光的干涉应用的新进展 光的干涉无处而不在,如在日光照射下,肥皂泡的薄层色及昆虫翅膀上的彩色便是最明显的例子。这仅在生活中光的干涉便随处可见,那么在它的实际应用岂不更让人意想不到。光的干涉最要的前提条件就是:必须满足传播方向相同、初相位恒定、频率相同。对于光干涉最开始的意愿是为了测单色光的波长,然而现在我们熟悉的照相机便也运用了光的干涉,普通照相是把照相机的镜头对着被拍摄的物体,让从物体上反射的光进入镜头,在感光底片上产生物体的像。感光底片上记录的是从物体上各点反射出来的光的强度。一、全息照相是应用光的干涉来实现的。它用激光(是良好的相干光)作光源。全息照相的原理如图所示,激光束被分成两部分:一部分射向被摄物体,另一部分射向反射镜(这束光叫参考光束)。从物体上反射出来的光(叫做物光束)具有不同的振幅和相位,物光束和从反射镜来的参考光束都射到感光片上,两束光发生干涉,在感光片上产生明暗的干涉条纹,感光片就成了全息照相。干涉条纹的明暗记录了干涉后光的强度,干涉条纹的形状记录了两束光的位相关系。 从全息照片的干涉条纹上不能直接看到物体的像,为了现出物体的像,必须用激光束(参考光束)去照射全息照片,当参考光束通过全息照片时,便复现出物光束的全部信息,于是就能看到物体的像。二、光学千涉生物传感器的建立及其在多种生物分子识别中的应用1.光学千涉生物传感器系统的设置(1)光学干涉生物传感器的硬件构成 (2)聚荃乙烯薄膜厚度与光学常数的测定及软件的编译2.光学干涉生物传感器敏感膜的构建3.光学干涉生物传感器在多种类型分子识别中的应用(1)酶标记的表面抗原一表面抗体相互作用(2)寡核昔酸分子杂交实验(3) L一天冬酞胺酶B细胞表位的筛选(4)不同细胞与固定化凝集素的相互作用三、当前光刻技术的主要研究领域及进展 1.光学光刻 光学光刻是通过光学系统以投影方法将掩模上的大规模集成电路器件的结构图形"刻"在涂有光刻胶的硅片上,限制光刻所能获得的最小特征尺寸直接与光刻系统所能获得的分辨率直接相关,而减小光源的波长是提高分辨率的最有效途径。因此,开发新型短波长光源光刻机一直是国际上的研究热点。 2.极紫外光刻(EUVL)极紫外光刻用波长为10-14纳米的极紫外光作 光源。虽然该技术最初被称为软X射线光刻,但实际上更类似于光学光刻。所不同的是由于在材料中的强烈吸收,其光学系统必须采用反射形式。如果EUVL得到应用,它甚至可能解决2012年的微米及以后的问题,对此发展应予以足够重视。总的来说,随着科学技术的迅速发展,在科学和技术领域中人们不断地利着光的干涉原理解决了许多复杂的实际问题。让我们更加深刻的认识光的干涉现象,以便日后更好的利用光的干涉知识解决生产及生活中的问题
最好在网上下载吧
大学物理波动光学论文如下:
大学物理是研究物质的基本结构、相互作用和物质最基本最普遍的运动形式及其相互转化规律的学科。
物理学的研究对象是非常广泛的,它的基本理论渗透到自然科学的很多领域,应用于生产技术的各个部门,它是自然科学和工程技术的基础。
它包含经典物理、近代物理和物理学在科学技术方面的应用等基本内容,这些内容都是各专业进一步学习的基础和今后从事各种工作所需要的必备知识。因此,它是各个专业学生必修的一门重要基础课。
在农科类各专业开设大学物理课的作用,一方面在于为学生较系统地打好必要的物理基础,另一方面是使学生学会初步的科学的思维和研究问题的方法。
这对开阔学生的思路、激发探索和创新精神、增强适应能力、提高人才的素质都将起到非常重要的作用。同时,也为学生今后在工作中进一步学习新的知识、新的理论、新的技术等产生深远的影响。
21世纪是科学技术飞速发展的时代,对人才的要求将更高、更全面,这对我们的大学物理教学也提出了更高的要求,必须跟上时代的步伐。但是,目前以农科类大学物理教学为例存在以下问题:(1)大学物理教材的内容中,以经典物理为主,分为力学、热学、光学、电磁学和近代物理,内容各自独立,彼此之间缺乏联系,没有形成统一的物理系统。
教学内容大部分标题与中学类似,学生看到目录后学习热情和兴趣锐减。
(2)经典物理和近代物理的比例极不平衡,经典物理部分占物理教学内容的80%以上,而且基本上都是20世纪以前的成果,没有站在近代物理学发展的高度,用现代的观点审视、选择和组织传统的教学内容。
同时近代物理的内容非常少,特别是没有反映20世纪后半个世纪以来物理学飞速发展的现代物理思想,使学生对近代物理知识知之甚少,与现代物理严重脱节,因此大学物理教学改革势在必行。
摘 要:介绍了电磁学计算方法的研究进展和状态,对几种富有代表性的算法做了介绍,并比较了各自的优势和不足,包括矩量法、有限元法、时域有限差分方法以及复射线方法等。 关键词:矩量法;有限元法;时域有限差分方法;复射线方法 1 引 言 1864年Maxwell在前人的理论(高斯定律、安培定律、法拉第定律和自由磁极不存在)和实验的基础上建立了统一的电磁场理论,并用数学模型揭示了自然界一切宏观电磁现象所遵循的普遍规律,这就是著名的Maxwell方程。在11种可分离变量坐标系求解Maxwell方程组或者其退化形式,最后得到解析解。这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。对于不规则形状或者任意形状边界则需要比较高的数学技巧,甚至无法求得解析解。20世纪60年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法发展起来,并得到广泛地应用,相对于经典电磁理论而言,数值方法受边界形状的约束大为减少,可以解决各种类型的复杂问题。但各种数值计算方法都有优缺点,一个复杂的问题往往难以依靠一种单一方法解决,常需要将多种方法结合起来,互相取长补短,因此混和方法日益受到人们的重视。 本文综述了国内外计算电磁学的发展状况,对常用的电磁计算方法做了分类。2 电磁场数值方法的分类 电磁学问题的数值求解方法可分为时域和频域2大类。频域技术主要有矩量法、有限差分方法等,频域技术发展得比较早,也比较成熟。时域法主要有时域差分技术。时域法的引入是基于计算效率的考虑,某些问题在时域中讨论起来计算量要小。例如求解目标对冲激脉冲的早期响应时,频域法必须在很大的带宽内进行多次采样计算,然后做傅里叶反变换才能求得解答,计算精度受到采样点的影响。若有非线性部分随时间变化,采用时域法更加直接。另外还有一些高频方法,如GTD,UTD和射线理论。 从求解方程的形式看,可以分为积分方程法(IE)和微分方程法(DE)。IE和DE相比,有如下特点:IE法的求解区域维数比DE法少一维,误差限于求解区域的边界,故精度高;IE法适合求无限域问题,DE法此时会遇到网格截断问题;IE法产生的矩阵是满的,阶数小,DE法所产生的是稀疏矩阵,但阶数大;IE法难以处理非均匀、非线性和时变媒质问题,DE法可直接用于这类问题〔1〕。3 几种典型方法的介绍 有限元方法是在20世纪40年代被提出,在50年代用于飞机设计。后来这种方法得到发展并被非常广泛地应用于结构分析问题中。目前,作为广泛应用于工程和数学问题的一种通用方法,有限元法已非常著名。 有限元法是以变分原理为基础的一种数值计算方法。其定解问题为: 应用变分原理,把所要求解的边值问题转化为相应的变分问题,利用对区域D的剖分、插值,离散化变分问题为普通多元函数的极值问题,进而得到一组多元的代数方程组,求解代数方程组就可以得到所求边值问题的数值解。一般要经过如下步骤: ①给出与待求边值问题相应的泛函及其变分问题。 ②剖分场域D,并选出相应的插值函数。 ③将变分问题离散化为一种多元函数的极值问题,得到如下一组代数方程组:其中:Kij为系数(刚度)矩阵;Xi为离散点的插值。 ④选择合适的代数解法解式(2),即可得到待求边值问题的数值解Xi(i=1,2,…,N) (2)矩量法 很多电磁场问题的分析都归结为这样一个算子方程〔2〕: L(f)=g(3)其中:L是线性算子,f是未知的场或其他响应,g是已知的源或激励。 在通常的情况下,这个方程是矢量方程(二维或三维的)。如果f能有方程解出,则是一个精确的解析解,大多数情况下,不能得到f的解析形式,只能通过数值方法进行预估。令f在L的定义域内被展开为某基函数系f1,f2,f3,…,fn的线性组合:其中:an是展开系数,fn为展开函数或基函数。 对于精确解式(2)通畅是无限项之和,且形成一个基函数的完备集,对近似解,将式 (2)带入式(1),再应用算子L的线性,便可以得到: m=1,2,3,…此方程组可写成矩阵形式f,以解出f。矩量法就是这样一种将算子方程转化为矩阵方程的一种离散方法。 在电磁散射问题中,散射体的特征尺度与波长之比是一个很重要的参数。他决定了具体应用矩量法的途径。如果目标特征尺度可以与波长比较,则可以采用一般的矩量法;如果目标很大而特征尺度又包括了一个很大的范围,那么就需要选择一个合适的离散方式和离散基函数。受计算机内存和计算速度影响,有些二维和三维问题用矩量法求解是非常困难的,因为计算的存储量通常与N2或者N3成正比(N为离散点数),而且离散后出现病态矩阵也是一个难以解决的问题。这时需要较高的数学技巧,如采用小波展开,选取合适的小波基函数来降维等〔3〕。 (3)时域有限差分方法 时域有限差分(FDTD)是电磁场的一种时域计算方法。传统上电磁场的计算主要是在频域上进行的,这些年以来,时域计算方法也越来越受到重视。他已在很多方面显示出独特的优越性,尤其是在解决有关非均匀介质、任意形状和复杂结构的散射体以及辐射系统的电磁问题中更加突出。FDTD法直接求解依赖时间变量的麦克斯韦旋度方程,利用二阶精度的中心差分近似把旋度方程中的微分算符直接转换为差分形式,这样达到在一定体积内和一段时间上对连续电磁场的数据取样压缩。电场和磁场分量在空间被交叉放置,这样保证在介质边界处切向场分量的连续条件自然得到满足。在笛卡儿坐标系电场和磁场分量在网格单元中的位置是每一磁场分量由4个电场分量包围着,反之亦然。 这种电磁场的空间放置方法符合法拉第定律和安培定律的自然几何结构。因此FDTD算法是计算机在数据存储空间中对连续的实际电磁波的传播过程在时间进程上进行数字模拟。而在每一个网格点上各场分量的新值均仅依赖于该点在同一时间步的值及在该点周围邻近点其他场前半个时间步的值。这正是电磁场的感应原理。这些关系构成FDTD法的基本算式,通过逐个时间步对模拟区域各网格点的计算,在执行到适当的时间步数后,即可获得所需要的结果。 在上述算法中,时间增量Δt和空间增量Δx,Δy和Δz不是相互独立的,他们的取值必须满足一定的关系,以避免数值不稳定。这种不稳定表现为在解显式 差分方程时随着时间步的继续计算结果也将无限制的67增加。为了保证数值稳定性必须满足数值稳定条件:其中:(对非均匀区域,应选c的最大值)〔4〕。 用差分方法对麦克斯韦方程的数值计算还会在网格中引起所模拟波模的色散,即在FDTD网格中数字波模的传播速度将随波长、在网格中的传播方向以及离散化的情况而改变。这种色散将导致非物理原因引起的脉冲波形的畸变、人为的各向异性及虚拟的绕射等,因此必须考虑数值色散问题。如果在模拟空间中采用大小不同的网格或包含不同的介质区域,这时网格尺寸与波长之比将是位置的函数,在不同网格或介质的交界面处将出现非物理的绕射和反射现象,对此也应该进行定量的研究,以保证正确估计FDTD算法的精度。在开放问题中电磁场将占据无限大空间,而由于计算机内存总是有限的,只能模拟有限空间,因此差分网格在某处必将截断,这就要求在网格截断处不引起波的明显反射,使对外传播的波就像在无限大空间中传播一样。这就是在截断处设置吸收边界条件,使传播到截断处的波被边界吸收而不产生反射,当然不可能达到完全没有反射,目前已创立的一些吸收边界条件可达到精度上的要求,如Mur所导出的吸收边界条件。 (4)复射线方法 复射线是用于求解波场传播和散射问题的一种高频近似方法。他根据几何光学理论和几何绕射理论的分析方法和计算公式,在解析延拓的复空间中求解复射线轨迹和场的振幅和相位,从而直接得出局部不均匀波(凋落波)的传播和散射规律〔5〕。复射线方法是包括复射线追踪、复射线近轴近似、复射线展开以及复绕射线等处理技术在内的一系列处理方法的统称。其共同特点在于:通过将射线参考点坐标延拓到复空间而建立了一个简单而统一的实空间中波束/射线束(Bundle ofrays)分析模型;通过费马原理及其延拓,由基于复射线追踪或复射线近轴近似的处理技术,构造了射线光学架构下有效的鞍点场描述方法等。例如,复射线追踪法将射线光学中使用的射线追踪方法和场强计算公式直接地解析延拓到复空间,利用延拓后的复费马原理进行复射线搜索,从而求出复射线轨迹和复射线场。这一方法的特点在于可以基于射线光学方法有效地描述空间中波束的传播,因此,提供了一类分析波束传播的简便方法。其不足之处是对每一个给定的观察点必须进行一次二维或四维的复射线轨迹搜索,这是一个十分花费时间的计算机迭代过程。4 几种方法的比较和进展 将有限元法移植到电磁工程领域还是二十世纪六七十年代的事情,他比较新颖。有限元法的优点是适用于具有复杂边界形状或边界条件、含有复杂媒质的定解问题。这种方法的各个环节可以实现标准化,得到通用的计算程序,而且有较高的计算精度。但是这种方法的计算程序复杂冗长,由于他是区域性解法,分割的元素数和节点数较多,导致需要的初始数据复杂繁多,最终得到的方程组的元数很大,这使得计算时间长,而且对计算机本身的存储也提出了要求。对电磁学中的许多问题,有限元产生的是带状(如果适当地给节点编号的话)、稀疏阵(许多矩阵元素是0)。但是单独采用有限元法只能解决开域问题。用有限元法进行数值分析的第一步是对目标的离散,多年来人们一直在研究这个问题,试图找到一种有效、方便的离散方法,但由于电磁场领域的特殊性,这个问题一直没有得到很好的解决。问题的关键在于一方面对复杂的结构,一般的剖分方法难于适用;另一方面,由于剖分的疏密与最终所形成的系数矩阵的存贮量密切相关,因而人们采用了许多方法来减少存储量,如多重网格法,但这些方法的实现较为困难〔6〕。 网格剖分与加密是有限元方法发展的瓶颈之一,采用自适应网格剖分和加密技术相对来说可以较好地解决这一问题。自适应网格剖分根据对场量分布求解后的结果对网格进行增加剖分密度的调整,在网格密集区采用高阶插值函数,以进一步提高精度,在场域分布变化剧烈区域,进行多次加密。 这些年有限元方法的发展日益加快,与其他理论相结合方面也有了新的进展,并取得了相当应用范围的成果,如自适应网格剖分、三维场建模求解、耦合问题、开域问题、高磁性材料及具有磁滞饱和非线性特性介质的处理等,还包括一些尚处于探索阶段的工作,如拟问题、人工智能和专家系统在电磁装置优化设计中的应用、边基有限元法等,这些都使得有限元方法的发展有了质的飞跃。 