应该是指用显微镜测微尺测量的面积。
可能是分度值,表示一个刻度的最小单位。
这个小横线表示图片的尺度,比如横线上表示10um,就是说这条横线表示10um长度,相当于地图上的比例尺。
微米,1毫米=1000微米,20μm=.
应该是指用显微镜测微尺测量的面积。
这个小横线表示图片的尺度,比如横线上表示10um,就是说这条横线表示10um长度,相当于地图上的比例尺。
微米,1毫米=1000微米,20μm=.
达晋编译:在医学论文写作中,图片的应用一般有线条图和照片图两种,要求:1.表达清晰。图片中各元素都清楚无误,不能出现多个字母堆在一起难在分辨的情况。2.分辨率要高。这里所说的分辨率不是我们拍照时所说的总像素数,它的单位是dpi,它代表了一英寸中的点数,科技杂志的要求是600dpi,这也是打印机的最高分辨率。3.线条一致。所有图中的字号、箭头大小要保持一致,粗线、细线分明,各种线型粗细一致。4.数值清晰。横纵坐标的物理量要标清楚,一些关键的临界值,需要标明其数值。5.尽量用白底的图片,一定不能用黑底的图。黑底的图费墨,这是出版社很忌讳的事情,所以在作图前将软件的背景设置为白色是很有必要的,如果只能得到黑底的图片,可以用Photoshop反相处理。
根据相关信息了解得知,医学论文的摘要可以附图表的。
就是将几组数据画在同一个图表中。这幅图就是表示培养时间不同,自由氨基、葡萄糖、生物量、PLMA(聚苹果酸)的变化情况。左边、右边刻度不同,是因为自由氨基、葡萄糖、生物量、PLMA(聚苹果酸)的含量刻度差异较大。至于具体怎么看,一般都会结合记录数据看的。红圈内的一条短线代表方差 excel就行的
科研论文中的图表是研究结果最为直观的显示方式。表格和图片可以更加清楚直观地表现一些复杂的信息,比如复杂系统之间的关系以及事件发生的顺序等。一张清晰、直观且表达正确的图片会增强文章的说服力,它的效果往往胜过大段的文字描述。
现在很多期刊对图片的分辨率、格式和文字标注都有明确的要求。因此确定好目标期刊后,应该根据期刊的《投稿须知》来修改文章的图片。文章里的图片一般来自照片、作图软件或者数学处理软件做出来的图形。用合适的工具来处理不同类型的图,可以达到事半功倍的效果。处理照片的工具,重量级的有Photoshop,轻量级的有ACDSee跟画图板,个人是比较推荐GIMP。因为它不仅是个功能非常强大的开源软件,而且还支持很多种格式的导入和导出。常用的数学处理软件有MatLab 跟Origin。其中Origin可以做出非常专业的图形。当然Excel也是个很不错的选择。流程图用Visio或者PPT就差不多满足所有需求了。
在图片的使用上,有一些地方容易出问题,需要注意:
(1)确保每个图提供的信息都是清晰和真实可信的。实验过程中获得的原始图像一定要长期保留。后期的所有修改、调整不得使图像失真,不得影响原图的真实性。修改后的图像只能另存为其他文件,千万不要覆盖原始图像。
(2)照片类的图片应注意摄入参照物,背景干净,分辨率越高越好,不要逆光拍摄。
(3)图片表达简明扼要,尽量删掉图中不必要的文字。图表使用的字体,标签和缩写都必须是一致的。另外图片跟文章中的文字说明要匹配得上。在文章的修改过程中,图表的标号很容易改着改着就不一致了,这一点要特别注意。
(4)用图还是用表?在一篇科研文章中,有些类型的信息既可以用图也可以用表格来呈现,这时应该选择一种能最有效传达研究中关键信息的形式,数据少的用表好一些,数据多则使用图。趋势的比较用图比表格更适合一些。在表达方式上,尽可能使用最紧凑的格式,也就是说,相同的数据信息要么用图,要么用表,千万不要两种都用而导致重复表达。在构建数据表格的时候,要权衡数据的完备性和重要性,不要把表格弄得过于复杂。必要时要把一个大的数据表按照类型分成几个小表格,这样读者在阅读的时候,重要的数据一目了然。
(5)有效的说明。每个图形跟表格都应该有一个简短的说明,即使读者不看文章的内容,仅仅通过图表及其标注,也可以得到一些有用的信息。在文章正文中,也需要引用到图表中的一些关键数据,但是千万不要重复罗列表格中的所有数据。
(6)不管哪种类型的图片分辨率都要高,打印出来要足够清晰,很多学术期刊要求是600dpi,这也是打印机的最高分辨率。
