首页 > 期刊论文知识库 > 毕业论文数据分析怎么做

毕业论文数据分析怎么做

发布时间:

毕业论文数据分析怎么做

基本信息描述

比较省事的就是用EXCEL,你加载“数据分析”即可,基本的数统资料就全涵盖了。你不是专门也不是长期做数据研究的没必要花钱买软件

1 首先要确定写毕业论文的目的和主题,明确需要收集哪些数据;2 可以先收集初中的历年学生成绩、升学率、体育成绩等指标数据,可以通过学校网站、教育部门网站等途径获取;3 可以采用问卷调查的方式,收集学生对该初中的评价、老师对学生的评价等数据;4 也可以通过实地调研或观察,收集该初中的师生素质、教学质量、教育资源等数据;5 在写论文时,要根据收集的数据进行分析和解读,结合论文主题进行说明和论证。

数据分析可以分成两部分,一部分是对分析过程及分析结果的描述,另一部分是结合专业知识对结果进一步分析,为什么会出现这样的结果。

如果完全没有思路推荐使用spssau,里面的结果包括智能文字分析可以提供一些思路。

论文数据分析怎么做

论文数据方法有多选题研究、聚类分析和权重研究三种。

1、多选题研究:多选题分析可分为四种类型包括:多选题、单选-多选、多选-单选、多选-多选。

2、聚类分析:聚类分析以多个研究标题作为基准,对样本对象进行分类。如果是按样本聚类,则使用SPSSAU的进阶方法模块中的“聚类”功能,系统会自动识别出应该使用K-means聚类算法还是K-prototype聚类算法。

3、权重研究:权重研究是用于分析各因素或指标在综合体系中的重要程度,最终构建出权重体系。权重研究有多种方法包括:因子分析、熵值法、AHP层次分析法、TOPSIS、模糊综合评价、灰色关联等。

拓展资料:

一、回归分析

在实际问题中,经常会遇到需要同时考虑几个变量的情况,比如人的身高与体重,血压与年龄的关系,他们之间的关系错综复杂无法精确研究,以致于他们的关系无法用函数形式表达出来。为研究这类变量的关系,就需要通过大量实验观测获得数据,用统计方法去寻找他们之间的关系,这种关系反映了变量间的统计规律。而统计方法之一就是回归分析。

最简单的就是一元线性回归,只考虑一个因变量y和一个自变量x之间的关系。例如,我们想研究人的身高与体重的关系,需要搜集大量不同人的身高和体重数据,然后建立一个一元线性模型。接下来,需要对未知的参数进行估计,这里可以采用最小二乘法。最后,要对回归方程进行显著性检验,来验证y是否随着x线性变化。这里,我们通常采用t检验。

二、方差分析

在实际工作中,影响一件事的因素有很多,人们希望通过实验来观察各种因素对实验结果的影响。方差分析是研究一种或多种因素的变化对实验结果的观测值是否有显著影响,从而找出较优的实验条件或生产条件的一种数理统计方法。

人们在实验中所观察到的数量指标称为观测值,影响观测值的条件称为因素,因素的不同状态称为水平,一个因素可能有多种水平。

在一项实验中,可以得到一系列不同的观测值,有的是处理方式不同或条件不同引起的,称为因素效应。有的是误差引起的,称做实验误差。方差分析的主要工作是将测量数据的总变异按照变异原因的不同分解为因素效应和试验误差,并对其作出数量分析,比较各种原因在总变异中所占的重要程度,作为统计推断的依据。

例如,我们有四种不同配方下生产的元件,想判断他们的使用寿命有无显著差异。在这里,配方是影响元件使用寿命的因素,四种不同的配方成为四种水平。可以利用方差分析来判断。

三、判别分析

判别分析是用来进行分类的统计方法。我来举一个判别分析的例子,想要对一个人是否有心脏病进行判断,可以取一批没有心脏病的病人,测其一些指标的数据,然后再取一批有心脏病的病人,测量其同样指标的数据,利用这些数据建立一个判别函数,并求出相应的临界值。

