演译方法深受徐光启推崇。徐光启本人撰写的《测量异同》和《勾股义》便应用了《几何原本》的逻辑推理方法论证中国的勾股测望术。此外,《几何原本》课本中绝大部份的名词都是首创,且沿用至今。在输入的西方数学中仅次于几何的是三角学。在此之前,三角学只有零星的知识,而此后获得迅速发展。介绍西方三角学的著作有邓玉函编译的《大测》[2卷,1631]、《割圆八线表》[6卷]和罗雅谷的《测量全义》[10卷,1631]。在徐光启主持编译的《崇祯历书》[137卷,1629-1633]中,介绍了有关圆椎曲线的数学知识。入清以后,会通中西数学的杰出代表是梅文鼎,他坚信中国传统数学「必有精理」,对古代名著做了深入的研究,同时又能正确对待西方数学,使之在中国扎根,对清代中期数学研究的高潮是有积极影响的。与他同时代的数学家还有王锡阐和年希尧等人。 清康熙帝爱好科学研究,他「御定」的《数理精蕴》[53卷,1723],是一部比较全面的初等数学书,对当时的数学研究有一定影响。七、传统数学的整理与复兴乾嘉年间形成一个以考据学为主的干嘉学派,编成《四库全书》,其中数学著作有《算经十书》和宋元时期的著作,为保存濒于湮没的数学典籍做出重要贡献。在研究传统数学时,许多数学家还有发明创造,例如有「谈天三友」之称的焦循、汪莱及李锐作出不少重要的工作。李善兰在《垛积比类》[约1859]中得到三角自乘垛求和公式,现在称之为「李善兰恒等式」。这些工作较宋元时期的数学进了一步。阮元、李锐等人编写了一部天文学家和数学家传记《畴人传》46卷[1795-1810],开数学史研究之先河。 八、西方数学再次东进1840年鸦战争后,闭关锁国政策被迫中止。同文馆内添设「算学」,上海江南制造局内添设翻译馆,由此开始第二次翻译引进的高潮。主要译者和著作有:李善兰与英国传教士伟烈亚力合译的《几何原本》后9卷[1857],使中国有了完整的《几何原本》中译本;《代数学》13卷[1859];《代微积拾级》18卷[1859]。李善兰与英国传教士艾约瑟合译《圆锥曲线说》3卷,华蘅芳与英国传教士傅兰雅合译《代数术》25卷[1872],《微积溯源》8卷[1874],《决疑数学》10卷[1880]等。在这些译着中,创造了许多数学名词和术语,至今仍在应用。 1898年建立京师大学堂,同文馆并入。1905年废除科举,建立西方式学校教育,使用的课本也与西方其它各国相仿。 九、中国现代数学的建立这一时期是从20世纪初至今的一段时间,常以1949年新中国成立为标志划分为两个阶段。中国近现代数学开始于清末民初的留学活动。较早出国学习数学的有1903年留日的冯祖荀,1908年留美的郑之蕃,1910年留美的胡明复和赵元任,1911年留美的姜立夫,1912年留法的何鲁,1913年留日的陈建功和留比利时的熊庆来[1915年转留法],1919年留日的苏步青等人。他们中的多数回国后成为著名数学家和数学教育家,为中国近现代数学发展做出重要贡献。其中胡明复1917年取得美国哈佛大学博士学位,成为第一位获得博士学位的中国数学家。随着留学人员的回国,各地大学的数学教育有了起色。最初只有北京大学1912年成立时建立的数学系,1920年姜立夫在天津南开大学创建数学系,1921年和1926年熊庆来分别在东南大学[今南京大学]和清华大学建立数学系,不久武汉大学、齐鲁大学、浙江大学、中山大学陆续设立了数学系,到1932年各地已有32所大学设立了数学系或数理系。1930年熊庆来在清华大学首创数学研究部,开始招收研究生,陈省身、吴大任成为国内最早的数学研究生。三十年代出国学习数学的还有江泽涵[1927]、陈省身[1934]、华罗庚[1936]、许宝騤[1936]等人,他们都成为中国现代数学发展的骨干力量。同时外国数学家也有来华讲学的,例如英国的罗素[1920],美国的伯克霍夫[1934]、奥斯古德[1934]、维纳[1935],法国的阿达马[1936]等人。1935年中国数学会成立大会在上海召开,共有33名代表出席。1936年〈中国数学会学报〉和《数学杂志》相继问世,这些标志着中国现代数学研究的进一步发展。 解放以前的数学研究集中在纯数学领域,在国内外共发表论着600余种。