另外还需要注意几个小细节:坐标标签和单位要准确;图中文字的大小要一致;同一张图中不同曲线要使用不同线型或者标记区分,在用颜色区分时要注意打印成黑白之后是否还能区分清楚。图片的背景最好是白色的,其他的颜色在屏幕上也许比较好看, 但是打印出来的效果却不会很好。
看懂医学文献中的统计图通常并不需要大堆的统计知识(读者们大多不是统计专业啊)。如果只是想看懂数据,那么弄懂一些基本的统计概念和一些常用词汇如 significance,P-value等等,就应该足以看懂大部分的数据图。这些基本概念可以在网上如wiki很容易的查到。稍微系统一点的,可以看看类似于以及其他几个线上教学网站的生物统计学的初级介绍课程(大部分是英文,但也有中文的)。除非个人兴趣或者专业方向要求,个人觉得并不一定需要全面学习统计课程。因为题主没有说明是做什么图,做数据和统计类的图。
论文常被用来进行科学研究和描述科研成果的文章。它既是探讨问题进行科学研究的一种手段,又是描述科研成果进行学术交流的一种工具。论文格式封面论文常指用来进行科学研究和描述科研成果的文章。它既是探讨问题进行科学研究的一种手段,又是描述科研成果进行学术交流的一种工具。它包括学年论文、毕业论文、学位论文、科技论文、成果论文等,总称为论文[1]。论文格式就是指进行论文写作时的样式要求,以及写作标准。直观的说,论文格式就是论文达到可公之于众的标准样式和内容要求。结构论文一般由题名、作者、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成(例如附录)可有可无。论文各组成的排序为:题名、作者、摘要、关键词、英文题名、英文摘要、英文关键词、正文、参考文献、附录和致谢[2]。题目1.题名规范题名应简明、具体、确切,能概括论文的特定内容,有助于选定关键词,符合编制题录、索引和检索的有关原则。2.命题方式简明扼要,提纲挈领。3.英文题名方法①英文题名以短语为主要形式,尤以名词短语最常见,即题名基本上由一个或几个名词加上其前置和(或)后置定语构成;短语型题名要确定好中心词,再进行前后修饰。各个词的顺序很重要,词序不当,会导致表达不准。②一般不要用陈述句,因为题名主要起标示作用,而陈述句容易使题名具有判断式的语义,且不够精炼和醒目。少数情况(评述性、综述性和驳斥性)下可以用疑问句做题名,因为疑问句有探讨性语气,易引起读者兴趣。③同一篇论文的英文题名与中文题名内容上应一致,但不等于说词语要一一对应。在许多情况下,个别非实质性的词可以省略或变动。④国外科技期刊一般对题名字数有所限制,有的规定题名不超过2行,每行不超过42个印刷符号和空格;有的要求题名不超过14个词。这些规定可供我们参考。⑤在论文的英文题名中。凡可用可不用的冠词均不用。
我们的原始数据点。看前沿论文就会察觉到,高水准期刊里,大量的柱形图表都选择在原本柱子的基础上融入散点元素,并呈现出各类不同的样式。图中柱形图上增添的散点即为我们的原始数据点,和柱形图联合运用一方面是能够使图表看起来更加“炫酷美观高大上”,但更重要的原因是通过散点直观而清晰展现数据的分布情况,增强图表的可信度,这也是高分前沿期刊中大家广泛开始使用这类散点柱形图的最主要原因。
柱状图在论文中属于图,以图片的形式呈现出来,和表格略有不同。
将论文中的柱状图表注写成表是不合适的。这是因为柱状图和表格是两种不同的数据呈现方式,柱状图主要用于展示数据的趋势和变化,而表格则用于呈现具体的数据和数值。因此,如果将柱状图表注写成表格的形式,会导致数据的呈现和解读出现误差。在论文中,柱状图和表格都是非常重要的数据呈现方式,它们可以帮助读者更好地理解和解读研究结果。在使用柱状图和表格时,需要根据具体的研究目的和数据特点来选择合适的呈现方式。如果数据的变化趋势比较明显,可以使用柱状图来呈现;如果需要呈现具体的数据细节,可以使用表格来呈现。在撰写论文时,需要注意数据的呈现方式和格式,以确保数据的准确性和可读性。同时,也需要遵守学术规范和论文写作的要求,以保证论文的质量和可信度。
医学统计论文
医学统计是研究如何搜集、整理和分析医学研究对象的数据和作出推断的一门学科,下面是我为大家收集整理的是医学统计论文,仅供参考。