这时候,对于需要判别的病人,还是测量相同指标的数据,将其带入判别函数,求得判别得分和临界值,即可判别此人是否属于有心脏病的群体。

四、聚类分析

聚类分析同样是用于分类的统计方法,它可以用来对样品进行分类,也可以用来对变量进行分类。我们常用的是系统聚类法。首先,将n个样品看成n类,然后将距离最近的两类合并成一个新类,我们得到n-1类,再找出最接近的两类加以合并变成n-2类,如此下去,最后所有的样品均在一类,将上述过程画成一张图。在图中可以看出分成几类时候每类各有什么样品。

比如,对中国31个省份的经济发展情况进行分类,可以通过收集各地区的经济指标,例如GDP,人均收入,物价水平等等,并进行聚类分析,就能够得到不同类别数量下是如何分类的。

五、主成分分析

主成分分析是对数据做降维处理的统计分析方法,它能够从数据中提取某些公共部分,然后对这些公共部分进行分析和处理。

在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。

主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。

最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。

如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现在F2中,用数学语言表达就是要求Cov(F1, F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P个主成分。

六、因子分析

因子分析是主成分分析的推广和发展,它也是多元统计分析中降维的一种方法。因子分析将多个变量综合为少数几个因子,以再现原始变量与因子之间的相关关系。

在主成分分析中,每个原始变量在主成分中都占有一定的分量,这些分量(载荷)之间的大小分布没有清晰的分界线,这就造成无法明确表述哪个主成分代表哪些原始变量,也就是说提取出来的主成分无法清晰的解释其代表的含义。

因子分析解决主成分分析解释障碍的方法是通过因子轴旋转。因子轴旋转可以使原始变量在公因子(主成分)上的载荷重新分布,从而使原始变量在公因子上的载荷两级分化,这样公因子(主成分)就能够用哪些载荷大的原始变量来解释。以上过程就解决了主成分分析的现实含义解释障碍。

例如,为了了解学生的学习能力,观测了许多学生数学,语文,英语,物理,化学,生物,政治,历史,地理九个科目的成绩。为了解决这个问题,可以建立一个因子模型,用几个互不相关的公共因子来代表原始变量。我们还可以根据公共因子在原始变量上的载荷,给公共因子命名。

例如,一个公共因子在英语,政治,历史变量上的载荷较大,由于这些课程需要记忆的内容很多,我们可以将它命名为记忆因子。以此类推,我们可以得到几个能评价学生学习能力的因子,假设有记忆因子,数学推导因子,计算能力因子等。

接下来,可以计算每个学生的各个公共因子得分,并且根据每个公共因子的方差贡献率,计算出因子总得分。通过因子分析,能够对学生各方面的学习能力有一个直观的认识。

七、典型相关分析

典型相关分析同样是用于数据降维处理,它用来研究两组变量之间的关系。它分别对两组变量提取主成分。从同一组内部提取的主成分之间互不相关。用从两组之间分别提取的主成分的相关性来描述两组变量整体的线性相关关系。

创建论文数据分析计划提示:

1、系统化

学生可以通过将研究数据系统化来开始论文数据分析。收集想法,思考哪些方面是重要的,而哪些会让自己的想法变得混乱。思考自己所收集信息的真正价值,信息的数量不会帮助论文写作,质量更加重要。

2、结构

组织论文分析。对于学生和读者来说,一切都应该非常清楚。无论主题多么复杂,都应该将其分成几部分,并按顺序排列,使人们能够对问题的所有要点有一个很好的了解。每一章都应该是自己的一个小想法。