矩量法将连续方程离散化为代数方程组,既适用于求解微分方程,又适用于求解积分方程。他的求解过程简单,求解步骤统一,应用起来比较方便。然而 77他需要一定的数学技巧,如离散化的程度、基函数与权函数的选取,矩阵求解过程等。另外必须指出的是,矩量法可以达到所需要的精确度,解析部分简单,可计算量很大,即使用高速大容量计算机,计算任务也很繁重。矩量法在天线分析和电磁场散射问题中有比较广泛地应用,已成功用于天线和天线阵的辐射、散射问题、微带和有耗结构分析、非均匀地球上的传播及人体中电磁吸收等。 FDTD用有限差分式替代时域麦克斯韦旋度方程中的微分式,得到关于场分量的有限差分式,针对不同的研究对象,可在不同的坐标系中建模,因而具有这几个优点,容易对复杂媒体建模,通过一次时域分析计算,借助傅里叶变换可以得到整个同带范围内的频率响应;能够实时在现场的空间分布,精确模拟各种辐射体和散射体的辐射特性和散射特性;计算时间短。但是FDTD分析方法由于受到计算机存储容量的限制,其网格空间不能无限制的增加,造成FDTD方法不能适用于较大尺寸,也不能适用于细薄结构的媒质。因为这种细薄结构的最小尺寸比FDTD网格尺寸小很多,若用网格拟和这类细薄结构只能减小网格尺寸,而这必然导致计算机存储容量的加大。因此需要将FDTD与其他技术相结合,目前这种技术正蓬勃发展,如时域积分方程/FDTD方法,FDTD/MOM等。FDTD的应用范围也很广阔,诸如手持机辐射、天线、不同建筑物结构室内的电磁干扰特性研究、微带线等〔7〕。 复射线技术具有物理模型简单、数学处理方便、计算效率高等特点,在复杂目标散射特性分析等应用领域中有重要的研究价值。典型的处理方式是首先将入射平面波离散化为一组波束指向平行的复源点场,通过特定目标情形下的射线追踪、场强计算和叠加各射线场的贡献,可以得到特定观察位置处散射场的高频渐进解。目前已运用复射线分析方法对飞行器天线和天线罩(雷达舱)、(加吸波涂层)翼身结合部和进气道以及涂层的金属平板、角形反射器等典型目标散射特性进行了成功的分析。尽管复射线技术的计算误差可以通过参数调整得到控制,但其本身是一种高频近似计算方法,由于入射波场的离散和只引入鞍点贡献,带来了不可避免的计算误差。总的来说复射线方法在目标电磁散射领域还是具有独特的优势,尤其是对复杂目标的处理。5 结 语 电磁学的数值计算方法远远不止以上所举,还有边界元素法、格林函数法等,在具体问题中,应该采用不同的方法,而不应拘泥于这些方法,还可以把这些方法加以综合应用,以达到最佳效果。 电磁学的数值计算是一门计算的艺术,他横跨了多个学科,是数学理论、电磁理论和计算机的有机结合。原则上讲,从直流到光的宽频带范围都属于他的研究范围。为了跟上世界科技发展的需要,应大力进行电磁场的并行计算方法的研究,不断拓广他的应用领域,如生物电磁学、复杂媒质中的电磁正问题和逆问题、医学应用、微波遥感应用、非线性电磁学中的混沌与分叉、微电子学和纳米电子学等。参考文献〔1〕 文舸一.计算电磁学的进展与展望〔J〕.电子学报,1995,23(10):62-69.〔2〕 刘圣民.电磁场的数值方法〔M〕.武汉:华中理工大学出版社,1991.〔3〕 张成,郑宏兴.小波矩量法求解电磁场积分方程〔J〕.宁夏大学学报(自然科学版),2000,21(1):76-79. 〔4〕 王长清.时域有限差分(FD-TD)法〔J〕.微波学报,1989,(4):8-18.〔5〕 阮颖诤.复射线理论及其应用〔M〕.成都:电子工业出版社,1991.〔6〕 方静,汪文秉.有限元法和矩量法结合分析背腔天线的辐射特性〔J〕.微波学报,2000,16(2):139-143.〔7〕 杨永侠,王翠玲.电磁场的FDTD分析方法〔J〕.现代电子技术,2001,(11):73-74.〔8〕 洪伟.计算电磁学研究进展〔J〕.东南大学学RB (自然科学版),2002,32(3):335-339.〔9〕 王长清,祝西里.电磁场计算中的时域有限差分法〔M〕.北京:北京大学出版社,1994.〔10〕 楼仁海,符果行,袁敬闳.电磁理论〔M〕.成都:电子科技大学出版社,1996. 现代电子技术
分光计的调节及其棱镜折射率的测定研究与分析杨贵宏(08物理2班 200802050253)引言:我们的生活离不开阳光,通常我们认为阳光是一种单色光(单一波长的光)。其实,笼罩在我们周围的光线本身是复色光(由两种或两种以上的单色光组成的光线),他是由不同波长波线的单色光组成的。广义的说,具有周期性的空间结构或光学性能(如透射率、折射率)的衍射屏,统称光栅。光栅的种类很多,有透射光栅和反射光栅,有平面光栅和凹面光栅,有黑白光栅和正弦光栅,有一维光栅,二维光栅和三维光栅,等等。此次实验所使用的光栅是利用全息照相技术拍摄的全息透射光栅光栅的表面若被污染后不易清洗,使用时应特别注意。分光计是一种能精确测量角度的光学仪器,常用来测量材料的折射率、色散率、光波波长和进行光谱观测等。由于该装置比较精密,控制部件较多而且复杂,所以使用时必须严格按照一定的规则和程序进行调整,以便测量出准确的结果。摘要: 分光计是一种能精确测量折射角的典型光学仪器,经常用来测量材料的折射率、色散率、光波波长和进行光谱观测等。由于该装置比较精密,控制部件较多而且操作复杂,所以使用时必须严格按照一定的规则和程序进行调整,方能获得较高精度的测量结果。关键词:分光计、棱镜、折射率Abstract: The spectrometer can accurately measure the angle of refraction is a typical optical instruments, often used to measure the material's refractive index, dispersion rate, wavelength, and spectral observations. As the more sophisticated devices, control components and operation are more complex, and therefore must be used strictly in accordance with certain rules and procedures to adjust to get the high precision measurement : spectrometer, prism, the refractive index二、实验目的: 1、了解分光计结构,学会正解调节和使用分光计的方法; 2、用分光计测量三棱镜的顶角; 3、学会用最小偏向角法测量三棱镜的折射率。三、实验仪器:分光计主要由五个部件组成:三角底座,平行光管、望远镜、刻度圆盘和载物台。图中各调节装置的名称及作用见表1。 图 1分光计基本结构示意图表1 分光计各调节装置的名称和作用代号 名称 作用1 狭缝宽度调节螺丝 调节狭缝宽度,改变入射光宽度2 狭缝装置 3 狭缝装置锁紧螺丝 松开时,前后拉动狭缝装置,调节平行光。调好后锁紧,用来固定狭缝装置。4 平行光管 产生平行光5 载物台 放置光学元件。台面下方装有三个细牙螺丝7,用来调整台面的倾斜度。松开螺丝8可升降、转动载物台。6 夹持待测物簧片 夹持载物台上的光学元件7 载物台调节螺丝(3只) 调节载物台台面水平8 载物台锁紧螺丝 松开时,载物台可单独转动和升降;锁紧后,可使载物台与读数游标盘同步转动9 望远镜 观测经光学元件作用后的光线10 目镜装置锁紧螺丝 松开时,目镜装置可伸缩和转动(望远镜调焦);锁紧后,固定目镜装置11 阿贝式自准目镜装置 可伸缩和转动(望远镜调焦)12 目镜调焦手轮 调节目镜焦距,使分划板、叉丝清晰13 望远镜光轴仰角调节螺丝 调节望远镜的俯仰角度14 望远镜光轴水平调节螺丝 调节该螺丝,可使望远镜在水平面内转动15 望远镜支架 16 游标盘 盘上对称设置两游标17 游标 分成30小格,每一小格对应角度 1’18 望远镜微调螺丝 该螺丝位于图14-1的反面。锁紧望远镜支架制动螺丝 21 后,调节螺丝18,使望远镜支架作小幅度转动19 度盘 分为360°,最小刻度为半度(30′),小于半度则利用游标读数20 目镜照明电源 打开该电源20,从目镜中可看到一绿斑及黑十字21 望远镜支架制动螺丝 该螺丝位于图14-1的反面。锁紧后,只能用望远镜微调螺丝18使望远镜支架作小幅度转动22 望远镜支架与刻度盘锁紧螺丝 锁紧后,望远镜与刻度盘同步转动23 分光计电源插座 24 分光计三角底座 它是整个分光计的底座。底座中心有沿铅直方向的转轴套,望远镜部件整体、刻度圆盘和游标盘可分别独立绕该中心轴转动。平行光管固定在三角底座的一只脚上25 平行光管支架 26 游标盘微调螺丝 锁紧游标盘制动螺丝27后,调节螺丝26可使游标盘作小幅度转动27 游标盘制动螺丝 锁紧后,只能用游标盘微调螺丝26使游标盘作小幅度转动28 平行光管光轴水平调节螺丝 调节该螺丝,可使平行光管在水平面内转动29 平行光管光轴仰角调节螺丝 调节平行光管的俯仰角四、实验原理:三棱镜如图1 所示,AB和AC是透光的光学表面,又称折射面,其夹角 称为三棱镜的顶角;BC为毛玻璃面,称为三棱镜的底面。图2三棱镜示意图 1.反射法测三棱镜顶角 如图2 所示,一束平行光入射于三棱镜,经过AB面和AC面反射的光线分别沿 和 方位射出, 和 方向的夹角记为 ,由几何学关系可知: 图3反射法测顶角2.最小偏向角法测三棱镜玻璃的折射率假设有一束单色平行光LD入射到棱镜上,经过两次折射后沿ER方向射出,则入射光线LD与出射光线ER间的夹角 称为偏向角,如图3所示。 图4最小偏向角的测定转动三棱镜,改变入射光对光学面AC的入射角,出射光线的方向ER也随之改变,即偏向角 发生变化。沿偏向角减小的方向继续缓慢转动三棱镜,使偏向角逐渐减小;当转到某个位置时,若再继续沿此方向转动,偏向角又将逐渐增大,此位置时偏向角达到最小值,测出最小偏向角 。可以证明棱镜材料的折射率 与顶角 及最小偏向角的关系式为 实验中,利用分光镜测出三棱镜的顶角 及最小偏向角 ,即可由上式算出棱镜材料的折射率 。实验内容与步骤:1.分光计的调整(分光计结构如右图所示) 在进行调整前,应先熟悉所使用的分光计中下列螺丝的位置: ①目镜调焦(看清分划板准线)手轮; ②望远镜调焦(看清物体)调节手轮(或螺丝);③调节望远镜高低倾斜度的螺丝;④控制望远镜(连同刻度盘)转动的制动螺丝;⑤调整载物台水平状态的螺丝;⑥控制载物台转动的制动螺丝;⑦调整平行光管上狭缝宽度的螺丝;⑧调整平行光管高低倾斜度的螺丝; 图5 ⑨平行光管调焦的狭缝套筒制动螺丝。(1)目测粗调。将望远镜、载物台、平行光管用目测粗调成水平,并与中心轴垂直(粗调是后面进行细调的前提和细调成功的保证)。(2)用自准法调整望远镜,使其聚焦于无穷远。①调节目镜调焦手轮,直到能够清楚地看到分划板"准线"为止。 ②接上照明小灯电源,打开开关,可在目镜视场中看到如图4所示的“准线”和带有绿色小十字的窗口。 图6目镜视场 ③将双面镜按图5所示方位放置在载物台上。这样放置是出于这样的考虑:若要调节平面镜的俯仰,只需要调节载物台下的螺丝a1或a2即可,而螺丝a3的调节与平面镜的俯仰无关。图7平面镜的放置 ④沿望远镜外侧观察可看到平面镜内有一亮十字,轻缓地转动载物台,亮十字也随之转动。但若用望远镜对着平面镜看,往往看不到此亮十字,这说明从望远镜射出的光没有被平面镜反射到望远镜中。我们仍将望远镜对准载物台上的平面镜,调节镜面的俯仰,并转动载物台让反射光返回望远镜中,使由透明十字发出的光经过物镜后(此时从物镜出来的光还不一定是平行光),再经平面镜反射,由物镜再次聚焦,于是在分划板上形成模糊的像斑(注意:调节是否顺利,以上步骤是关键)。然后先调物镜与分划板间的距离,再调分划板与目镜的距离使从目镜中既能看清准线,又能看清亮十字的反射像。注意使准线与亮十字的反射像之间无视差,如有视差,则需反复调节,予以消除。如果没有视差,说明望远镜已聚焦于无穷远。 (3)调整望远镜光轴,使之与分光计的中心轴垂直。 平行光管与望远镜的光轴各代表入射光和出射光的方向。为了测准角度,必须分别使它们的光轴与刻度盘平行。刻度盘在制造时已垂直于分光计的中心轴。因此,当望远镜与分光计的中心轴垂直时,就达到了与刻度盘平行的要求。具体调整方法为:平面镜仍竖直置于载物台上,使望远镜分别对准平面镜前后两镜面,利用自准法可以分别观察到两个亮十字的反射像。如果望远镜的光轴与分光计的中心轴相垂直,而且平面镜反射面又与中心轴平行,则转动载物台时,从望远镜中可以两次观察到由平面镜前后两个面反射回来的亮十字像与分划板准线的上部十字线完全重合,如图6(c)所示。若望远镜光轴与分光计中心轴不垂直,平面镜反射面也不与中心轴相平行,则转动载物台时,从望远镜中观察到的两个亮十字反射像必然不会同时与分划板准线的上部十字线重合,而是一个偏低,一个偏高,甚至只能看到一个。这时需要认真分析,确定调节措施,切不可盲目乱调。重要的是必须先粗调:即先从望远镜外面目测,调节到从望远镜外侧能观察到两个亮十字像;然后再细调:从望远镜视场中观察,当无论以平面镜的哪一个反射面对准望远镜,均能观察到亮十字时,如从望远镜中看到准线与亮十字像不重合,它们的交点在高低方面相差一段距离如图6(a)所示。此时调整望远镜高低倾斜螺丝使差距减小为h/2,如图6(b)所示。再调节载物台下的水平调节螺丝,消除另一半距离,使准线的上部十字线与亮十字线重合,如图6(c)所示。之后,再将载物台旋转180o ,使望远镜对着平面镜的另一面,采用同样的方法调节。如此反复调整,直至转动载物台时,从平面镜前后两表面反射回来的亮十字像都能与分划板准线的上部十字线重合为止。这时望远镜光轴和分光计的中心轴相垂直,常称这种方法为逐次逼近各半调整法。图8亮十字像与分划板准线的位置关系 (4)调整平行光管 用前面已经调整好的望远镜调节平行光管。当平行光管射出平行光时,则狭缝成像于望远镜物镜的焦平面上,在望远镜中就能清楚地看到狭缝像,并与准线无视差。 ①调整平行光管产生平行光。取下载物台上的平面镜,关掉望远镜中的照明小灯,用钠灯照亮狭缝,从望远镜中观察来自平行光管的狭缝像,同时调节平行光管狭缝与透镜间的距离,直至能在望远镜中看到清晰的狭缝像为止,然后调节缝宽使望远镜视场中的缝宽约为1mm。 ②调节平行光管的光轴与分光计中心轴相垂直。望远镜中看到清晰的狭缝像后,转动狭缝(但不能前后移动)至水平状态,调节平行光管倾斜螺丝,使狭缝水平像被分划板的中央十字线上、下平分,如图7(a)所示。这时平行光管的光轴已与分光计中心轴相垂直。再把狭缝转至铅直位置,并需保持狭缝像最清晰而且无视差,位置如图7(b)所示。图9狭缝像与分划板位置 至此分光计已全部调整好,使用时必须注意分光计上除刻度圆盘制动螺丝及其微调螺丝外,其它螺丝不能任意转动,否则将破坏分光计的工作条件,需要重新调节。 2. 测量 在正式测量之前,请先弄清你所使用的分光计中下列各螺丝的位置:①控制望远镜(连同刻度盘)转动的制动螺丝;②控制望远镜微动的螺丝。(1)用反射法测三棱镜的顶角 如图2 所示,使三棱镜的顶角对准平行光管,开启钠光灯,使平行光照射在三棱镜的AC、AB面上,旋紧游标盘制动螺丝,固定游标盘位置,放松望远镜制动螺丝,转动望远镜(连同刻度盘)寻找AB面反射的狭缝像,使分划板上竖直线与狭缝像基本对准后,旋紧望远镜螺丝,用望远镜微调螺丝使竖直线与狭缝完全重合,记下此时两对称游标上指示的读数 、 。转动望远镜至AC面进行同样的测量得 、 。可得 三棱镜的顶角 为 重复测量三次取平均。(2) 棱镜玻璃折射率的测定 分别放松游标盘和望远镜的制动螺丝,转动游标盘(连同三棱镜)使平行光射入三棱镜的AC面,如图3 所示。转动望远镜在AB面处寻找平行光管中狭缝的像。然后向一个方向缓慢地转动游标盘(连同三棱镜)在望远镜中观察狭缝像的移动情况,当随着游标盘转动而向某个方向移动的狭缝像,正要开始向相反方向移动时,固定游标盘。轻轻地转动望远镜,使分划板上竖直线与狭缝像对准,记下两游标指示的读数,记为 、 ;然后取下三棱镜,转动望远镜使它直接对准平行光管,并使分划板上竖直线与狭缝像对准,记下对称的两游标指示的读数,记为 、 ,可得 重复测量三次求平均。用上式求出棱镜的折射。五、实验注意事项:1.望远镜、平行光管上的镜头,三棱镜、平面镜的镜面不能用手摸、揩。如发现有尘埃时,应该用镜头纸轻轻揩擦。三棱镜、平面镜不准磕碰或跌落,以免损坏。 2.分光计是较精密的光学仪器,要加倍爱护,不应在制动螺丝锁紧时强行转动望远镜,也不要随意拧动狭缝。 3.在测量数据前务须检查分光计的几个制动螺丝是否锁紧,若未锁紧,取得的数据会不可靠。 4.测量中应正确使用望远镜转动的微调螺丝,以便提高工作效率和测量准确度。 5.在游标读数过程中,由于望远镜可能位于任何方位,故应注意望远镜转动过程中是否过了刻度的零点。 6.调整时应调整好一个方向,这时已调好部分的螺丝不能再随便拧动,否则会造成前功尽弃。 7.望远镜的调整是一个重点。首先转动目镜手轮看清分划板上的十字线,而后伸缩目镜筒看清亮十字。 六、思考题:1. 分光计的调整有哪些要求?其检察的标准?答:①几何要求:“三垂直”。即载物小平台的平面,望远镜的主光轴、平行光管的主光轴均必须与分光计的中心轴垂直。②物理要求:“三聚焦”。即叉丝对目镜聚焦,望远镜对无穷远聚焦,狭缝对平行光管物镜聚焦。③检验三垂直的标准:“四平行”。即载物小平台平面、望远镜的主光轴、平行光管的主光轴和读数刻度盘四者相互平行。④检验三聚焦的标准:“三清晰”。即目镜中观察叉丝清晰,亮十字反回的像(绿十字)清晰,在望远镜中看到狭缝清晰。2. 即是重点又是难点内容的望远镜系统如何调整? 答:①目测粗调②打开小灯调节目镜,看清叉丝。③在载物台上放双平面镜(位置如胶片图所示,为什么?),调节物镜(仰俯角和伸缩)和载物台(螺钉),使双平面镜两面有绿十字像并清晰、无视差,此时望远镜已聚焦无穷远。④调整望远镜的光轴与分光计转轴垂直。使双平面镜两面有绿十字像。再用“减半逐步逼近法”使望远镜的光轴与分光计的中心轴垂直(对照胶片讲解,必要时示范讲解),即叉丝的像与调整叉丝完全重合。3. 平行光管如何调整?答:①用已调节好的望远镜作基准,调节平行光管下部仰俯螺钉,使其出射平行光。②调节平行光管的狭缝宽度(强调:不要损坏刀口!)③使平行光管光轴与分光计转轴垂直。使目镜中看到的水平和竖直的狭缝像均居中。 七、误差分析:在测量三棱镜折射率实验中,当调节分光计的平行光管光轴与望远镜光轴垂直于中心转轴后,由实验可知载物台平面的倾斜程度对最小偏向角的测量没影响,但顶角的测量随着载物台平面的倾斜程度不同,有着不同程度的影响。八、实验心得:1、提高了我们综合分析的能力,当面对一个问题时,首先要考虑怎样解决,既而开始考虑解决的具体方法,在实验前必须提前预习,把整个实验的原理,流程和注意的事项掌握清楚,这才能保证你实验既快又好的完成.在预习时要有目的,心中明白哪里里是实验的重点,哪里是必须注意的问题.设计实验步骤,并预测实验中可能出现的问题。对实验的每一个细节进行分析,尽可能的减小实验误差。这些都使我们初步培养了实验的素质和能力。 2、培养了实验中科学严谨的态度,尊重客观事实,对待任何实验都客观认真仔细。实验正式开始前,应该先清点下实验仪器和材料,并对其进行检查,以确保实验顺利进行.在动手前先将心中的实验知识对照一起过一遍再开始动手。实验过程更始需要很精细的态度和求实的态度。对每个步骤,每个细节都要留心。 3、养成了我们做事认真细致有耐心的习惯。在实验中,你必须有耐心,因为实验中每个变化都可能是细微的,必须集中精神才能去发现它,不可以急于求成。如果实验数据与正确数据相差过大时,应该把整个实验过程回想一下,对照每一步骤寻求问题所在,重新做一次。 4、悉了很多仪器的使用方法,在光学实验室良好的环境和设备的情况下,我们得到了很好的锻炼,对很多仪器的调试、测量,以及如何减小实验误差等,都有了很明确的认识。我想,这在我们以后的实验过程中会非常有用。 5、实验老师们的耐心讲解和对工作的认真态度给我留下了很深刻的印象。辅导我们实验的每一位老师,对工作都极其认真,在实验前,老师通常会给大家讲解下实验的注意事项,对于我们实验中出现的问题都给予耐心的讲解,而且,在我们实验进行中和实验结束后,老师们都启发我们思考实验的一些外延内容,这对我们将实验所进行的内容跟课本密切联系起来,将知识更充分地掌握。九、试验总结:首先:光学试验的仪器测量都十分精密,实验中一个很小的环节都有可能导致试验的失败,以“应用全反射临界角法测定三棱镜的折射率”为例,在实验过程中要注意分光仪在进行本次实验时已做过校正,因此时在测量时就应该注意,只能调节载物台倾斜度调节螺丝,而对于像平行光管倾斜度调节螺丝、望远镜倾斜度调节螺丝等就不应该再进行调节,否则将会导致实验失败。 第二:对于数据的处理,光学实验也有较高的要求,数据不但要求准确度高,精确度也要高,而且通常要记录多组数据,最后取平均。 第三:光学实验的测量仪器在进行测量时,通常要求一个稳定的实验环境,当有光源时,通常要在实验开始前先打开光源,这样在进行实验时,光源已经达到稳定。对于“全息照相”,对环境的稳定性要求更高,实验仪器都放在防震台上,在仪器排好光路后,要用手轻敲台面,看光路是否改变,在进行曝光前,更是要求室内实验人员不得大声说话,因为声波震动而引起的空气密度变化都有可能导致实验失败,在装片后还必须有一个使台面上各元件自然稳定的时间,即使干涉条纹稳定下来了,时间也不得少于3分钟。可以说这是我做过的六次实验中对稳定性要求最高的实验 第四:我始终认为做好实验预习是最重要的,在作实验前,通过预习,我们可以了解要做实验的原理及要使用的仪器的使用方法,这样在实验之前就已对试验有了大概的了解,然后在课堂上通过老师的讲解,可以迅速掌握仪器的使用方法,这样做起实验来才会得心应手,同时也可以减少因不了解实验仪器的使用方法而导致的实验失败,甚至是对仪器造成损坏,可以说做好实验预习是一举多得的事情。九、参考文献:[1]、普通物理实验3光学部分 高等教育出版社 杨述武、赵立竹等编 2008年版;[2]、大学物理实验 章世恒 主编 西南交通大学出版社 2009 年1月 ;[3]、大学物理实验教程(第2版) 何春娟 主编 西北工业大学出版社 2009年4月。
大学物理波动光学论文如下:
大学物理是研究物质的基本结构、相互作用和物质最基本最普遍的运动形式及其相互转化规律的学科。
物理学的研究对象是非常广泛的,它的基本理论渗透到自然科学的很多领域,应用于生产技术的各个部门,它是自然科学和工程技术的基础。
它包含经典物理、近代物理和物理学在科学技术方面的应用等基本内容,这些内容都是各专业进一步学习的基础和今后从事各种工作所需要的必备知识。因此,它是各个专业学生必修的一门重要基础课。
在农科类各专业开设大学物理课的作用,一方面在于为学生较系统地打好必要的物理基础,另一方面是使学生学会初步的科学的思维和研究问题的方法。
这对开阔学生的思路、激发探索和创新精神、增强适应能力、提高人才的素质都将起到非常重要的作用。同时,也为学生今后在工作中进一步学习新的知识、新的理论、新的技术等产生深远的影响。
21世纪是科学技术飞速发展的时代,对人才的要求将更高、更全面,这对我们的大学物理教学也提出了更高的要求,必须跟上时代的步伐。但是,目前以农科类大学物理教学为例存在以下问题:(1)大学物理教材的内容中,以经典物理为主,分为力学、热学、光学、电磁学和近代物理,内容各自独立,彼此之间缺乏联系,没有形成统一的物理系统。
教学内容大部分标题与中学类似,学生看到目录后学习热情和兴趣锐减。
(2)经典物理和近代物理的比例极不平衡,经典物理部分占物理教学内容的80%以上,而且基本上都是20世纪以前的成果,没有站在近代物理学发展的高度,用现代的观点审视、选择和组织传统的教学内容。
同时近代物理的内容非常少,特别是没有反映20世纪后半个世纪以来物理学飞速发展的现代物理思想,使学生对近代物理知识知之甚少,与现代物理严重脱节,因此大学物理教学改革势在必行。
最好在网上下载吧
《大学物理-光学》百度网盘资源免费下载
链接:
大学物理-光学|3.偏振.mp4|2.干涉.mp4|1.衍射.mp4
21世纪是知识爆炸的时代,大学物理也不例外。这是我为大家整理的大学物理学术论文,仅供参考!
中学物理中的物理模型
摘要:本文阐述了物理模型的概念、功能,中学物理教材中常见的六种物理模型,物理模型在中学物理教学中地位和作用,以及中学阶段在物理模型的教学过程中应该注意的若干问题。
关键词:中学物理;教学;物理模型
一、物理模型的概念及功能
物理学所分析、研究的实际问题往往很复杂,有众多的因素,为了便于着手分析与研究,物理学往往采用一种“简化”的方法,对实际问题进行科学抽象化处理,保留主要因素,略去次要因素,得出一种能反映原物本质特性的理想物质(过程)或假想结构,此种理想物质(过程)或假想结构就称之为物理模型。
物理模型按其设计思想可分为理想化物理模型和探索性物理模型。前者的特点是突出研究客体的主要矛盾,忽略次要因素,将物体抽象成只具有原物体主要因素但并不客观存在的物质(过程),从而使问题简化。如质点模型、点电荷模型、理想气体模型、匀速直线运动模型等等。后者的特点是依据观察或实验的结果,假想出物质的存在形式,但其本质属性还在进一步探索之中。如原子模型、光的波粒二象性模型等等。
人们建立和研究物理模型的功能主要在于:
一是可以使问题的处理大为简化而又不会发生大的偏差,从中较为方便地得出物体运动的基本规律;
二是可以对模型讨论的结果稍加修正,即可用于对实际事物的分析和研究;
三是有助于对客观物理世界的真实认识,达到认识世界,改造世界,为人类服务之目的。
二、中学物理教材中经常碰到的几种物理模型
物理模型就它在实际问题中所扮演角色或所起作用的不同,可分为:
1.物理对象模型 即把物理问题的研究对象模型化。
例如质点,舍去和忽略形状、大小、转动等性能,突出它具有所处位置和质量的特性,用一个有质量的点来描述,又如点电荷、弹簧振子、单摆、理想变压器、理想电表等等,都是属于将物体本身的理想化。
另外诸如点光源、电场线、磁感线等,则属于人们根据它们的物理性质,用理想化的图形来模拟的概念。
2.物理过程模型 即把研究对象的实际运动过程进行近似处理。排除其在实际运动过程中的一些次要因素的干扰,使之成为理想的典型过程。
如研究一个铁球从高空中由静止落下的过程。首先应考虑吸引力,由公式F=GMm�r2可知,铁球越接近地面,F就越大,其次还要考虑空气阻力、风速、地球自转等影响。这样考查铁球下落运动过程就显得十分复杂,研究起来十分不便。为此,我们在研究过程上突出铁球下落的主要因素,即受重力作用,而忽略其它次要影响,并把重力视为恒力,通过如此简化,使研究问题简化,其研究结果也不致影响到基本规律的正确性。从而成为物理学中一个典型的运动过程,即自由落体运动。这种物理模型称之为过程模型。
教材中的匀速直线运动、简谐振动、弹性碰撞;理想气体的等温、等容、等压、绝热变化等等都是将物理过程模型化。
3.物理条件模型 如自由落体运动规律就是在建立了“忽略空气阻力,认为重力恒定”的条件模型之后才得出来的。力学中的光滑斜面;热学中的绝热容器;电学中的匀强电场、匀强磁场等等,也都是把物体所处的条件理想化了。
4.物理等效模型 即通过充分挖掘原有物理模型的特征去等效具有相似性质或特点的现象和相似运动形态的物质和运动。如将理想气体分子等效为弹性小球,并用弹性小球对器壁的碰撞去解释和推导气体压强公式,用单摆振动模型去等效类比电磁振荡过程等等。
5.物理实验模型 在实验的基础上,抓住主要矛盾,忽略次要矛盾,然后根据逻辑推理法则,对过程作进一步的分析,推理,找出其规律,得出实验结论。
如伽利略就是从斜槽上滚下的小球滚上另一斜槽,后者坡度越小,小球滚得越远的实验基础上提出了他的理想实验――在无摩擦力情况下,从斜槽滚下的小球将以恒定的速度在无限长的水平面上永远不停地运动下去,从而推翻了延续两千多年的“力是维持物体运动的不可缺少”的结论,为惯性定律(牛顿第一定律)的产生奠定了基础。
再如在研究电场强度时,设想在电场中放置一个不会引起电场变化的点电荷,去考查它在各点的F�q值等等。
6.物理数学模型 即建立以物理模型为描述对象的数学模型,进行对客观实体近似的定量计算,从而使问题由繁到简。如单摆的摆线与竖直方向的夹角不得大于50,使弧线计算转化为三角计算等等。
三、物理模型在中学物理教学中的地位和作用
1.建立正确鲜明的物理模型是物理学研究的重要方法和有力手段之一
物理学所研究的各种问题,在实际上都涉及许多因素,而模型则是在抓住主要因素,忽略次要因素的基础上建立起来的。它具有具体形象、生动、深刻地反映了事物的本质和主流这一重要属性。