在分析学方面,陈建功的三角级数论,熊庆来的亚纯函数与整函数论研究是代表作,另外还有泛函分析、变分法、微分方程与积分方程的成果;在数论与代数方面,华罗庚等人的解析数论、几何数论和代数数论以及近世代数研究取得令世人瞩目的成果;在几何与拓扑学方面,苏步青的微分几何学,江泽涵的代数拓扑学,陈省身的纤维丛理论和示性类理论等研究做了开创性的工作:在概率论与数理统计方面,许宝騤在一元和多元分析方面得到许多基本定理及严密证明。此外,李俨和钱宝琮开创了中国数学史的研究,他们在古算史料的注释整理和考证分析方面做了许多奠基性的工作,使我国的民族文化遗产重放光彩。1949年11月即成立中国科学院。1951年3月《中国数学学报》复刊[1952年改为《数学学报》],1951年10月《中国数学杂志》复刊[1953年改为《数学通报》]。1951年8月中国数学会召开建国后第一次国代表大会,讨论了数学发展方向和各类学校数学教学改革问题。建国后的数学研究取得长足进步。50年代初期就出版了华罗庚的《堆栈素数论》[1953]、苏步青的《射影曲线概论》[1954]、陈建功的《直角函数级数的和》[1954]和李俨的《中算史论丛》5集[1954-1955]等专着,到1966年,共发表各种数学论文约2万余篇。除了在数论、代数、几何、拓扑、函数论、概率论与数理统计、数学史等学科继续取得新成果外,还在微分方程、计算技术、运筹学、数理逻辑与数学基础等分支有所突破,有许多论着达到世界先进水平,同时培养和成长起一大批优秀数学家。60年代后期,中国的数学研究基本停止,教育瘫痪、人员丧失、对外交流中断,后经多方努力状况略有改变。1970年《数学学报》恢复出版,并创刊《数学的实践与认识》。1973年陈景润在《中国科学》上发表《大偶数表示为一个素数及一个不超过二个素数的乘积之和》的论文,在哥德巴赫猜想的研究中取得突出成就。此外中国数学家在函数论、马尔可夫过程、概率应用、运筹学、优选法等方面也有一定创见。1978年11月中国数学会召开第三次代表大会,标志着中国数学的复苏。1978年恢复全国数学竞赛,1985年中国开始参加国际数学奥林匹克数学竞赛。1981年陈景润等数学家获国家自然科学奖励。1983年国家首批授于18名中青年学者以博士学位,其中数学工作者占2/3。1986年中国第一次派代表参加国际数学家大会,加入国际数学联合会,吴文俊应邀作了关于中国古代数学史的45分钟演讲。近十几年来数学研究硕果累累,发表论文专着的数量成倍增长,质量不断上升。1985年庆祝中国数学会成立50周年年会上,已确定中国数学发展的长远目标。代表们立志要不懈地努力,争取使中国在世界上早日成为新的数学大国。十、中国数学的特点(1)以算法为中心,属于应用数学。中国数学不脱离社会生活与生产的实际,以解决实际问题为目标,数学研究是围绕建立算法与提高计算技术而展开的。(2)具有较强的社会性。中国传统数学文化中,数学被儒学家培养人的道德与技能的基本知识---六艺(礼、乐、射、御、书、数)之一,它的作用在于“通神明、顺性命,经世务、类万物”,所以中国传统数学总是被打上中国哲学与古代学术思想的烙印,往往与术数交织在一起。同时,数学教育与研究往往被封建政府所控制,唐宋时代的数学教育与科举制度、历代数学家往往是政府的天文官员,这些事例充分反映了这一性质。(3)寓理于算,理论高度概括。由于中国传统数学注重解决实际问题,而且因中国人综合、归纳思维的决定,所以中国传统数学不关心数学理论的形式化,但这并不意味中国传统仅停留在经验层次而无理论建树。其实中国数学的算法中蕴涵着建立这些算法的理论基础,中国数学家习惯把数学概念与方法建立在少数几个不证自明、形象直观的数学原理之上,如代数中的“率”的理论,平面几何中的“出入相补”原理,立体几何中的“阳马术”、曲面体理论中的“截面原理”(或称刘祖原理,即卡瓦列利原理)等等。十一、中国数学对世界的影响数学活动有两项基本工作----证明与计算,前者是由于接受了公理化(演绎化)数学文化传统,后者是由于接受了机械化(算法化)数学文化传统。在世界数学文化传统中,以欧几里得《几何原本》为代表的希腊数学,无疑是西方演绎数学传统的基础,而以《九章算术》为代表的中国数学无疑是东方算法化数学传统的基础,它们东西辉映,共同促进了世界数学文化的发展。中国数学通过丝绸之路传播到印度、阿拉伯地区,后来经阿拉伯人传入西方。而且在汉字文化圈内,一直影响着日本、朝鲜半岛、越南等亚洲国家的数学发展。