摘要: 不同的统计分析方法均有其适用的范围和应用的条件,研究者在书写医学论文时应根据论文设计及资料的类型进行合理的试验设计,选择恰当的统计分析方法,切记勿盲目套用。同时,还应注意得出的结果和结论应满足设计的要求。医学统计方法的正确运用,是充分利用试验研究获得的数据,也是最终得出科学、可信的结论的必要条件。
关 键词 :医学统计;方法;运用;原理;选择
一、统计学方法简介
统计学方法包括统计软件包、统计分析方法以及检验水准三方面的内容。其中医学论文中常提到检验水准即α,它是用来表示组间实际无差别而统计结果判断有差别,犯这类错误的概率。实际工作中常取α=,当研究数据计算的P值小于时,组间差异比较被认为有统计学意义。统计学方法包括统计描述和假设检验两个方面的内容。统计描述是指根据资料及原始数据分布的类型,选择正确的指标来描叙资料及数据的特征。而假设检验即组间差异性检验,是医学论文中最常用的统计学方法。资料类型则包括能用具体数据表示的定量资料与不能用具体数值表示但能反映被观察对象某一特征的定性资料。定性资料的统计描述包括率、相对比和构成比。而参数法及非参数法是常用的定量资料统计分析方法。参数法一般包括t检验、方差分析,非参数法常用的有秩和检验。
二、试验设计中的统计学原理
合理的试验设计与统计处理的可信度存在直接联系,研究者在编写医学论文时应对医学研究设计方法进行说明。在进行试验设计时应遵循随机、对照、均衡和重复四大原则。在进行试验设计的时候通常会涉及到研究对象的选择,研究对象的分组及选择合理的检测指标三个方面的内容。
医学论文就是通过对样本的研究来进行推断总体,找出其共性,得出结论。因此研究者在选择研究对象时应注意选择样本应具有一定数量,能反映出该事物的规律性特征,但又应注意例数不能太多,以免造成不必要的浪费。其选择的原则就是在保证试验结果可靠性的前提下选择最少的样本例数。研究者在选择样本对象后应对其基本特征进行详细的描述,比如患者的年龄、性别、病理分期、疾病诊断的标准等。此外在试验中所用到的试剂、仪器的型号、规格等都应作出说明,以供读者借鉴和做出判断。选定好研究对象后就要对其进行分组。在进行分组时研究者一般遵循统计学中的“随机分配”、“设立对照”以及“均衡”、“重复”的原则。随机化原则是提高组间均衡性的一个重要手段,也是资料分析时进行统计推断的前提。有对照才有比较,在进行组间比较时,应确定好处理因素与实验效应的关系。均衡性则是要使得对结果产生影响的非处理因素尽可能保持一致,这样才能保证对照的结果让人信服。观察实验效应的.指标主要有主观指标与客观指标。正所谓主观指标就是通过问答的方式调查受试者自己判断的主观感受;而客观指标则是通过仪器来检验和测量所得出的结果。在进行试验设计时应选择客观性较强、高灵敏性和精确性的指标。
三、统计学方法的选择
统计学方法的正确选择是直接影响到论文结论可信度的重要依据,因此研究者在编写论文时应注意选择合适的统计学方法。不同的统计学方法应用的范围不同。研究者在编写医学论文时常根据论文研究的目的、资料类型、试验设计的方案、样品大小、水平数、特定条件、数据分布特征以及综合分析等来选择对应的统计方法,同时还要根据专业知识与资料的实际情况,结合统计学原则,灵活地选择。当定性资料正态分布时,研究者一般用均数和标准差来表示统计描述指标;当定性资料不符合正态分布时,则可选用中位数及级差来表示;当定量资料正态分布且组间方差齐时一般选用参数法,反之则选用非参数法。t检验一般适用于小样本(n<50)的定量资料且方差齐的两组数据之间的比较。其特点是在均方差不知道的情况下,可以检验样本平均数的显著性,大样本(n≥50)采用u检验;多个样本均数两两比较则用方差分析,如差异有统计学意义,可采用q检验;Dunnett检验则适用于多个实验组与一个对照组均数的比较。定性资料中,表现为互不相容的类别或属性,分为二分类和多类反应,如治疗结果为显著和好转的人数等,该种资料可选用字检验,大样本(n≥50)时采用u检验。如:患者的治疗结果评定为痊愈、显著有效、好转、无效或死亡。该种资料可选用秩和检验或u检验。总之,不论论文中选用的是哪种统计学方法,都要计算出检验值,然后再根据统计量值来判定P值的大小,结论一般描述为“差异有(无)统计学意义”。