如“质点”模型,在物体的宏观平动运动中,描述运动的物理量位移、速度、加速度等对同一物体来说其上各点都相同,在这些问题的研究中,运动物体的大小和形状是可不考虑的,故可将运动物体质点化,即用质点模型来取代真实运动的物体。
2.正确鲜明的物理模型本身就是重要的物理内容之一,它与相应的物理概念、现象、规律相依托
人们认识原子结构的进程中,从汤姆逊模型到卢瑟福模型的飞跃就是生动的反映。
爱因斯坦光电效应方程的建立成功地解释了光电效应,而它是建立在反映光粒子性的“光子”模型之上的。
诸多的事实都在说明大凡物理现象、过程、规律都直接与之相应的物理模型关联着;一定的物理模型又是最生动最集中地反映着相应的物理概念、现象、过程和规律,二者密不可分。
3.正确鲜明的物理模型的建立,使许多抽象的物理问题变得直观化、具体化、形象化
例如,电场线对电场的描述,磁感线对磁场的描述。分子模型对理解分子动理论的基本观点,原子核式结构对a粒子散射实验现象的解释;光子模型对光的粒子性的理解等等,凡是学物理的人都会感受到物理模型所给予的无可争辩的重要作用。
四、物理模型的教学要着眼于学生掌握建立正确鲜明的物理模型这一根本方法
物理模型是物理基础知识的一部分,属物理概念的范畴。学习前人为我们创造的各种物理模型是完成教学内容的重要组成部分,培养学生掌握这一方法,即对一个具体的物理内容、现象或过程能反映出一幅鲜明的“物理图景”,是培养学生科学思维能力的一个重要方面。为此,我们在教学中应注意如下几点:
1.讲清各物理模型设计的依据。物理模型看上去是独立的,但设计物理模型的思想是相通的。
2.讲授物理模型要前后呼应,触类旁通。运动学中建立的“质点”模型,发展到质点动力学中,万有引力定律中,以至物体转动问题中,还可引伸到单摆中的摆球,弹簧振子中的振子,甚至帮助我们建立电学中的点电荷模型,光学中的点光源模型。
3.物理模型思维贯穿在物理教学的过程中,随着人们对某个物理问题认识的不断深刻和提高,物理模型也必将随之完善和准确。例如对于光本性的问题,人们从牛顿的微粒说,惠更斯的波动说、电磁说、粒子说到波粒二象性,在此发展过程中光的模型也随之一次次地得到深化。
4.在平时的例题教学中也是处处体现了物理模型的重要地位和作用。解答各类物理习题,学生能否依据题意建立起相应的物理模型,是解题成败的重要环节。如果解题者所理解的题意中的物理模型与命题者的设计模型一致,题意就必然变得清晰鲜明,习题的难点便会随之而突破,这种例子是垂手可得的。
总之,物理模型的教学确实需要我们予以足够的重视,这个问题对提高我们的物理教学水平关系甚大。
物理猜想与中学物理教学
【摘 要】阐述物理猜想在中学物理教学中的意义及教师在物理课堂教学中引导学生进行物理猜想的方法。
【关键词】中学 物理猜想 物理教学
【中图分类号】 G 【文献标识码】 A
【文章编号】0450-9889(2014)11B-0076-02
随着基础教育课程改革的逐步深入,在新课程标准中,对高中生在学习物理过程中的学习能力提出了更高的要求,由此教会学生运用物理猜想方法可以让学生更有效地学好物理。为了促进中学生学会运用物理猜想方法,新课程的物理教材刻意设计了许多研究物理现象的活动。以此增进学生对物理知识的理解,提高学生学习物理知识的能力,例如提出问题、猜想与假设、合作与交流等能力。这些基本能力是确保科学研究各种物理现象得以顺利进行的前提和基础。只有通过猜想、假设,并经过许多的研究活动,才能使研究物理现象过程顺利完成。根据笔者这十多年的教学经验,总结出物理猜想对高中物理教学的作用以及如何通过物理猜想提高物理教学的经验,现浅谈自己的看法。
一、物理猜想对中学物理教学有着重要的意义
新课标义务教育阶段的物理课程中,提出要鼓励学生积极大胆地进行科学研究,使学生从基本的科学研究过程中学到科学研究的方法,最终达到提高他们的科学研究能力的目的。使学生养成尊重事实、大胆想象的科学习惯,发扬研究真理的科学精神;培养学生敢于质疑、勇于创新、战胜困难的信心和决心。在中学物理教学中教师的作用是引导学生进行科学猜想,引导学生进行科学探索活动,提升他们的科学探索创新能力。鼓励他们在研究活动过程中,根据已经了解的物理知识和物理现象,进行猜想与假设,然后设计实验,通过亲自动手做实验来验证自己的猜想与假设。因此,要达到新课标中的要求,笔者认为猜想在新课程标准的教学过程中的运用起到了关键的作用。物理猜想的运用是教育教学发展的要求,也是促进物理教育教学改革和发展的需要。笔者认为运用物理猜想法在中学物理教学中有以下几个重要的意义。
1.提高学生学习兴趣和增进学生学习主动性
学生往往对新生事物比较好奇,都希望能够尽快了解其中的知识、规律和奥秘。如果在中学物理教学过程中多鼓励学生对所要学习的物理现象猜想出其可能出现的某些现象或规律,那么不但能增强学生的新奇心,而且还能激发学生的探究意识和能力,使他们更能积极地深入到学习新知识当中。锻炼和培养中学生的物理猜想能力,能提高学生对研究物理问题的兴趣和欲望。兴趣和欲望正是学生学习物理知识的动力。因此,物理猜想是提高学生学习兴趣和增进学生主动学习的好方法。
2.提高学生的思维能力
在中学物理教学过程中,教师要经常通过提出问题并引导学生根据他们现有知识和理解问题的能力进行猜想,经过观察、实验、归纳、总结等进行严格推理和验证,使学生在学习物理知识的过程中逐渐提高他们的发散思维能力,也使他们思想更加灵活。因此通过猜想法不仅使学生容易理解和掌握物理知识,而且有利于提高学生的思维能力。
3.有利于学生巩固所学的物理知识
物理猜想是学生根据自己的思维意识进行推测,是开放性的思维方式。经过对事物仔细观察和辩别认识,提高了学生对事物整体性的研究,促进学生的思维进程,使学生迅速地理解和掌握新知识。如果这些新知识是由学生自己主动猜想后经过验证推理得来的,那么学生就比较容易接受。因此,这些物理现象及规律就会深深刻印在学生的心里,巩固这些新的物理知识。
4.培养学生创新能力
在新课程标准中,特别着重对中学生创新能力培养。科学的物理猜想是培养中学生创新能力的主要方法之一。科学的物理猜想对中学生创新能力的培养起着积极的作用,它能提高学生的反应能力和灵活解题能力。因此,科学的物理猜想能够非常有效地提高中学生的创新能力。
二、教师在物理课堂教学中引导学生进行物理猜想的方法
教师在教学过程中为了尽可能地发挥学生的想象能力,要根据学生现已掌握的物理知识、兴趣爱好和想象能力等引导学生提出猜想。教师如何更好地引导学生运用已掌握的物理知识和技能来构建出新的物理猜想呢?笔者认为,教师在实际教学过程中需要讲究提出猜想一些方法。
1.启发学生根据自己各种经历、各种经验和已学的知识提出猜想
科学发展的经验告诉我们,科学的猜想并非胡乱猜测,它需要有科学依据,要根据学生的经历、经验、生活常识等提出猜想。爱因斯坦创立的“相对论”起初就是根据前人的经验、自己的经历以及自己掌握的科学知识提出的猜想,然后通过观察、推理、推导、证明,才提出了理论依据,最后才建立了举世闻名的“相对论”。例如,在学习“自由落体运动”时,先让学生观察羽毛和铁片在有空气的玻璃管中同时下落的情况,再启发他们猜想如果将玻璃管中的空气抽出后,再让羽毛和铁片同时下落会出现什么情况。让学生猜想并记下这些猜想,然后通过演示实验让学生观察,最后得出结论。这种通过启发学生猜想和实验演示相结合的教学方法,更能加深学生理解所学的物理知识。
2.激励学生讨论,诱发物理猜想
在教学过程中学生引导学生进行猜想时,应该将学生分成几个组,让各组提出各自不同的猜想,并由他们各自陈述自己猜想的理由和依据。激励他们讨论、争辩,经过讨论和争辩提高他们对物理猜想的兴趣和对物理猜想的积极性。例如,在学习“牛顿第二定律”时,将同学们分成两个小组,一组猜想物体的加速度与力的关系,另一组猜想物体的加速度与质量的关系,然后让他们分别做实验,得出结论。教师在课堂中认真听取各组学生的观点后,引导诱发他们讨论并猜想加速度与力及质量的关系,最后总结出牛顿第二定律。这样能更好地完成教学任务,取得更好的教学效果。
3.鼓励学生大胆猜想
在教学过程中许多学生由于害怕自己提出的猜想被其他同学取笑或者自己提出的猜想不正确被老师责怪而羞以启齿,这时教师应该鼓励、引导学生大胆猜想,消除他们的顾虑。例如,研究玻璃的折射率时,可以猜想单色光通过平行玻璃砖后传播方向是否发生改变。先鼓励学生大胆进行猜想其出射的方向,并记下来。不管他们的猜测是否合理、准确,教师都要持平和的态度,让实验验证结果。只有这样才能提高学生的学习积极性,增强学生科学猜想的意识。
4.创造良好的猜想条件
在教学过程中,当教学到有利于培养学生猜想能力的内容时,教师应该积极引导鼓励学生进行猜想。例如,在“楞次定律”教学中,教师在课堂演示让磁体的N极靠近闭合的铝环的实验之前,先启发学生猜想让磁体的N极靠近闭合的铝环时会看到什么现象,让磁体的N极去靠近有缺口的铝环时又会看到什么现象。然后通过实验引导学生注意观察实验现象。同样,让磁体的S极去靠近闭合的铝环时又会出现什么情况。总之,教师要尽最大可能为学生进行猜想创造条件。
物理猜想既是一种自由尝试,也是一种严谨的创造,因此,在教学过锃中,教师要善于抓住每一个有利于提高学生猜想能力的机会,鼓励学生大胆猜想,从而提高他们的思维能力,增加他们学习物理的兴趣,进而提高物理教学的效率。
【参考文献】
[1]王较过,孟蓓.物理探究教学中培养“猜想与假设”能力的策略[J].当代教师教育,2008(6)
[2]付红周.新课程下全方位认识猜想及其在物理教学中的培养・高中物理[M].北京:人民教育出版社,2012
[3]林东槟.物理探究教学中培养猜想与假设能力的策略[J].实验教学与仪器.2013(4)
[4]蔡严娟.新课改物理探究教学中猜想与假设能力的培养[J].现代教育科研论坛.2011(5)
分光计的调节及其棱镜折射率的测定研究与分析杨贵宏(08物理2班 200802050253)引言:我们的生活离不开阳光,通常我们认为阳光是一种单色光(单一波长的光)。其实,笼罩在我们周围的光线本身是复色光(由两种或两种以上的单色光组成的光线),他是由不同波长波线的单色光组成的。广义的说,具有周期性的空间结构或光学性能(如透射率、折射率)的衍射屏,统称光栅。光栅的种类很多,有透射光栅和反射光栅,有平面光栅和凹面光栅,有黑白光栅和正弦光栅,有一维光栅,二维光栅和三维光栅,等等。此次实验所使用的光栅是利用全息照相技术拍摄的全息透射光栅光栅的表面若被污染后不易清洗,使用时应特别注意。分光计是一种能精确测量角度的光学仪器,常用来测量材料的折射率、色散率、光波波长和进行光谱观测等。由于该装置比较精密,控制部件较多而且复杂,所以使用时必须严格按照一定的规则和程序进行调整,以便测量出准确的结果。摘要: 分光计是一种能精确测量折射角的典型光学仪器,经常用来测量材料的折射率、色散率、光波波长和进行光谱观测等。由于该装置比较精密,控制部件较多而且操作复杂,所以使用时必须严格按照一定的规则和程序进行调整,方能获得较高精度的测量结果。关键词:分光计、棱镜、折射率Abstract: The spectrometer can accurately measure the angle of refraction is a typical optical instruments, often used to measure the material's refractive index, dispersion rate, wavelength, and spectral observations. As the more sophisticated devices, control components and operation are more complex, and therefore must be used strictly in accordance with certain rules and procedures to adjust to get the high precision measurement : spectrometer, prism, the refractive index二、实验目的: 1、了解分光计结构,学会正解调节和使用分光计的方法; 2、用分光计测量三棱镜的顶角; 3、学会用最小偏向角法测量三棱镜的折射率。三、实验仪器:分光计主要由五个部件组成:三角底座,平行光管、望远镜、刻度圆盘和载物台。图中各调节装置的名称及作用见表1。 图 1分光计基本结构示意图表1 分光计各调节装置的名称和作用代号 名称 作用1 狭缝宽度调节螺丝 调节狭缝宽度,改变入射光宽度2 狭缝装置 3 狭缝装置锁紧螺丝 松开时,前后拉动狭缝装置,调节平行光。调好后锁紧,用来固定狭缝装置。4 平行光管 产生平行光5 载物台 放置光学元件。台面下方装有三个细牙螺丝7,用来调整台面的倾斜度。松开螺丝8可升降、转动载物台。6 夹持待测物簧片 夹持载物台上的光学元件7 载物台调节螺丝(3只) 调节载物台台面水平8 载物台锁紧螺丝 松开时,载物台可单独转动和升降;锁紧后,可使载物台与读数游标盘同步转动9 望远镜 观测经光学元件作用后的光线10 目镜装置锁紧螺丝 松开时,目镜装置可伸缩和转动(望远镜调焦);锁紧后,固定目镜装置11 阿贝式自准目镜装置 可伸缩和转动(望远镜调焦)12 目镜调焦手轮 调节目镜焦距,使分划板、叉丝清晰13 望远镜光轴仰角调节螺丝 调节望远镜的俯仰角度14 望远镜光轴水平调节螺丝 调节该螺丝,可使望远镜在水平面内转动15 望远镜支架 16 游标盘 盘上对称设置两游标17 游标 分成30小格,每一小格对应角度 1’18 望远镜微调螺丝 该螺丝位于图14-1的反面。锁紧望远镜支架制动螺丝 21 后,调节螺丝18,使望远镜支架作小幅度转动19 度盘 分为360°,最小刻度为半度(30′),小于半度则利用游标读数20 目镜照明电源 打开该电源20,从目镜中可看到一绿斑及黑十字21 望远镜支架制动螺丝 该螺丝位于图14-1的反面。锁紧后,只能用望远镜微调螺丝18使望远镜支架作小幅度转动22 望远镜支架与刻度盘锁紧螺丝 锁紧后,望远镜与刻度盘同步转动23 分光计电源插座 24 分光计三角底座 它是整个分光计的底座。底座中心有沿铅直方向的转轴套,望远镜部件整体、刻度圆盘和游标盘可分别独立绕该中心轴转动。