论文答辩可以边演示边讲吗

关于论文答辩的流程

一、论文答辩的流程

(一)宣讲论文开场白

答辩硕士生用15-30分钟报告学位论文主要内容。建议答辩者根据事先准备的开场白演讲稿,借助多媒体或幻灯片,边演示边介绍,并尽可能脱稿演讲。

(二)高校专家提问

专家以学位论文的研究内容为基础并兼顾相关的知识进行提问;所提问题应具有考察性而非询问性,应难易程度适中、大小适度,先易后难、逐步深入,表述明确、具体、容易理解等。同时,专家对答辩硕士应适当启发、深入引导。

(三)回答专家问题

答辩硕士宣讲论文完毕后,要集中注意力记录专家提出的问题,以便做出完整的答复;并将幻灯片返回到“论文题目”页,以便专家准确提问。通常,经过短暂的准备后,答辩硕士用大约30分钟的时间对专家提问做出认真回答。

(四)专家同意表决

答辩完成后,答辩硕士生暂时离开会场,答辩委员会根据论文质量和答辩情况进行讨论,并对论文和答辩过程中的情况进行小结,肯定优点,指出错误或不足之处。答辩委员会的小结内容包括评述论文内容和论文结构、提出论文存在的问题、评价学位论文和论文答辩情况等。最后,答辩委员会以无记名投票表决的方式决定论文答辩是否通过。通常,至少要有2/3的答辩委员同意通过,才能确定硕士生通过论文答辩。此外,答辩委员会的投票结果要记录在案。

(五)宣布答辩结果

答辩开场白的硕士生重新进入答辩会场后,由答辩委员会主席宣读答辩委员会对论文答辩的《决议书》和投票表决结果。对不能通过答辩的硕士生,答辩委员会要提出论文修改意见,允许答辩者在1年内修改论文后另行答辩。

二、论文答辩的技巧

论文答辩并不等于是宣读论文,而是要抓住论文的要点进行概括性的、简明扼要的、生动的阐述,并对专家的提问做出全面、准确的回答。论文答辩是显示真才实学的好机会,硕士生应该掌握答辩技巧,善于表现自己。

(一)论文答辩前的准备

1.熟悉论文,写好提纲

硕士生必须对论文的全部内容了如指掌,特别是要对论文的主体部分和结论部分进行反复推敲、仔细审查。首先,要明确论文开场白的基本观点和主要论点的基本依据;弄懂弄通论文中所使用的.主要概念的确切含义,以及所运用的基本原理的主要内容。其次,要仔细查阅论文中有无自相矛盾、谬误、片面或模糊不清的地方,以及有无与党的政策方针相冲突之处等。如果发现有上述问题,要在答辩前做好充分准备,即进行适当的补充、修正、解说等。第三,在答辩提纲中首先要确定讲述的要点,然后围绕这个要点按照逻辑顺序列出以下内容:为什么要进行这项研究、研究是怎样进行的、通过研究发现了什么等。最后,根据答辩提纲分别从论文中提取需要简要论述的有关内容,重点突出所研究课题取得的进展和成果。

2.科学预测,处处设防

首先,要预先准备一份口语化的论文答辩讲稿,这可避免宣讲时因一时想不起合适的词语而出现过多的停顿。其次,论文答辩讲稿写完后,要进行多次的校核,以确保用语的准确。硕士生可先进行一次由导师和其他相关人员参加的预答辩。正式答辩前的预答辩非常重要,可以让答辩学生及时补充论文内容的不足、修正谬误等。而且,预答辩时,专家提出的问题很可能也是正式答辩时专家提出的问题。这可以使答辩学生对答辩问题有所准备。第三,要进一步熟悉论文答辩讲稿,以保证宣讲时可以做到脱稿,并有效地控制各部分内容的宣讲时间。

3.精选图表,强化效果

硕士生学位论文答辩通常要求将讲稿与多媒体幻灯片紧密结合在一起。因此,在准备答辩幻灯片时,幻灯片的内容要简洁,控制在25~30页;宣讲用的图表数量要少,要使用可视性强、趋势明显的图,且不同曲线最好用不同的颜色加以区别。由于学位论文使用的表格不一定适合宣讲时用,所以幻灯片中的表格项目应尽量简化,一般行不超过4项、列在10项以内为宜。此外,由于图比表更易理解,解释起来更节省时间,所以说明趋势、表示差距的表格可以改用图来表示[3-5]。

是同时进行的。学校本科论文答辩都需要准备做答辩PPT的。毕业论文答辩是一种有组织、有准备、有计划、有鉴定的比较正规的审查论文的重要形式。为了搞好毕业论文答辩,在举行答辩会前,校方、答辩委员会、答辩者(撰写毕业论文的作者)三方都要作好充分的准备。

  • 索引序列
  • 多边形演示器研究论文
  • 多边形面积研究论文
  • 我对多边形的研究论文
  • 多边形面积研究的论文
  • 论文答辩可以边演示边讲吗
  • 返回顶部