四、常见统计学方法的误用分析及对策
1.统计方法误用。最常见统计方法误用是对等级资料进行比较时应用秩和检验而误用卡方检验。例如:在评价采取不同治疗方法的两组急性脑血管病患者疗效中,治疗组显著有效、有效、无效三种分型分别为15例、10例、8例,对照组分别为14例、11例、9例。本资料例数较少,应选用等级比较的秩和检验,而有些作者却认为只要是率的比较就可以采用字检验。研究者在选择统计学方法时应根据相应的原则,对文章研究目的、资料类型、样品大小、水平数、数据分布特征等进行综合分析后,再来选择对应的统计方法。
2.选用检验方法错误。在有些论文中,作者常将本应用方差分析和q检验的误用t检验。t检验一般适用于小样本(n<50)定量资料且方差齐的两组数据之间的比较,而方差分析及q检验主要用于对多个样本均数进行比较,几种不同治疗或处理方法等的同时比较。例如:在讨论中、西以及中西医结合治疗急性脑血管病时,两组患者的年龄、病程、病情严重程度等差别均无统计学意义,比较三组患者的一些指标变化。组间多重比较应用q检验,但文中作者采用的是t检验,对三组均数进行两两比较。这不仅造成了资料的利用率低,也增加了假阳性的概率,降低了试验结果的可信度。
五、结论表述中的统计学应用
资料的统计处理不是医学研究工作的最终目的,而是通过统计学分析为研究结论提供依据或者线索。因此,在对统计资料进行分析后应把握统计学术语,对结论做出科学的分析跟解释。在根据统计结果得出专业结论时研究者应遵循一个重要原则,就是统计结论都是概率性的,不能绝对地肯定或否定。研究者习惯上将“P<”称为显著性,不应误解为差别很大或者在医学上有显著的价值。统计推断是以一定的概率界值为依据,说明来自同一总体的可能性大小。“差异有统计学意义”说明在试验中的差异不能用抽象误差进行解释;“差异无统计学意义”表明在试验既定的条件下,差异可能是因抽象误差引起的,在增加样本数量的情况下,差异可能变成“有统计学意义”。
参考文献:
[1]医学统计工作的基本内容[J].国际检验医学杂志,2013(19):2563.
[2]关红阳,郭轶男.医学统计t检验的分析研究[J].中国校外教育,2013(30):114.
p应该代表表达率,
P< 表示 表达率低于这个数值
缺失值的处理:缺失值是人群研究中不可避免的问题,其处理方式的差异可能在不同程度上引入偏倚,因此,详细报告数据清理过程中缺失值的处理方法有助于读者对潜在偏倚风险进行评价。例如,瑞舒伐他汀试验在统计分析部分详细说明了缺失值的填补策略,包括:将二分类结局中的缺失值视为未发生事件;将生物标志物和心电图测量中的缺失值进行多重填补(multiple imputation);为了证明缺失值处理的合理性和填补结果的稳定性,研究还比较了多重填补与完整数据(complete-case)分析的结果。2、数据的预处理:实施统计分析之前往往需要将原始数据进行预处理,如:对连续变量进行函数转换使其更接近正态分布,基于原始数据构建衍生变量,将连续变量拆分为分类变量或将分类变量的不同类别进行合并等。医学论文应报告处理原始数据的方法及依据,瑞舒伐他汀试验即在统计分析部分描述了对血液生物标志物的对数转换。3、变量分布特征描述:确定统计分析使用的变量,并针对每一个变量的分布特征进行描述,是决定研究选用何种统计分析方法的基础。医学期刊虽然普遍对此提出要求,但作者往往套用常用方法,如:连续变量符合正态分布时,采用均数(标准差)描述,否则采用中位数(四分位间距)描述;分类变量采用频数(百分比)描述等。事实上,应根据研究设计类型、统计分析目的和数据特征选择恰当的描述方法。例如,CKB选择采用年龄、性别和地区校正的均值和率来描述人群分布特征,而非简单的报告连续变量的均数和分类变量的构成比。4、主要分析(primary analysis):指针对研究结局的统计分析,是研究论文的核心证据。因此,医学论文应详细描述主要分析的实施过程和适用性。在试验性研究中,应明确统计分析数据集、试验效应指标、相对或绝对风险及其置信区间的计算方法、以及假设检验的方法。