平行光管固定在三角底座的一只脚上25 平行光管支架 26 游标盘微调螺丝 锁紧游标盘制动螺丝27后,调节螺丝26可使游标盘作小幅度转动27 游标盘制动螺丝 锁紧后,只能用游标盘微调螺丝26使游标盘作小幅度转动28 平行光管光轴水平调节螺丝 调节该螺丝,可使平行光管在水平面内转动29 平行光管光轴仰角调节螺丝 调节平行光管的俯仰角四、实验原理:三棱镜如图1 所示,AB和AC是透光的光学表面,又称折射面,其夹角 称为三棱镜的顶角;BC为毛玻璃面,称为三棱镜的底面。图2三棱镜示意图 1.反射法测三棱镜顶角 如图2 所示,一束平行光入射于三棱镜,经过AB面和AC面反射的光线分别沿 和 方位射出, 和 方向的夹角记为 ,由几何学关系可知: 图3反射法测顶角2.最小偏向角法测三棱镜玻璃的折射率假设有一束单色平行光LD入射到棱镜上,经过两次折射后沿ER方向射出,则入射光线LD与出射光线ER间的夹角 称为偏向角,如图3所示。 图4最小偏向角的测定转动三棱镜,改变入射光对光学面AC的入射角,出射光线的方向ER也随之改变,即偏向角 发生变化。沿偏向角减小的方向继续缓慢转动三棱镜,使偏向角逐渐减小;当转到某个位置时,若再继续沿此方向转动,偏向角又将逐渐增大,此位置时偏向角达到最小值,测出最小偏向角 。可以证明棱镜材料的折射率 与顶角 及最小偏向角的关系式为 实验中,利用分光镜测出三棱镜的顶角 及最小偏向角 ,即可由上式算出棱镜材料的折射率 。实验内容与步骤:1.分光计的调整(分光计结构如右图所示) 在进行调整前,应先熟悉所使用的分光计中下列螺丝的位置: ①目镜调焦(看清分划板准线)手轮; ②望远镜调焦(看清物体)调节手轮(或螺丝);③调节望远镜高低倾斜度的螺丝;④控制望远镜(连同刻度盘)转动的制动螺丝;⑤调整载物台水平状态的螺丝;⑥控制载物台转动的制动螺丝;⑦调整平行光管上狭缝宽度的螺丝;⑧调整平行光管高低倾斜度的螺丝; 图5 ⑨平行光管调焦的狭缝套筒制动螺丝。(1)目测粗调。将望远镜、载物台、平行光管用目测粗调成水平,并与中心轴垂直(粗调是后面进行细调的前提和细调成功的保证)。(2)用自准法调整望远镜,使其聚焦于无穷远。①调节目镜调焦手轮,直到能够清楚地看到分划板"准线"为止。 ②接上照明小灯电源,打开开关,可在目镜视场中看到如图4所示的“准线”和带有绿色小十字的窗口。 图6目镜视场 ③将双面镜按图5所示方位放置在载物台上。这样放置是出于这样的考虑:若要调节平面镜的俯仰,只需要调节载物台下的螺丝a1或a2即可,而螺丝a3的调节与平面镜的俯仰无关。图7平面镜的放置 ④沿望远镜外侧观察可看到平面镜内有一亮十字,轻缓地转动载物台,亮十字也随之转动。但若用望远镜对着平面镜看,往往看不到此亮十字,这说明从望远镜射出的光没有被平面镜反射到望远镜中。我们仍将望远镜对准载物台上的平面镜,调节镜面的俯仰,并转动载物台让反射光返回望远镜中,使由透明十字发出的光经过物镜后(此时从物镜出来的光还不一定是平行光),再经平面镜反射,由物镜再次聚焦,于是在分划板上形成模糊的像斑(注意:调节是否顺利,以上步骤是关键)。然后先调物镜与分划板间的距离,再调分划板与目镜的距离使从目镜中既能看清准线,又能看清亮十字的反射像。注意使准线与亮十字的反射像之间无视差,如有视差,则需反复调节,予以消除。如果没有视差,说明望远镜已聚焦于无穷远。 (3)调整望远镜光轴,使之与分光计的中心轴垂直。 平行光管与望远镜的光轴各代表入射光和出射光的方向。为了测准角度,必须分别使它们的光轴与刻度盘平行。刻度盘在制造时已垂直于分光计的中心轴。因此,当望远镜与分光计的中心轴垂直时,就达到了与刻度盘平行的要求。具体调整方法为:平面镜仍竖直置于载物台上,使望远镜分别对准平面镜前后两镜面,利用自准法可以分别观察到两个亮十字的反射像。如果望远镜的光轴与分光计的中心轴相垂直,而且平面镜反射面又与中心轴平行,则转动载物台时,从望远镜中可以两次观察到由平面镜前后两个面反射回来的亮十字像与分划板准线的上部十字线完全重合,如图6(c)所示。若望远镜光轴与分光计中心轴不垂直,平面镜反射面也不与中心轴相平行,则转动载物台时,从望远镜中观察到的两个亮十字反射像必然不会同时与分划板准线的上部十字线重合,而是一个偏低,一个偏高,甚至只能看到一个。这时需要认真分析,确定调节措施,切不可盲目乱调。重要的是必须先粗调:即先从望远镜外面目测,调节到从望远镜外侧能观察到两个亮十字像;然后再细调:从望远镜视场中观察,当无论以平面镜的哪一个反射面对准望远镜,均能观察到亮十字时,如从望远镜中看到准线与亮十字像不重合,它们的交点在高低方面相差一段距离如图6(a)所示。此时调整望远镜高低倾斜螺丝使差距减小为h/2,如图6(b)所示。再调节载物台下的水平调节螺丝,消除另一半距离,使准线的上部十字线与亮十字线重合,如图6(c)所示。之后,再将载物台旋转180o ,使望远镜对着平面镜的另一面,采用同样的方法调节。如此反复调整,直至转动载物台时,从平面镜前后两表面反射回来的亮十字像都能与分划板准线的上部十字线重合为止。这时望远镜光轴和分光计的中心轴相垂直,常称这种方法为逐次逼近各半调整法。图8亮十字像与分划板准线的位置关系 (4)调整平行光管 用前面已经调整好的望远镜调节平行光管。当平行光管射出平行光时,则狭缝成像于望远镜物镜的焦平面上,在望远镜中就能清楚地看到狭缝像,并与准线无视差。 ①调整平行光管产生平行光。取下载物台上的平面镜,关掉望远镜中的照明小灯,用钠灯照亮狭缝,从望远镜中观察来自平行光管的狭缝像,同时调节平行光管狭缝与透镜间的距离,直至能在望远镜中看到清晰的狭缝像为止,然后调节缝宽使望远镜视场中的缝宽约为1mm。 ②调节平行光管的光轴与分光计中心轴相垂直。望远镜中看到清晰的狭缝像后,转动狭缝(但不能前后移动)至水平状态,调节平行光管倾斜螺丝,使狭缝水平像被分划板的中央十字线上、下平分,如图7(a)所示。这时平行光管的光轴已与分光计中心轴相垂直。再把狭缝转至铅直位置,并需保持狭缝像最清晰而且无视差,位置如图7(b)所示。图9狭缝像与分划板位置 至此分光计已全部调整好,使用时必须注意分光计上除刻度圆盘制动螺丝及其微调螺丝外,其它螺丝不能任意转动,否则将破坏分光计的工作条件,需要重新调节。 2. 测量 在正式测量之前,请先弄清你所使用的分光计中下列各螺丝的位置:①控制望远镜(连同刻度盘)转动的制动螺丝;②控制望远镜微动的螺丝。(1)用反射法测三棱镜的顶角 如图2 所示,使三棱镜的顶角对准平行光管,开启钠光灯,使平行光照射在三棱镜的AC、AB面上,旋紧游标盘制动螺丝,固定游标盘位置,放松望远镜制动螺丝,转动望远镜(连同刻度盘)寻找AB面反射的狭缝像,使分划板上竖直线与狭缝像基本对准后,旋紧望远镜螺丝,用望远镜微调螺丝使竖直线与狭缝完全重合,记下此时两对称游标上指示的读数 、 。转动望远镜至AC面进行同样的测量得 、 。可得 三棱镜的顶角 为 重复测量三次取平均。(2) 棱镜玻璃折射率的测定 分别放松游标盘和望远镜的制动螺丝,转动游标盘(连同三棱镜)使平行光射入三棱镜的AC面,如图3 所示。转动望远镜在AB面处寻找平行光管中狭缝的像。然后向一个方向缓慢地转动游标盘(连同三棱镜)在望远镜中观察狭缝像的移动情况,当随着游标盘转动而向某个方向移动的狭缝像,正要开始向相反方向移动时,固定游标盘。轻轻地转动望远镜,使分划板上竖直线与狭缝像对准,记下两游标指示的读数,记为 、 ;然后取下三棱镜,转动望远镜使它直接对准平行光管,并使分划板上竖直线与狭缝像对准,记下对称的两游标指示的读数,记为 、 ,可得 重复测量三次求平均。用上式求出棱镜的折射。五、实验注意事项:1.望远镜、平行光管上的镜头,三棱镜、平面镜的镜面不能用手摸、揩。如发现有尘埃时,应该用镜头纸轻轻揩擦。三棱镜、平面镜不准磕碰或跌落,以免损坏。 2.分光计是较精密的光学仪器,要加倍爱护,不应在制动螺丝锁紧时强行转动望远镜,也不要随意拧动狭缝。 3.在测量数据前务须检查分光计的几个制动螺丝是否锁紧,若未锁紧,取得的数据会不可靠。 4.测量中应正确使用望远镜转动的微调螺丝,以便提高工作效率和测量准确度。 5.在游标读数过程中,由于望远镜可能位于任何方位,故应注意望远镜转动过程中是否过了刻度的零点。 6.调整时应调整好一个方向,这时已调好部分的螺丝不能再随便拧动,否则会造成前功尽弃。 7.望远镜的调整是一个重点。首先转动目镜手轮看清分划板上的十字线,而后伸缩目镜筒看清亮十字。 六、思考题:1. 分光计的调整有哪些要求?其检察的标准?答:①几何要求:“三垂直”。即载物小平台的平面,望远镜的主光轴、平行光管的主光轴均必须与分光计的中心轴垂直。②物理要求:“三聚焦”。即叉丝对目镜聚焦,望远镜对无穷远聚焦,狭缝对平行光管物镜聚焦。③检验三垂直的标准:“四平行”。即载物小平台平面、望远镜的主光轴、平行光管的主光轴和读数刻度盘四者相互平行。④检验三聚焦的标准:“三清晰”。即目镜中观察叉丝清晰,亮十字反回的像(绿十字)清晰,在望远镜中看到狭缝清晰。2. 即是重点又是难点内容的望远镜系统如何调整? 答:①目测粗调②打开小灯调节目镜,看清叉丝。③在载物台上放双平面镜(位置如胶片图所示,为什么?),调节物镜(仰俯角和伸缩)和载物台(螺钉),使双平面镜两面有绿十字像并清晰、无视差,此时望远镜已聚焦无穷远。④调整望远镜的光轴与分光计转轴垂直。使双平面镜两面有绿十字像。再用“减半逐步逼近法”使望远镜的光轴与分光计的中心轴垂直(对照胶片讲解,必要时示范讲解),即叉丝的像与调整叉丝完全重合。3. 平行光管如何调整?答:①用已调节好的望远镜作基准,调节平行光管下部仰俯螺钉,使其出射平行光。②调节平行光管的狭缝宽度(强调:不要损坏刀口!)③使平行光管光轴与分光计转轴垂直。使目镜中看到的水平和竖直的狭缝像均居中。 七、误差分析:在测量三棱镜折射率实验中,当调节分光计的平行光管光轴与望远镜光轴垂直于中心转轴后,由实验可知载物台平面的倾斜程度对最小偏向角的测量没影响,但顶角的测量随着载物台平面的倾斜程度不同,有着不同程度的影响。八、实验心得:1、提高了我们综合分析的能力,当面对一个问题时,首先要考虑怎样解决,既而开始考虑解决的具体方法,在实验前必须提前预习,把整个实验的原理,流程和注意的事项掌握清楚,这才能保证你实验既快又好的完成.在预习时要有目的,心中明白哪里里是实验的重点,哪里是必须注意的问题.设计实验步骤,并预测实验中可能出现的问题。对实验的每一个细节进行分析,尽可能的减小实验误差。这些都使我们初步培养了实验的素质和能力。 2、培养了实验中科学严谨的态度,尊重客观事实,对待任何实验都客观认真仔细。实验正式开始前,应该先清点下实验仪器和材料,并对其进行检查,以确保实验顺利进行.在动手前先将心中的实验知识对照一起过一遍再开始动手。实验过程更始需要很精细的态度和求实的态度。对每个步骤,每个细节都要留心。 3、养成了我们做事认真细致有耐心的习惯。在实验中,你必须有耐心,因为实验中每个变化都可能是细微的,必须集中精神才能去发现它,不可以急于求成。如果实验数据与正确数据相差过大时,应该把整个实验过程回想一下,对照每一步骤寻求问题所在,重新做一次。 4、悉了很多仪器的使用方法,在光学实验室良好的环境和设备的情况下,我们得到了很好的锻炼,对很多仪器的调试、测量,以及如何减小实验误差等,都有了很明确的认识。我想,这在我们以后的实验过程中会非常有用。 5、实验老师们的耐心讲解和对工作的认真态度给我留下了很深刻的印象。辅导我们实验的每一位老师,对工作都极其认真,在实验前,老师通常会给大家讲解下实验的注意事项,对于我们实验中出现的问题都给予耐心的讲解,而且,在我们实验进行中和实验结束后,老师们都启发我们思考实验的一些外延内容,这对我们将实验所进行的内容跟课本密切联系起来,将知识更充分地掌握。九、试验总结:首先:光学试验的仪器测量都十分精密,实验中一个很小的环节都有可能导致试验的失败,以“应用全反射临界角法测定三棱镜的折射率”为例,在实验过程中要注意分光仪在进行本次实验时已做过校正,因此时在测量时就应该注意,只能调节载物台倾斜度调节螺丝,而对于像平行光管倾斜度调节螺丝、望远镜倾斜度调节螺丝等就不应该再进行调节,否则将会导致实验失败。 第二:对于数据的处理,光学实验也有较高的要求,数据不但要求准确度高,精确度也要高,而且通常要记录多组数据,最后取平均。 第三:光学实验的测量仪器在进行测量时,通常要求一个稳定的实验环境,当有光源时,通常要在实验开始前先打开光源,这样在进行实验时,光源已经达到稳定。对于“全息照相”,对环境的稳定性要求更高,实验仪器都放在防震台上,在仪器排好光路后,要用手轻敲台面,看光路是否改变,在进行曝光前,更是要求室内实验人员不得大声说话,因为声波震动而引起的空气密度变化都有可能导致实验失败,在装片后还必须有一个使台面上各元件自然稳定的时间,即使干涉条纹稳定下来了,时间也不得少于3分钟。可以说这是我做过的六次实验中对稳定性要求最高的实验 第四:我始终认为做好实验预习是最重要的,在作实验前,通过预习,我们可以了解要做实验的原理及要使用的仪器的使用方法,这样在实验之前就已对试验有了大概的了解,然后在课堂上通过老师的讲解,可以迅速掌握仪器的使用方法,这样做起实验来才会得心应手,同时也可以减少因不了解实验仪器的使用方法而导致的实验失败,甚至是对仪器造成损坏,可以说做好实验预习是一举多得的事情。九、参考文献:[1]、普通物理实验3光学部分 高等教育出版社 杨述武、赵立竹等编 2008年版;[2]、大学物理实验 章世恒 主编 西南交通大学出版社 2009 年1月 ;[3]、大学物理实验教程(第2版) 何春娟 主编 西北工业大学出版社 2009年4月。