3、词汇

论文中不应该有自己不理解的任何词汇,因为很可能读者也不会理解。对于不理解的术语,或者在写作过程中学到的术语,应该在创建论文分析时进行解释。

4、因果关系

在收集数据并将材料系统化后,学生应该退后一步,考虑因果关系。应分析关键点的有效性。如果已经做好了系统和结构部分,这应该不会太复杂。

5、重要性

从理论和实践上思考论文的要点。如果不了解大局,就无法制定好的论文数据分析计划,这就是整篇论文的意义所在。

6、简化

最后,论文数据分析计划可以帮助写作。不要浪费太多时间将已经很复杂的任务复杂化。目标应该清晰,过程要简化。

如何利用数据分析工具,对自己的文章进行诊断

请在此输入您的回答,每一次专业解答都将打造您的权威形象数据源:(是什么)研究区域描述:(如果你研究的是区域的话,要写出研究区域你要研究的那一方面的发展概况)数据处理方法:你用了什么方法,仔细描绘,比如怎么选取变量,有无修正参数或部分数据啦等等,怎么检验你处理的方法是否恰当啦

本科生毕业论文数据分析怎么做

基本信息描述

数据源:(是什么)研究区域描述:(如果你研究的是区域的话,要写出研究区域你要研究的那一方面的发展概况)数据处理方法:你用了什么方法,仔细描绘,比如怎么选取变量,有无修正参数或部分数据啦等等,怎么检验你处理的方法是否恰当啦

问题一:怎样进行论文数据分析 请在此输入您的回答,每一次专业解答都将打造您的权威形象数据源:(是什么) 研究区域描述:(如果你研究的是区域的话,要写出研究区域你要研究的那一方面的发展概况) 数据处理方法:你用了什么方法,仔细描绘,比如怎么选取变量,有 *** 参数或部分数据啦等等,怎么检验你处理的方法是否恰当啦 问题二:论文结果分析怎么写 结果是你实验过程中记录的各项变化和数据。列出图、表更直观一些。并且要做一下适当的说明。 分析是将这些结果说明了什么写出,即结论,同时是否与你的预期一致,还有你的实验结果有什么意义。 如果结果与预期不符,说明一下原因或可能的原因。 问题三:有数据了怎么写数据分析的论文 20分 数据了,写数据,分析的 问题四:论文的数据分析怎么写 你可以把数据发给我看看,我帮你看下 问题五:关于毕业论文的数据分析 我觉得你先要明白想用这些数据得出怎么样的结果 然后我就知道怎么样进行数据分析 数据分析只是方式,前提是你要明白自己的目的 问题六:论文中数据显著分析,怎么做是啊a,b,c 论文不难写的,不要抄袭,有自己的观点就行,不会写可以问我的。论文常指用来进行科学研究和描述科研成果的文章,简称之为论文。它既是探讨问题进行科学研究的一种手段,又是描述科研成果进行学术交流的一种工具。 问题七:急!!毕业论文实证分析中的样本选取和数据来源怎么写啊 20分 数据可以去公司里面,年鉴等地方找 不要相信其他人说的给你,什么没问题,都你的 我经常帮别人做数据分析的 问题八:毕业论文的假设检验进行数据分析后 有些没通过 影响大吗 最后的结论怎么写 要写哪些内容 25分 做的是什么假设检验:方差分析、卡方检验、秩和检验还是直线相关与回归 问题九:这个论文数据分析该找哪些数据,该怎么分析,求大神指导。 这个框架 没有办法判断 你需要把模型的设定 先做出来 才可能确定数据选择和收集 问题十:工程力学论文怎么写,其中的数据分析如何 1,定义:应用于工程实际的各门力学学科的总称。常指以可变形固体为研究对象的固体力学。广义的工程力学还包括水力学、岩石力学、土力学等。工程力学是研究有关物质宏观运动规律,及其应用的科学。 2,一般工程力学包括结构力学,理论力学,材料力学即三大力学。它们的关系是包括与被包括的关系。包括实验力学,结构检验,结构试验分析。模型试验分部分模型和整体模型试验。结构的现场测试包括结构构件的试验及整体结构的试验。实验研究是验证和发展理论分析和计算方法的主要手段。

论文的数据分析怎么写如下:

首先,针对实证性论文而言,在开始撰写论文之前,必须要提前确定好数据研究方法。而数据研究方法的确定与选择需要根据大家毕业论文的研究课题来确定。

另外,大家也可以跟自己的的论文指导老师多多交流,尽可能多的了解更多关于研究方法的知识,以供自己选择。除此之外,大家还需要大量查找文献资料,见多识广有大量输入之后才能有所输出,本环节需要大家跟导师沟通商议后决定。

接下来一个比较重要的步骤是搜集和整理实验数据。在这一部分,很多同学朋友都会遇到各种各样的问题,比如,不知道去哪里找数据,找到的数据可靠性无法保障,需要的数据总是无法搜集全面等等各种问题。

那么在这里需要跟大家强调一下,推荐大家使用国家统计局、中国统计年鉴、国泰安、万方等等这些比较权威的网站去搜集数据资料。

在此需要注意的是,国泰安和万方等这些网站是需要收费的,上去看了一下,价格不是很亲民。

给大家分享一下,如果有些数据在国家官方网站确实找不到或者毕业论文所需的最新数据还没及时发布,推荐大家可以上某宝,因为某宝上电子版数据往往都很全面,而且价格大都可以接受。

在此提醒大家搜集到数据之后,一定要按照自己的习惯整理保存好,避免后期使用数据时出现差错。

毕业论文找别人做数据分析

数据最好不要自己编。调查分析类的软件(如果你是学营销或管理学的)可以用SPSS。一般人编的数据数据分析结果都能看出端倪来的,老师都不是傻子,到时候一旦被看出来你就会很难过了。一般情况下,答辩过程中老师不会让你演示数据的分析过程,但一般会问到你你的论文理论基础,数据是如何收集的(即通过哪些途径收集的),你的问卷设计,数据分析结果,得出结论等。还是哪句话,一般不是长期做学术或很有经验的人,编的数据结果都很明显的能看出端倪的。建议不要数据造假,学术上是最鄙视也不能接受的。这是比你论文框架错了还要严重的错误。

一、学习背景

本科学了四年文科专业,除了形式逻辑外几乎没再接触过与理科搭边的东西。想借着毕业论文学一点数据分析的东西,知网上找了几篇相关文献,以为数据分析很简单,于是跟导师定了题开始着手做。

二、问卷编制+数据分析类论文框架

(一)低阶版:非专业,要求低,不需要用spss,调研规模200+即可。

如果时间相对紧张,不想在毕业论文上花过多时间,建议采用低阶版即可,字数也绝对够。知网上“问卷编制+数据分析”类的文章除少部分期刊论文,大多数都是硕博论文,看看文献综述即可,不要用他们的数据分析框架,这是高阶版需要考虑的。

引言,研究背景写完,就写研究综述。把需要研究的变量列出来分别写研究综述,记得加上一些国外的研究,引用一些外文文献。接下来,简单地说一下自己如何编制的问卷,如何发放的问卷(线上/线下),回收问卷的情况。然后写样本情况,可以列一个大表格,内容包括哪类人有多少个,占百分之多少。接下来就是对数据结果的分析,用例如“A越...,B就越...”、“C的总体水平较低/高”、“D的....比E的....水平要高”的句式,找出一些规律即可。最后就可以写讨论、结论、总结对策建议了。

(二)高阶版:比较专业,要求高,不确定因素大(比如数据可能真的拟合不了模型),需要用spss statistics 和 amos。

采用高阶版不仅对人有要求,对数据也有要求。如果你没有把握自己能拿到样本较大的数据,也没有把握帮你填问卷的人是认真的,还是谨慎尝试为好,免得前面都做得很好,最后卡在模型拟合或者相关分析之类。大多数本科毕业论文的同学都是用问卷星,让小伙伴、家长等帮扩,这个样本量可能不会很大,而且如果题目比较多,不排除会出现开始东一个西一个乱填的情况。

以上内容就是青藤小编关于本科毕业论文做问卷和数据分析应该怎么着手的相关分享,希望对小伙伴们有所帮助,想要了解更多毕业论文相关内容,欢迎大家及时在本平台进行查看哦!

调查,分析 我, 。这,搞,定。

编数据没有问题,但是数值结果里面有一些联系的,也不是你想编什么值就行的,编的不好,一下子就露馅了,最好找点数据来做

数据分析类毕业论文怎么写

统计描述一般指的是均数、标准差等

数据分析怎么写

数据分析怎么写?众所周知,数据分析报告是根据数据分析原理以及方法,运用数据来反映以及分析事情的现状、原因、本质,得出结论和解决办法,我相信很多人在想到数据分析报告的时候是都十分痛苦的,不知从何下手,下面为大家分享数据分析怎么写。

需求分析

一定要了解一定要了解清楚要什么再开始动手。如果只知道出发,不知道方向、目的,那么有可能会越走越远离方向。就好像做菜,比如你爱人想吃鱼,你也没继续问,就给她做了一道红烧鲤鱼。但是事实上你可能都没了解清楚,她是像是具体那种鱼,是想要红烧清蒸还是其他做法。可能你做了很多的工作,付出了辛勤的劳动,但最后她仍然不满意。做数据分析也是如此,如果没有了解清楚需求,有可能最后会造成全盘的返工。

最好需要了解报告的用途、形式、重点目标和完成时限。即使你拿到了草稿或者样本也要自己了解一遍比较好。主要原因是因为,现在如果是你做,那你就是负责人。你应该最清楚如果让报告满足所有需求。另外,之前的报告不一定就考虑到了所有的细节,如果做之前没有考虑,那么最后还有可能会一步一步增加细节,也会耽误时间。

前进一定要有方向,做数据分析一定要有需求分析!

数据采集

数据的数量和质量对于数据分析师和食材的数量及质量对于厨师的意义是一样的。如果没有数据,那就像空有一身厨艺却没有任何食材的厨师。所以,做好需求分析之后的下一步一定是数据采集。

数据采集就是收集相关原始数据的过程,为数据报告提供了最基本的素材来源。在现实中来源有多种多样,直接问业务发生者或者一线管理者、公司运营后台的数据、网站运营时的数据等等。数据采集工作要做的就是尽可能地收集可能能用得上的数据,并集中地保存到合适的文档里,用于后期的处理。

数据采集的数量一定要足够多,否则难以发现有价值的数据规律;此外收集的过程中也要主要收集准确的资料,虚假的数据无法生成可信且可行的数据报告。这要求在数据收集的过程中不仅应该有科学而严谨的方法,而且对异常数据也要具备一定的甄别能力。

数据处理

厨师在进行烹饪之前,一般会对食材进行一定的处理,方便后续烹制。食材经过处理才能被用来加工,同样的,数据也只有被经过处理之后才能拿来制作数据报告。

采集到的数据要继续进行加工整理才能形成合力的规范样式,用于后续的数据分析运算,因此数据处理是整个过程中一个必不可少的中间步骤,也是数据分析的前提和基础。数据经过加工处理,可以提高可读性,更方便运算;反之,如果跳过这个环节,不仅会影响到后期的运算分析效率,更有可能造成错误的分析结果。

举一个常见的例子,如果是从业务发生者或者是一线管理者收集来的数据很有可能格式不统一,如果不做处理,很难开展下一步的工作。

数据分析

食材都处理好了,后续还要掌握火候,按照食谱的顺序来加工操作。数据分析也一样,前期方案和数据都准备好了,按照既定的方法就可以实现预定的目标。

通过专门的.统计分析工具以及数据挖掘技术,可以对这些数据进行分析和研究,从中发现数据的内在关系和规律,获取有价值有意义的信息。

数据展现

菜做好了,也得装盘才行。如果是客人未尝试过的,有份介绍可能更好。菜肴的色相意味形以及为专人订制的价值就是展示的主要目标。

同样,数据分析的结果最终要行程结论,这个结论要通过数据分析报告的形式展现给决策者。数据分析报告的结论要简洁鲜明,一目了然,同时还要有足够的论据支持,这些论据就包括分析的数据以及分析的方法。