随着社会的不断进步,人民对提高生活质量的需求,尤其是对视力保健的关注度越来越高。统计数据表明, 中国 在校小学生佩戴眼镜的人数比例达到30%,中学生为50%,而大学生则达到了75%,成为名符其实的眼镜王国”。 一、应社会需求 发展 起来的新学科 1988年,中国计量 科学 研究院(以下简称“计量院”)组织了新中国成立以来首次、也是北京市第一次眼镜市场的产品质量调查。根据英国标准化协会(BSI)的标准,京城20多家大眼镜店被抽查的上千副眼镜的质量合格率不足10%。 为此,我国著名光学专家王大珩院士率先向社会发出呼吁:眼镜是保健用品,不是一般的商品,全社会都应陔关注消费者的视力健康!一些政协委员和人大代表电纷纷提出提案,建议国家有关部门对眼镜行业进行治理和整顿。 眼镜质量问题引起了原国家技术监督局的高度重况和关注.眼镜立即在“质量万里行”活动中被列为重点监督的产品。计量院正是从这时开始涉足眼科光学领计量和检测标准的研究的。近20年过去了,具有中国旖色的眼科光学计量取得了长足的发展和进步。 二、眼科光学与相关产业密切结合、与其他学科相巨交叉 眼科光学是集眼科学、计量学、光学和光学仪器、验光学、眼镜学、像质评价技术、光电检测技术、光谱光度学、神经学、生物学、材料学、制造工艺等为一体的新兴的边缘学科。眼科光学计量是眼科诊断、 治疗 、视力矫正和眼保健的基础保证。 根据国际标准化组织(ISO)的专业划分,至少有五大产业领域与眼科光学密切相关,它们是眼镜镜片、眼科仪器、角膜接触镜、人工晶体和个体眼部防护用品。由此可见,眼科光学又是医疗卫生、眼镜行业和光学 工业 的结合体。 三、具有中国特色的眼科光学计量体系 根据日益增长的国际市场和贸易全球化的需要,20世纪80年代中期,ISO在IS0C172“光学和光子学”标准化技术委员会下面设立了SC7“眼科光学和仪器”标准化分技术委员会。由于信息不畅以及行业划分的制约,中国的眼科光学计量研究与国际IS0C172,sC7的建立虽然同步,却又毫不相干。而国际计量界的同行们,无论是德国联邦物理技术研究院(PTB)、美国国家标准与技术研究院(NIST),还是英国国家物理实验室(NPL),都还没有开展这一领域的研究。 命运注定,中国眼科光学计量的生存、确立和发展必须自主创新。 1。独创性 由于有了计量院这样一支实力雄厚的技术队伍的实质性介入,仅仅十几年,中国已经开始步人国际先进水平的行列。 在国家质检总局的大力支持下.计量院会同全国质监系统先后研究建立了顶焦度计量基准、验光机顶焦度工作基准、角膜接触镜顶焦度工作基准等一系列有代表性的基、标准装置,并在全国范围内建立了具有中国特色的顶焦度量值传递和溯源体系,如图1所示。 纵观国际眼科光学大家庭,中国的眼科光学计量颇具独创性。正如国际计量局局长瓦拉德于2005年下半年参观计量院眼科光学实验室时所说的:“我在你们这里看到了一片新天地。” 2.建标与量值传递的新模式 传统的计量工作,往往是先投入巨资研究检测装置,待建立计量基准或计量标准后,再对社会开展周期检定和量值溯源。 计量院在开展眼科光学计量研究的初期.面临着技术上走哪条路的抉择。由于服科光学计量服务的对象是一个个不同的生命体,从某种意义上说.如果初期没有选择好突破口,计量检定方法不能通过临床医学的考验,就不可能得到今天医学界的承认,更不会被国内外市场广泛使用并接受,也绝无可能发展到今天的规模和水平。回顾 历史 ,眼科光学计量所实现的突破在于: (1)选择了以动态或在线检测为研究目标 事实证明,这种模式能够较好地适应眼镜行业或医学界在使用现场进行动态测量或在线校准和检测的需求显然,传统的、基于静态或分量程的工业计量模式,以及高成本低使用率的计量建标和检定模式.不适于眼科临床医学的需求。而中国自主研发的各种眼科光学计量标准器具,如标准镜片和标准模拟眼等,则以其高科技含量、低成本高使用率、便于携带等显著特点.一下子就被国内外客户广泛接受,并占领了市场。 (2)以Map手段实现量值传递的新模式 面对具有3.6亿用户的眼镜市场,我们只有通过大面积的建标和计量检定,才能有效控制眼镜行业的产品质量,才能保证全国范围内顶焦度量值的统一。而Map了用客传递手段,就像勾画一张全国地图一样,把顶焦度一级或二级标准、验光机顶焦度标准、瞳距仪检定装置、透射比计量标准装置、角膜曲率计检定标准等通过自上而下的逐级推广、很快就覆盖了全国除 台湾 和西藏以外的大部分省、市地区计量所,甚至远销海外。这种新模式,满足了我国眼镜行业分布区域大、计量检定贯穿始终、无所不在的市场的需求。 四、计量基标准与科研成果转化 眼科光学领域内的基本物理量是顶焦度——VertexPowero 围绕着顶焦度这个重要物理量,我国先后研究建立了各项基(标)准,并将其迅速转化为市场上可流通的商用计量标准器具。例如:“顶焦度标准镜片”、“主观式和客观式标准模拟眼”、“接触镜顶焦度专用标准镜片”、“眼镜片透射比测量装置”、“瞳距仪计量检定装置”和“商用瞳距仪样机”、“角膜曲率计标准器”等。 上述计量标准器具均可直接用于对眼科光学计量仪器进行强制检定和计量校准,且具有包容性强、较长期的适应性、研究费用低廉、易于操作和大范围推广等优点,有利于调动地方质监部门的积极性。 上下齐抓共管大好局面的形成,使我国政府对眼科光学领域的产品质量实施市场监督的目标能够落到实处。 五、发挥龙头作用、形成计量院与地方技术机构双赢的局面 眼科光学计量之所以能够在短短十几年里取得如此快速的发展.并为提高我国眼镜行业产品质量的提高作出举足轻重的贡献,除了计量院自身的努力之外,另一个重要的原因就是这项工作得到了全国各地质监部门的积极响应和大力协助。 目前.除台湾、西藏以外的大多数省市级的计量和质检机构都开展了眼科光学计量检定和产品质量监督工作.各地技术机构直接使用计量院提供的计量标准器具。这种“统一研制、统一推广、统一培训、统一周期检定”的“四个统一”模式有效解决了巨大市场需求下的量值溯源和量值统一问题,使将原来看起来十分复杂和困难的技术管理和市场监督工作变得简化和顺畅起来。 眼科光学计量走出了一条计量为国民 经济 服务、为社会发展服务、为提高人民生活质量和身体健康服务的新思路,不但使社会和国民从中受益,也形成了计量院与地方技术机构双赢共进的新局面。 六、中国眼科光学计量研究实现“从零的突破到质变的跨越” 眼科光学计量所走过的路。为计量科学技术的发展开拓了广阔的研究领域,使计量科学更贴近生活,更贴近国民经济。也锻炼和造就了一批了解市场、了解 企业 需求。通过为社会服务而发现和寻找科研方向的新型的科技人员。 顶焦度计量标准(基准)、验光机工作基准、角膜接触镜顶焦度工作基准的相继研发成功。确立了计量院在国内眼科光学领域的“科研龙头”地位.同时。为提高中国在国际眼科光学界的地位赢得了关键的一票。
物理小论文摘要:物理是一门历史悠久的自然学科。随着科技的发展,社会的进步,物理已渗入到人类生活的各个领域; 物理学存在于物理学家的身边;物理学也存在于同学们身边;在学习中,同学们要树立科学意识,大处着眼,小处着手,经历观察、思考、实践、创新等活动,逐步掌握科学的学习方法,训练科学的思维方式,不久你就会拥有科学家的头脑,为自己今后惊叹不已的发展,为今后美好的生活打下扎实的基础。关键词:物理 渗入 人类生活 各个领域 存在 物理学家 同学们 身边 科学意识 科学学习方法 科学思维方式物理是一门历史悠久的自然学科,物理科学作为自然科学的重要分支,不仅对物质文明的进步和人类对自然界认识的深化起了重要的推动作用,而且对人类的思维发展也产生了不可或缺的影响。从亚里士多德时代的自然哲学,到牛顿时代的经典力学,直至现代物理中的相对论和量子力学等,都是物理学家科学素质、科学精神以及科学思维的有形体现。随着科技的发展,社会的进步,物理已渗入到人类生活的各个领域。例如,光是找找汽车中的光学知识就有以下几点:1. 汽车驾驶室外面的观后镜是一个凸镜 利用凸镜对光线的发散作用和成正立、缩小、虚像的特点,使看到的实物小,观察范围更大,而保证行车安全。 2. 汽车头灯里的反射镜是一个凹镜 它是利用凹镜能把放在其焦点上的光源发出的光反射成为平行光射出的性质做成的。 3. 汽车头灯总要装有横竖条纹的玻璃灯罩汽车头灯由灯泡、反射镜和灯前玻璃罩组成。根据透镜和棱镜的知识,汽车头灯玻璃罩相当于一个透镜和棱镜的组合体。在夜晚行车时,司机不仅要看清前方路面的情况,还要还要看清路边持人、路标、岔路口等。透镜和棱镜对光线有折射作用,所以灯罩通过折射,根据实际需要将光分散到需要的方向上,使光均匀柔和地照亮汽车前进的道路和路边的景物,同时这种散光灯罩还能使一部分光微向上折射,以便照明路标和里程碑,从而确保行车安全。 4. 轿车上装有茶色玻璃后,行人很难看清车中人的面孔茶色玻璃能反射一部分光,还会吸收一部分光,这样透进车内的光线较弱。要看清乘客的面孔,必须要从面孔反射足够强的光透射到玻璃外面。由于车内光线较弱,没有足够的光透射出来,所以很难看清乘客的面孔。 5. 除大型客车外,绝大多数汽车的前窗都是倾斜的当汽车的前窗玻璃倾斜时,车内乘客经玻璃反射成的像在国的前上方,而路上的行人是不可能出现在上方的空中的,这样就将车内乘客的像与路上行人分离开来,司机就不会出现错觉。大型客车较大,前窗离地面要比小汽车高得多,即使前窗竖直装,像是与窗同高的,而路上的行人不可能出现在这个高度,所以司机也不会将乘客在窗外的像与路上的行人相混淆。再如下面一个例子:五香茶鸡蛋是人们爱吃的,尤其是趁热吃味道更美。细心的人会发现,鸡蛋刚从滚开的卤汁里取出来的时候,如果你急于剥壳吃蛋,就难免连壳带“肉”一起剥下来。要解决这个问题,有一个诀窍,就是把刚出锅的鸡蛋先放在凉水中浸一会,然后再剥,蛋壳就容易剥下来。一般的物质(少数几种例外),都具有热胀冷缩的特性。可是,不同的物质受热或冷却的时候,伸缩的速度和幅度各不相同。一般说来,密度小的物质,要比密度大的物质容易发生伸缩,伸缩的幅度也大,传热快的物质,要比传热慢的物质容易伸缩。鸡蛋是硬的蛋壳和软的蛋白、蛋黄组成的,它们的伸缩情况是不一样的。在温度变化不大,或变化比较缓慢均匀的情况下,还显不出什么;一旦温度剧烈变化,蛋壳和蛋白的伸缩步调就不一致了。把煮得滚烫的鸡蛋立即浸入冷水里,蛋壳温度降低,很快收缩,而蛋白仍然是原来的温度,还没有收缩,这时就有一小部分蛋白被蛋壳压挤到蛋的空头处。随后蛋白又因为温度降低而逐渐收缩,而这时蛋壳的收缩已经很缓慢了,这样就使蛋白与蛋壳脱离开来,因此,剥起来就不会连壳带“肉”一起下来了。明白了这个道理,对我们很有用处。凡需要经受较大温度变化的东西,如果它们是用两种不同材料合在一起做的,那么在选择材料的时候,就必须考虑它们的热膨胀性质,两者越接近越好。工程师在设计房屋和桥梁时,都广泛采用钢筋混凝土,就是因为钢材和混凝土的膨胀程度几乎完全一样,尽管春夏秋冬的温度不同,也不会产生有害的作用力,所以钢筋混凝土的建筑十分坚固。另外,有些电器元件却是用两种热膨胀性质差别很大的金属制成的。例如,铜片的热膨胀比铁片大,把铜片和铁片钉在一起的双金属片,在同样情况下受热,就会因膨胀程度不同而发生弯曲。利用这一性质制成了许多自动控制装置和仪表。日光灯的“启动器”里就有小巧的双金属片,它随着温度的变化,能够自动屈伸,起到自动开启日光灯的作用。这样的例子举不胜举,物理是一门实用性很强的科学,与工农业生产、日常生活有着极为密切的联系。物理规律本身就是对自然现象的总结和抽象。谈到物理学,有些同学觉得很难;谈到物理探究,有同学觉得深不可测;谈到物理学家,有同学更是感到他们都不是凡人。诚然,成为物理学家的人的确屈指可数,但只要勤于观察,善于思考,勇于实践,敢于创新,从生活走向物理,你就会发现:其实,物理就在身边。正如马克思说的:“科学就是实验的科学,科学就在于用理性的方法去整理感性材料”。物理不但是我们的一门学科,更重要的,它还是一门科学。物理学存在于物理学家的身边。勤于观察的意大利物理学家伽利略,在比萨大教堂做礼拜时,悬挂在教堂半空中的铜吊灯的摆动引起了他极大的兴趣,后来反复观察,反复研究,发明了摆的等时性;勇于实践的美国物理学家富兰克林,为认清“天神发怒”的本质,在一个电闪雷鸣、风雨交加的日子,冒着生命危险,利用司空见惯的风筝将“上帝之火”请下凡,由此发明了避雷针;敢于创新的英国科学家亨利•阿察尔去邮局办事。当时身旁有位外地人拿出一大版新邮票,准备裁下一枚贴在信封上,苦于没有小刀。找阿察尔借,阿察尔也没有。这位外地人灵机一动,取下西服领带上的别针,在邮票的四周整整齐齐地刺了一圈小孔,然后,很利落地撕下邮票。外地人走了,却给阿察尔留下了一串深深的思考,并由此发明了邮票打孔机,有齿纹的邮票也随之诞生了;古希腊阿基米德发现阿基米德原理;德国物理学家伦琴发现X射线;……研究身边的琐事并有大成就的物理学家的事例不胜枚举。物理学也存在于同学们身边。学了测量的初步知识,同学们纷纷做起了软尺。有位同学别出心裁,用透明胶把制好的牛皮纸软尺包扎好,这样更牢固。然后,用大大卷泡泡糖的包装盒作为软尺的外壳,在盒的中心利用铁丝做一摇柄中心轴,软尺的末端固定在轴上,这样一个可以收拾并反复使用的卷尺诞生了。同时,这位同学受软尺自作的启示,用实验解决了一道习题:用软尺测量物体长度时,若把软尺拉长些,测量值是偏大还是偏小?他做了这样一个模拟实验:在白纸上画一条直线,标上刻度,然后用透明胶粘贴,再扯下来,便做成了“软尺”,用“软尺”不仅找到了上题的答案,而且还清楚地看到分度值变大了,知其然,并知其所以然;学了电学的有关知识后,同学们对蚯蚓能承受的最大电压进行了探究:当给它加上的电压时,蚯蚓迅速分泌粘液,且奋力挣扎,从瓶内跳出瓶外。当给它加上3V的电压时,蚯蚓被电为两截;有同学在测量“、”的小灯泡的功率,并研究其发光情况时,不满足于给灯泡加上的电压,而是用自己早已准备好的小灯泡做破坏性实验,不断加大灯泡两端的电压,直至电压高达9V、灯泡灯丝烧断,才停止探究;有同学在学习蒸发的知识时,不厌其烦地座在桌旁观察相同的两滴水(其中一滴水滩开),进行聚精会神地观察,然后进行分析、对比,得出影响蒸发的因素;……同学们捕捉身边的琐事进行探究的事例屡见不鲜。身边的事物是取之不尽的,对与现实生活联系很紧密的物理学科来说,更是时时会用到的,用身边的事例去解释和总结物理规律,学生听起来熟悉,接受起来也就容易了。只要时时留意,经常总结,就会不断发现有利于物理教学的事物,丰富我们的课堂,活跃教学气氛,简化概念和规律。新课标告诉我们“义务教育阶段的物理课程应贴近学生生活,符合学生认知特点,激发并保持学生的学习兴趣,通过探索物理现象,揭示隐藏其中的物理规律,并将其应用于生产生活实际,培养学生终身的探索乐趣、良好的思维习惯和初步的科学实践能力。”今天,人类所有的令人惊叹不已的科学技术成就,如克隆羊、因特网、核电站、航空技术等,无不是建立在早年的科学家们对身边琐事进行观察并研究的基础上的。在学习中,同学们要树立科学意识,大处着眼,小处着手,经历观察、思考、实践、创新等活动,逐步掌握科学的学习方法,训练科学的思维方式,不久你就会拥有科学家的头脑,为自己今后惊叹不已的发展,为今后美好的生活打下扎实的基础。
中学物理期刊排名物理学报、光学学报、高能物理与核物理。
一、物理学报
《物理学报》创刊于1933年的《中国物理学报》,1953年更名为《物理学报》;2009年被评为新中国60年有影响力的期刊,2010年获得中国政府出版奖期刊奖,2013年被评为全国百强科技期刊。
据2016年10月中国知网显示,《物理学报》出版文献量26557篇、总下载量3265714次、主要栏目有研究论文、研究快报等,发文领域包括凝聚态物理和材料物理、原子分子物理和光物理、统计物理、非线性物理、等离子体物理、粒子物理与核物理、物理学交叉学科等。
二、光学学报
《光学学报》是1981年创办的中文学术期刊,月刊,中国科学院上海光学精密机械研究所与中国光学学会主办,是中国科学技术学会主管。
学报主要刊登以光学科研为主体(交叉学科须侧重光学领域),有广阔研究前景、具有国内外领先水平或独创意义的学术论文,有一定独立见解的理论论述,有可靠数据的实验报道,有科学依据的技术应用,阶段性科研成果的实验快报。
三、高能物理与核物理
《 高能物理与核物理》为专业性学报,由中国科学院高能物理研究所,中国科学院近代物理研究所主办,月刊,每期96页,国内外公开发行。
主要发表粒子物理、核物理、宇宙线物理、加速器及同步辐射等学科在理论、实验与应用方面的研究论文。设有快报专栏,以最快速度发表最新重要科研成果的简要报导。对国家重大项目、重大基金项目与前沿课题取得的突破性创新成果,提供多发稿与快发稿的优惠。
oc光学期刊全称全称OpticsExpress。,是美国光学学会(OSA)出版的研究领域为物理-光学的开源期刊。《OpticsExpress》是世界上第一本国际光学全电子期刊。OpticsExpress每两周出版一次,提供OSA质量、快速出版光学科学和技术所有领域的原创、同行评审文章。包括彩色图片、音频或视频,且作者无需支付额外费用。该期刊可通过互联网免费向广大读者提供。
随着社会的不断进步,人民对提高生活质量的需求,尤其是对视力保健的关注度越来越高。统计数据表明, 中国 在校小学生佩戴眼镜的人数比例达到30%,中学生为50%,而大学生则达到了75%,成为名符其实的眼镜王国”。 一、应社会需求 发展 起来的新学科 1988年,中国计量 科学 研究院(以下简称“计量院”)组织了新中国成立以来首次、也是北京市第一次眼镜市场的产品质量调查。根据英国标准化协会(BSI)的标准,京城20多家大眼镜店被抽查的上千副眼镜的质量合格率不足10%。 为此,我国著名光学专家王大珩院士率先向社会发出呼吁:眼镜是保健用品,不是一般的商品,全社会都应陔关注消费者的视力健康!一些政协委员和人大代表电纷纷提出提案,建议国家有关部门对眼镜行业进行治理和整顿。 眼镜质量问题引起了原国家技术监督局的高度重况和关注.眼镜立即在“质量万里行”活动中被列为重点监督的产品。计量院正是从这时开始涉足眼科光学领计量和检测标准的研究的。近20年过去了,具有中国旖色的眼科光学计量取得了长足的发展和进步。 二、眼科光学与相关产业密切结合、与其他学科相巨交叉 眼科光学是集眼科学、计量学、光学和光学仪器、验光学、眼镜学、像质评价技术、光电检测技术、光谱光度学、神经学、生物学、材料学、制造工艺等为一体的新兴的边缘学科。眼科光学计量是眼科诊断、 治疗 、视力矫正和眼保健的基础保证。 根据国际标准化组织(ISO)的专业划分,至少有五大产业领域与眼科光学密切相关,它们是眼镜镜片、眼科仪器、角膜接触镜、人工晶体和个体眼部防护用品。由此可见,眼科光学又是医疗卫生、眼镜行业和光学 工业 的结合体。 三、具有中国特色的眼科光学计量体系 根据日益增长的国际市场和贸易全球化的需要,20世纪80年代中期,ISO在IS0C172“光学和光子学”标准化技术委员会下面设立了SC7“眼科光学和仪器”标准化分技术委员会。由于信息不畅以及行业划分的制约,中国的眼科光学计量研究与国际IS0C172,sC7的建立虽然同步,却又毫不相干。而国际计量界的同行们,无论是德国联邦物理技术研究院(PTB)、美国国家标准与技术研究院(NIST),还是英国国家物理实验室(NPL),都还没有开展这一领域的研究。 命运注定,中国眼科光学计量的生存、确立和发展必须自主创新。 1。独创性 由于有了计量院这样一支实力雄厚的技术队伍的实质性介入,仅仅十几年,中国已经开始步人国际先进水平的行列。 在国家质检总局的大力支持下.计量院会同全国质监系统先后研究建立了顶焦度计量基准、验光机顶焦度工作基准、角膜接触镜顶焦度工作基准等一系列有代表性的基、标准装置,并在全国范围内建立了具有中国特色的顶焦度量值传递和溯源体系,如图1所示。 纵观国际眼科光学大家庭,中国的眼科光学计量颇具独创性。正如国际计量局局长瓦拉德于2005年下半年参观计量院眼科光学实验室时所说的:“我在你们这里看到了一片新天地。” 2.建标与量值传递的新模式 传统的计量工作,往往是先投入巨资研究检测装置,待建立计量基准或计量标准后,再对社会开展周期检定和量值溯源。 计量院在开展眼科光学计量研究的初期.面临着技术上走哪条路的抉择。由于服科光学计量服务的对象是一个个不同的生命体,从某种意义上说.如果初期没有选择好突破口,计量检定方法不能通过临床医学的考验,就不可能得到今天医学界的承认,更不会被国内外市场广泛使用并接受,也绝无可能发展到今天的规模和水平。回顾 历史 ,眼科光学计量所实现的突破在于: (1)选择了以动态或在线检测为研究目标 事实证明,这种模式能够较好地适应眼镜行业或医学界在使用现场进行动态测量或在线校准和检测的需求显然,传统的、基于静态或分量程的工业计量模式,以及高成本低使用率的计量建标和检定模式.不适于眼科临床医学的需求。而中国自主研发的各种眼科光学计量标准器具,如标准镜片和标准模拟眼等,则以其高科技含量、低成本高使用率、便于携带等显著特点.一下子就被国内外客户广泛接受,并占领了市场。 (2)以Map手段实现量值传递的新模式 面对具有3.6亿用户的眼镜市场,我们只有通过大面积的建标和计量检定,才能有效控制眼镜行业的产品质量,才能保证全国范围内顶焦度量值的统一。而Map了用客传递手段,就像勾画一张全国地图一样,把顶焦度一级或二级标准、验光机顶焦度标准、瞳距仪检定装置、透射比计量标准装置、角膜曲率计检定标准等通过自上而下的逐级推广、很快就覆盖了全国除 台湾 和西藏以外的大部分省、市地区计量所,甚至远销海外。这种新模式,满足了我国眼镜行业分布区域大、计量检定贯穿始终、无所不在的市场的需求。 四、计量基标准与科研成果转化 眼科光学领域内的基本物理量是顶焦度——VertexPowero 围绕着顶焦度这个重要物理量,我国先后研究建立了各项基(标)准,并将其迅速转化为市场上可流通的商用计量标准器具。例如:“顶焦度标准镜片”、“主观式和客观式标准模拟眼”、“接触镜顶焦度专用标准镜片”、“眼镜片透射比测量装置”、“瞳距仪计量检定装置”和“商用瞳距仪样机”、“角膜曲率计标准器”等。 上述计量标准器具均可直接用于对眼科光学计量仪器进行强制检定和计量校准,且具有包容性强、较长期的适应性、研究费用低廉、易于操作和大范围推广等优点,有利于调动地方质监部门的积极性。 上下齐抓共管大好局面的形成,使我国政府对眼科光学领域的产品质量实施市场监督的目标能够落到实处。 五、发挥龙头作用、形成计量院与地方技术机构双赢的局面 眼科光学计量之所以能够在短短十几年里取得如此快速的发展.并为提高我国眼镜行业产品质量的提高作出举足轻重的贡献,除了计量院自身的努力之外,另一个重要的原因就是这项工作得到了全国各地质监部门的积极响应和大力协助。 目前.除台湾、西藏以外的大多数省市级的计量和质检机构都开展了眼科光学计量检定和产品质量监督工作.各地技术机构直接使用计量院提供的计量标准器具。这种“统一研制、统一推广、统一培训、统一周期检定”的“四个统一”模式有效解决了巨大市场需求下的量值溯源和量值统一问题,使将原来看起来十分复杂和困难的技术管理和市场监督工作变得简化和顺畅起来。 眼科光学计量走出了一条计量为国民 经济 服务、为社会发展服务、为提高人民生活质量和身体健康服务的新思路,不但使社会和国民从中受益,也形成了计量院与地方技术机构双赢共进的新局面。 六、中国眼科光学计量研究实现“从零的突破到质变的跨越” 眼科光学计量所走过的路。为计量科学技术的发展开拓了广阔的研究领域,使计量科学更贴近生活,更贴近国民经济。也锻炼和造就了一批了解市场、了解 企业 需求。通过为社会服务而发现和寻找科研方向的新型的科技人员。 顶焦度计量标准(基准)、验光机工作基准、角膜接触镜顶焦度工作基准的相继研发成功。确立了计量院在国内眼科光学领域的“科研龙头”地位.同时。为提高中国在国际眼科光学界的地位赢得了关键的一票。
分光计的调节及其棱镜折射率的测定研究与分析杨贵宏(08物理2班 200802050253)引言:我们的生活离不开阳光,通常我们认为阳光是一种单色光(单一波长的光)。其实,笼罩在我们周围的光线本身是复色光(由两种或两种以上的单色光组成的光线),他是由不同波长波线的单色光组成的。广义的说,具有周期性的空间结构或光学性能(如透射率、折射率)的衍射屏,统称光栅。光栅的种类很多,有透射光栅和反射光栅,有平面光栅和凹面光栅,有黑白光栅和正弦光栅,有一维光栅,二维光栅和三维光栅,等等。此次实验所使用的光栅是利用全息照相技术拍摄的全息透射光栅光栅的表面若被污染后不易清洗,使用时应特别注意。分光计是一种能精确测量角度的光学仪器,常用来测量材料的折射率、色散率、光波波长和进行光谱观测等。由于该装置比较精密,控制部件较多而且复杂,所以使用时必须严格按照一定的规则和程序进行调整,以便测量出准确的结果。摘要: 分光计是一种能精确测量折射角的典型光学仪器,经常用来测量材料的折射率、色散率、光波波长和进行光谱观测等。由于该装置比较精密,控制部件较多而且操作复杂,所以使用时必须严格按照一定的规则和程序进行调整,方能获得较高精度的测量结果。关键词:分光计、棱镜、折射率Abstract: The spectrometer can accurately measure the angle of refraction is a typical optical instruments, often used to measure the material's refractive index, dispersion rate, wavelength, and spectral observations. As the more sophisticated devices, control components and operation are more complex, and therefore must be used strictly in accordance with certain rules and procedures to adjust to get the high precision measurement : spectrometer, prism, the refractive index二、实验目的: 1、了解分光计结构,学会正解调节和使用分光计的方法; 2、用分光计测量三棱镜的顶角; 3、学会用最小偏向角法测量三棱镜的折射率。三、实验仪器:分光计主要由五个部件组成:三角底座,平行光管、望远镜、刻度圆盘和载物台。图中各调节装置的名称及作用见表1。 图 1分光计基本结构示意图表1 分光计各调节装置的名称和作用代号 名称 作用1 狭缝宽度调节螺丝 调节狭缝宽度,改变入射光宽度2 狭缝装置 3 狭缝装置锁紧螺丝 松开时,前后拉动狭缝装置,调节平行光。调好后锁紧,用来固定狭缝装置。4 平行光管 产生平行光5 载物台 放置光学元件。台面下方装有三个细牙螺丝7,用来调整台面的倾斜度。松开螺丝8可升降、转动载物台。6 夹持待测物簧片 夹持载物台上的光学元件7 载物台调节螺丝(3只) 调节载物台台面水平8 载物台锁紧螺丝 松开时,载物台可单独转动和升降;锁紧后,可使载物台与读数游标盘同步转动9 望远镜 观测经光学元件作用后的光线10 目镜装置锁紧螺丝 松开时,目镜装置可伸缩和转动(望远镜调焦);锁紧后,固定目镜装置11 阿贝式自准目镜装置 可伸缩和转动(望远镜调焦)12 目镜调焦手轮 调节目镜焦距,使分划板、叉丝清晰13 望远镜光轴仰角调节螺丝 调节望远镜的俯仰角度14 望远镜光轴水平调节螺丝 调节该螺丝,可使望远镜在水平面内转动15 望远镜支架 16 游标盘 盘上对称设置两游标17 游标 分成30小格,每一小格对应角度 1’18 望远镜微调螺丝 该螺丝位于图14-1的反面。锁紧望远镜支架制动螺丝 21 后,调节螺丝18,使望远镜支架作小幅度转动19 度盘 分为360°,最小刻度为半度(30′),小于半度则利用游标读数20 目镜照明电源 打开该电源20,从目镜中可看到一绿斑及黑十字21 望远镜支架制动螺丝 该螺丝位于图14-1的反面。锁紧后,只能用望远镜微调螺丝18使望远镜支架作小幅度转动22 望远镜支架与刻度盘锁紧螺丝 锁紧后,望远镜与刻度盘同步转动23 分光计电源插座 24 分光计三角底座 它是整个分光计的底座。底座中心有沿铅直方向的转轴套,望远镜部件整体、刻度圆盘和游标盘可分别独立绕该中心轴转动。平行光管固定在三角底座的一只脚上25 平行光管支架 26 游标盘微调螺丝 锁紧游标盘制动螺丝27后,调节螺丝26可使游标盘作小幅度转动27 游标盘制动螺丝 锁紧后,只能用游标盘微调螺丝26使游标盘作小幅度转动28 平行光管光轴水平调节螺丝 调节该螺丝,可使平行光管在水平面内转动29 平行光管光轴仰角调节螺丝 调节平行光管的俯仰角四、实验原理:三棱镜如图1 所示,AB和AC是透光的光学表面,又称折射面,其夹角 称为三棱镜的顶角;BC为毛玻璃面,称为三棱镜的底面。图2三棱镜示意图 1.反射法测三棱镜顶角 如图2 所示,一束平行光入射于三棱镜,经过AB面和AC面反射的光线分别沿 和 方位射出, 和 方向的夹角记为 ,由几何学关系可知: 图3反射法测顶角2.最小偏向角法测三棱镜玻璃的折射率假设有一束单色平行光LD入射到棱镜上,经过两次折射后沿ER方向射出,则入射光线LD与出射光线ER间的夹角 称为偏向角,如图3所示。 图4最小偏向角的测定转动三棱镜,改变入射光对光学面AC的入射角,出射光线的方向ER也随之改变,即偏向角 发生变化。沿偏向角减小的方向继续缓慢转动三棱镜,使偏向角逐渐减小;当转到某个位置时,若再继续沿此方向转动,偏向角又将逐渐增大,此位置时偏向角达到最小值,测出最小偏向角 。可以证明棱镜材料的折射率 与顶角 及最小偏向角的关系式为 实验中,利用分光镜测出三棱镜的顶角 及最小偏向角 ,即可由上式算出棱镜材料的折射率 。实验内容与步骤:1.分光计的调整(分光计结构如右图所示) 在进行调整前,应先熟悉所使用的分光计中下列螺丝的位置: ①目镜调焦(看清分划板准线)手轮; ②望远镜调焦(看清物体)调节手轮(或螺丝);③调节望远镜高低倾斜度的螺丝;④控制望远镜(连同刻度盘)转动的制动螺丝;⑤调整载物台水平状态的螺丝;⑥控制载物台转动的制动螺丝;⑦调整平行光管上狭缝宽度的螺丝;⑧调整平行光管高低倾斜度的螺丝; 图5 ⑨平行光管调焦的狭缝套筒制动螺丝。