因此,在最终的数据报告中,表格和图形是两种常见的数据展现方式。通常情况下,一图胜十表,一表胜十言。所以,在数据展现上,我们一定要做到可视化。图表具有直观而形象的特点,可以化冗长为简洁,化抽象为具体,使数据和数据关系得到最直接有效地表达。如果你想要表现一个营业部经营状况的趋势性结论,使用一串枯燥的数字或者一串文字,远不如一个折线图加趋势线更能说明问题。

经过上面这几个步骤的操作,一份完整的数据报告就可以形成,其中的价值将会在决策和实践中起到作用。

寻找真因

数据分析经过上述步骤看起来基本完成,但是真正的来说,数据分析一定要和实际业务相结合,要为决策者决策服务。下面这几个步骤是重点为决策者服务。

分析类别:

首先需要知道自己报告的类别,如你需要做 昨天的交易分析,那就是描述性分析。你需要找到订单量下降的原因,就是解释性分析。你需要对下个月的销售做提前采购计划,就是预测性分析。针对一个未知的事情,比如你们产品是否需要增加某个功能模块,做探索研究,就是探索性分析。

分析流程:

数据分析一般都是一次性的,一般都是专题分析报告。提需求的方式,是我们有一个问题需要解决(解释性,探索性,描述性,预测性)。而不是提的需求是,我需要一个什么样格式的数据,你们计算好了发给我一下,甚至直接给我做一个ppt和报表。客户说 自己想买一瓶可乐,其实他只是口渴,我们只需要给他点喝的就行。

分析报告类型:

数据分析报告是数据分析过程和思路的最后呈现,得出分析的结论并给出解决方案。其本质上是在写一篇有理有据,逻辑性强的议论文。针对不同的分析目的选择不同的报告形式和内容。

报告结构:

一份数据分析报告由以下几个部分组成,一般都是总分总的格式:

标题:

标题是一份报告的文眼,是全篇报告最浓缩的精华。好的标题让读者能毫无偏差地理解这篇分析报告的主要目的,有时可以直接在标题中加入部分或者关键性结论达到直达文意的效果。

在标题的命名过程中,现在有一份关于数据分析师招聘和薪酬方面的一份报告,你可以:

1. 直接在标题中放上报告的结论,例如《数据分析师在人工智能大环境下需求直线上升》

2. 提出分析报告的研究问题,例如《数据分析师的职业规划在哪里》

3. 中规中矩地写上研究的主题,例如《数据分析师的招聘研究》

目录:

提现数据分析报告的整体架构

前言

前言部分就和写论文时候的Abstract类似:

1、 要写出做这次分析报告的目的和背景

2、略微阐述现状或者存在的问题

3、通过这次分析需要解决什么问题

4、运用了什么分析思路,分析方法和模型

5、给出总结性的结论或者效果

数据分析可以分成两部分,一部分是对分析过程及分析结果的描述,另一部分是结合专业知识对结果进一步分析,为什么会出现这样的结果。

如果完全没有思路推荐使用spssau,里面的结果包括智能文字分析可以提供一些思路。

A、需求分析阶段:综合各个用户的应用需求。 B、在概念设计阶段:用E-R图来描述。 C、在逻辑设计阶段:将E-R图转换成具体的数据库产品支持的数据模型,如关系模型,形成数据库逻辑模式。然后根据用户处理的要求,安全性的考虑,在基本表的基础上再建立必要的视图(VIEW)形成数据的外模式。 D、在物理设计阶段:根据DBMS特点和处理的需要,进行物理存储安排,设计索引,形成数据库内模式。 一展开就够论文字数了

  • 索引序列
  • 毕业论文数据分析怎么做
  • 论文数据分析怎么做
  • 本科生毕业论文数据分析怎么做
  • 毕业论文找别人做数据分析
  • 数据分析类毕业论文怎么写
  • 返回顶部