(1)目测粗调。将望远镜、载物台、平行光管用目测粗调成水平,并与中心轴垂直(粗调是后面进行细调的前提和细调成功的保证)。(2)用自准法调整望远镜,使其聚焦于无穷远。①调节目镜调焦手轮,直到能够清楚地看到分划板"准线"为止。 ②接上照明小灯电源,打开开关,可在目镜视场中看到如图4所示的“准线”和带有绿色小十字的窗口。 图6目镜视场 ③将双面镜按图5所示方位放置在载物台上。这样放置是出于这样的考虑:若要调节平面镜的俯仰,只需要调节载物台下的螺丝a1或a2即可,而螺丝a3的调节与平面镜的俯仰无关。图7平面镜的放置 ④沿望远镜外侧观察可看到平面镜内有一亮十字,轻缓地转动载物台,亮十字也随之转动。但若用望远镜对着平面镜看,往往看不到此亮十字,这说明从望远镜射出的光没有被平面镜反射到望远镜中。我们仍将望远镜对准载物台上的平面镜,调节镜面的俯仰,并转动载物台让反射光返回望远镜中,使由透明十字发出的光经过物镜后(此时从物镜出来的光还不一定是平行光),再经平面镜反射,由物镜再次聚焦,于是在分划板上形成模糊的像斑(注意:调节是否顺利,以上步骤是关键)。然后先调物镜与分划板间的距离,再调分划板与目镜的距离使从目镜中既能看清准线,又能看清亮十字的反射像。注意使准线与亮十字的反射像之间无视差,如有视差,则需反复调节,予以消除。如果没有视差,说明望远镜已聚焦于无穷远。 (3)调整望远镜光轴,使之与分光计的中心轴垂直。 平行光管与望远镜的光轴各代表入射光和出射光的方向。为了测准角度,必须分别使它们的光轴与刻度盘平行。刻度盘在制造时已垂直于分光计的中心轴。因此,当望远镜与分光计的中心轴垂直时,就达到了与刻度盘平行的要求。具体调整方法为:平面镜仍竖直置于载物台上,使望远镜分别对准平面镜前后两镜面,利用自准法可以分别观察到两个亮十字的反射像。如果望远镜的光轴与分光计的中心轴相垂直,而且平面镜反射面又与中心轴平行,则转动载物台时,从望远镜中可以两次观察到由平面镜前后两个面反射回来的亮十字像与分划板准线的上部十字线完全重合,如图6(c)所示。若望远镜光轴与分光计中心轴不垂直,平面镜反射面也不与中心轴相平行,则转动载物台时,从望远镜中观察到的两个亮十字反射像必然不会同时与分划板准线的上部十字线重合,而是一个偏低,一个偏高,甚至只能看到一个。这时需要认真分析,确定调节措施,切不可盲目乱调。重要的是必须先粗调:即先从望远镜外面目测,调节到从望远镜外侧能观察到两个亮十字像;然后再细调:从望远镜视场中观察,当无论以平面镜的哪一个反射面对准望远镜,均能观察到亮十字时,如从望远镜中看到准线与亮十字像不重合,它们的交点在高低方面相差一段距离如图6(a)所示。此时调整望远镜高低倾斜螺丝使差距减小为h/2,如图6(b)所示。再调节载物台下的水平调节螺丝,消除另一半距离,使准线的上部十字线与亮十字线重合,如图6(c)所示。之后,再将载物台旋转180o ,使望远镜对着平面镜的另一面,采用同样的方法调节。如此反复调整,直至转动载物台时,从平面镜前后两表面反射回来的亮十字像都能与分划板准线的上部十字线重合为止。这时望远镜光轴和分光计的中心轴相垂直,常称这种方法为逐次逼近各半调整法。图8亮十字像与分划板准线的位置关系 (4)调整平行光管 用前面已经调整好的望远镜调节平行光管。当平行光管射出平行光时,则狭缝成像于望远镜物镜的焦平面上,在望远镜中就能清楚地看到狭缝像,并与准线无视差。 ①调整平行光管产生平行光。取下载物台上的平面镜,关掉望远镜中的照明小灯,用钠灯照亮狭缝,从望远镜中观察来自平行光管的狭缝像,同时调节平行光管狭缝与透镜间的距离,直至能在望远镜中看到清晰的狭缝像为止,然后调节缝宽使望远镜视场中的缝宽约为1mm。 ②调节平行光管的光轴与分光计中心轴相垂直。望远镜中看到清晰的狭缝像后,转动狭缝(但不能前后移动)至水平状态,调节平行光管倾斜螺丝,使狭缝水平像被分划板的中央十字线上、下平分,如图7(a)所示。这时平行光管的光轴已与分光计中心轴相垂直。再把狭缝转至铅直位置,并需保持狭缝像最清晰而且无视差,位置如图7(b)所示。图9狭缝像与分划板位置 至此分光计已全部调整好,使用时必须注意分光计上除刻度圆盘制动螺丝及其微调螺丝外,其它螺丝不能任意转动,否则将破坏分光计的工作条件,需要重新调节。 2. 测量 在正式测量之前,请先弄清你所使用的分光计中下列各螺丝的位置:①控制望远镜(连同刻度盘)转动的制动螺丝;②控制望远镜微动的螺丝。(1)用反射法测三棱镜的顶角 如图2 所示,使三棱镜的顶角对准平行光管,开启钠光灯,使平行光照射在三棱镜的AC、AB面上,旋紧游标盘制动螺丝,固定游标盘位置,放松望远镜制动螺丝,转动望远镜(连同刻度盘)寻找AB面反射的狭缝像,使分划板上竖直线与狭缝像基本对准后,旋紧望远镜螺丝,用望远镜微调螺丝使竖直线与狭缝完全重合,记下此时两对称游标上指示的读数 、 。转动望远镜至AC面进行同样的测量得 、 。可得 三棱镜的顶角 为 重复测量三次取平均。(2) 棱镜玻璃折射率的测定 分别放松游标盘和望远镜的制动螺丝,转动游标盘(连同三棱镜)使平行光射入三棱镜的AC面,如图3 所示。转动望远镜在AB面处寻找平行光管中狭缝的像。然后向一个方向缓慢地转动游标盘(连同三棱镜)在望远镜中观察狭缝像的移动情况,当随着游标盘转动而向某个方向移动的狭缝像,正要开始向相反方向移动时,固定游标盘。轻轻地转动望远镜,使分划板上竖直线与狭缝像对准,记下两游标指示的读数,记为 、 ;然后取下三棱镜,转动望远镜使它直接对准平行光管,并使分划板上竖直线与狭缝像对准,记下对称的两游标指示的读数,记为 、 ,可得 重复测量三次求平均。用上式求出棱镜的折射。五、实验注意事项:1.望远镜、平行光管上的镜头,三棱镜、平面镜的镜面不能用手摸、揩。如发现有尘埃时,应该用镜头纸轻轻揩擦。三棱镜、平面镜不准磕碰或跌落,以免损坏。 2.分光计是较精密的光学仪器,要加倍爱护,不应在制动螺丝锁紧时强行转动望远镜,也不要随意拧动狭缝。 3.在测量数据前务须检查分光计的几个制动螺丝是否锁紧,若未锁紧,取得的数据会不可靠。 4.测量中应正确使用望远镜转动的微调螺丝,以便提高工作效率和测量准确度。 5.在游标读数过程中,由于望远镜可能位于任何方位,故应注意望远镜转动过程中是否过了刻度的零点。 6.调整时应调整好一个方向,这时已调好部分的螺丝不能再随便拧动,否则会造成前功尽弃。 7.望远镜的调整是一个重点。首先转动目镜手轮看清分划板上的十字线,而后伸缩目镜筒看清亮十字。 六、思考题:1. 分光计的调整有哪些要求?其检察的标准?答:①几何要求:“三垂直”。即载物小平台的平面,望远镜的主光轴、平行光管的主光轴均必须与分光计的中心轴垂直。②物理要求:“三聚焦”。即叉丝对目镜聚焦,望远镜对无穷远聚焦,狭缝对平行光管物镜聚焦。③检验三垂直的标准:“四平行”。即载物小平台平面、望远镜的主光轴、平行光管的主光轴和读数刻度盘四者相互平行。④检验三聚焦的标准:“三清晰”。即目镜中观察叉丝清晰,亮十字反回的像(绿十字)清晰,在望远镜中看到狭缝清晰。2. 即是重点又是难点内容的望远镜系统如何调整? 答:①目测粗调②打开小灯调节目镜,看清叉丝。③在载物台上放双平面镜(位置如胶片图所示,为什么?),调节物镜(仰俯角和伸缩)和载物台(螺钉),使双平面镜两面有绿十字像并清晰、无视差,此时望远镜已聚焦无穷远。④调整望远镜的光轴与分光计转轴垂直。使双平面镜两面有绿十字像。再用“减半逐步逼近法”使望远镜的光轴与分光计的中心轴垂直(对照胶片讲解,必要时示范讲解),即叉丝的像与调整叉丝完全重合。3. 平行光管如何调整?答:①用已调节好的望远镜作基准,调节平行光管下部仰俯螺钉,使其出射平行光。②调节平行光管的狭缝宽度(强调:不要损坏刀口!)③使平行光管光轴与分光计转轴垂直。使目镜中看到的水平和竖直的狭缝像均居中。 七、误差分析:在测量三棱镜折射率实验中,当调节分光计的平行光管光轴与望远镜光轴垂直于中心转轴后,由实验可知载物台平面的倾斜程度对最小偏向角的测量没影响,但顶角的测量随着载物台平面的倾斜程度不同,有着不同程度的影响。八、实验心得:1、提高了我们综合分析的能力,当面对一个问题时,首先要考虑怎样解决,既而开始考虑解决的具体方法,在实验前必须提前预习,把整个实验的原理,流程和注意的事项掌握清楚,这才能保证你实验既快又好的完成.在预习时要有目的,心中明白哪里里是实验的重点,哪里是必须注意的问题.设计实验步骤,并预测实验中可能出现的问题。对实验的每一个细节进行分析,尽可能的减小实验误差。这些都使我们初步培养了实验的素质和能力。 2、培养了实验中科学严谨的态度,尊重客观事实,对待任何实验都客观认真仔细。实验正式开始前,应该先清点下实验仪器和材料,并对其进行检查,以确保实验顺利进行.在动手前先将心中的实验知识对照一起过一遍再开始动手。实验过程更始需要很精细的态度和求实的态度。对每个步骤,每个细节都要留心。 3、养成了我们做事认真细致有耐心的习惯。在实验中,你必须有耐心,因为实验中每个变化都可能是细微的,必须集中精神才能去发现它,不可以急于求成。如果实验数据与正确数据相差过大时,应该把整个实验过程回想一下,对照每一步骤寻求问题所在,重新做一次。 4、悉了很多仪器的使用方法,在光学实验室良好的环境和设备的情况下,我们得到了很好的锻炼,对很多仪器的调试、测量,以及如何减小实验误差等,都有了很明确的认识。我想,这在我们以后的实验过程中会非常有用。 5、实验老师们的耐心讲解和对工作的认真态度给我留下了很深刻的印象。辅导我们实验的每一位老师,对工作都极其认真,在实验前,老师通常会给大家讲解下实验的注意事项,对于我们实验中出现的问题都给予耐心的讲解,而且,在我们实验进行中和实验结束后,老师们都启发我们思考实验的一些外延内容,这对我们将实验所进行的内容跟课本密切联系起来,将知识更充分地掌握。九、试验总结:首先:光学试验的仪器测量都十分精密,实验中一个很小的环节都有可能导致试验的失败,以“应用全反射临界角法测定三棱镜的折射率”为例,在实验过程中要注意分光仪在进行本次实验时已做过校正,因此时在测量时就应该注意,只能调节载物台倾斜度调节螺丝,而对于像平行光管倾斜度调节螺丝、望远镜倾斜度调节螺丝等就不应该再进行调节,否则将会导致实验失败。 第二:对于数据的处理,光学实验也有较高的要求,数据不但要求准确度高,精确度也要高,而且通常要记录多组数据,最后取平均。 第三:光学实验的测量仪器在进行测量时,通常要求一个稳定的实验环境,当有光源时,通常要在实验开始前先打开光源,这样在进行实验时,光源已经达到稳定。对于“全息照相”,对环境的稳定性要求更高,实验仪器都放在防震台上,在仪器排好光路后,要用手轻敲台面,看光路是否改变,在进行曝光前,更是要求室内实验人员不得大声说话,因为声波震动而引起的空气密度变化都有可能导致实验失败,在装片后还必须有一个使台面上各元件自然稳定的时间,即使干涉条纹稳定下来了,时间也不得少于3分钟。可以说这是我做过的六次实验中对稳定性要求最高的实验 第四:我始终认为做好实验预习是最重要的,在作实验前,通过预习,我们可以了解要做实验的原理及要使用的仪器的使用方法,这样在实验之前就已对试验有了大概的了解,然后在课堂上通过老师的讲解,可以迅速掌握仪器的使用方法,这样做起实验来才会得心应手,同时也可以减少因不了解实验仪器的使用方法而导致的实验失败,甚至是对仪器造成损坏,可以说做好实验预习是一举多得的事情。九、参考文献:[1]、普通物理实验3光学部分 高等教育出版社 杨述武、赵立竹等编 2008年版;[2]、大学物理实验 章世恒 主编 西南交通大学出版社 2009 年1月 ;[3]、大学物理实验教程(第2版) 何春娟 主编 西北工业大学出版社 2009年4月。
光的干涉应用的新进展 光的干涉无处而不在,如在日光照射下,肥皂泡的薄层色及昆虫翅膀上的彩色便是最明显的例子。这仅在生活中光的干涉便随处可见,那么在它的实际应用岂不更让人意想不到。光的干涉最要的前提条件就是:必须满足传播方向相同、初相位恒定、频率相同。对于光干涉最开始的意愿是为了测单色光的波长,然而现在我们熟悉的照相机便也运用了光的干涉,普通照相是把照相机的镜头对着被拍摄的物体,让从物体上反射的光进入镜头,在感光底片上产生物体的像。感光底片上记录的是从物体上各点反射出来的光的强度。一、全息照相是应用光的干涉来实现的。它用激光(是良好的相干光)作光源。全息照相的原理如图所示,激光束被分成两部分:一部分射向被摄物体,另一部分射向反射镜(这束光叫参考光束)。从物体上反射出来的光(叫做物光束)具有不同的振幅和相位,物光束和从反射镜来的参考光束都射到感光片上,两束光发生干涉,在感光片上产生明暗的干涉条纹,感光片就成了全息照相。干涉条纹的明暗记录了干涉后光的强度,干涉条纹的形状记录了两束光的位相关系。 从全息照片的干涉条纹上不能直接看到物体的像,为了现出物体的像,必须用激光束(参考光束)去照射全息照片,当参考光束通过全息照片时,便复现出物光束的全部信息,于是就能看到物体的像。二、光学千涉生物传感器的建立及其在多种生物分子识别中的应用1.光学千涉生物传感器系统的设置(1)光学干涉生物传感器的硬件构成 (2)聚荃乙烯薄膜厚度与光学常数的测定及软件的编译2.光学干涉生物传感器敏感膜的构建3.光学干涉生物传感器在多种类型分子识别中的应用(1)酶标记的表面抗原一表面抗体相互作用(2)寡核昔酸分子杂交实验(3) L一天冬酞胺酶B细胞表位的筛选(4)不同细胞与固定化凝集素的相互作用三、当前光刻技术的主要研究领域及进展 1.光学光刻 光学光刻是通过光学系统以投影方法将掩模上的大规模集成电路器件的结构图形"刻"在涂有光刻胶的硅片上,限制光刻所能获得的最小特征尺寸直接与光刻系统所能获得的分辨率直接相关,而减小光源的波长是提高分辨率的最有效途径。因此,开发新型短波长光源光刻机一直是国际上的研究热点。 2.极紫外光刻(EUVL)极紫外光刻用波长为10-14纳米的极紫外光作 光源。虽然该技术最初被称为软X射线光刻,但实际上更类似于光学光刻。所不同的是由于在材料中的强烈吸收,其光学系统必须采用反射形式。如果EUVL得到应用,它甚至可能解决2012年的微米及以后的问题,对此发展应予以足够重视。总的来说,随着科学技术的迅速发展,在科学和技术领域中人们不断地利着光的干涉原理解决了许多复杂的实际问题。让我们更加深刻的认识光的干涉现象,以便日后更好的利用光的干涉知识解决生产及生活中的问题