首页 > 医学论文 > 医学论文写作中统计学选择

医学论文写作中统计学选择

发布时间:

医学论文写作中统计学选择

秋风送爽,也给我们送来了刘岭教授的统计说说第五期。这一期的统计学方法之选择大家一定要认真学起来,说不定马上你就会用到了。编者语针对常用的基本统计学方法,一般而言说的就是t检验、单因素方差分析和卡方检验,这也是大家在写论文、阅读论文时经常遇到的统计学方法(几乎每篇文章都会涉及这一种或几种方法),那到底该采用何种统计学方法呢?今天我们就此来聊聊。一、拿到数据开始分析之前,一定要进行数据类型的划分(图1),因为不同数据类型资料,描述的方式不一样,统计学方法也不一样。图1 统计资料的类型举个例子(表1):表1 某地2002年735例65岁以上老年人健康检查记录二、各种类型资料的统计分析(描述与统计推断)1.计量资料特点:每个观察单位的观察值之间有量的区别,有单位;描述形式:最常见采用“X±S”(一般文献中经常见到),用算数均数描述其平均水平,用标准差描述其离散程度。如果遇到数据“特别变态”(特别是标准差大于算数均数),就采用Md(P25,P75)(Md为中位数,P25和P75为四分位数)(表2)。正态分布检验请大家复习:医学科研课堂丨统计说说(三):你所应该了解的正态、方差齐性检验表2 计量资料常用统计指标的特点及其应用场合统计推断方法:一般分为单因素和多因素两种。单因素分析方法分析要点:一是划清数据类型(计量资料);二是明确试验设计类型(完全随机设计?几组样本?);三是注意所用方法的应用条件;四是满足正态方差齐性时采用t检验(注意t检验有三种形式哦!)或单因素方差分析,不满足时采用秩和检验(图2)。图2 计量资料统计方法的正确选择提醒两点:① 如果样本数据不服从正态分布的话,那就只能用非参数检验(秩和检验),但其检验效能低于参数检验(t检验或方差分析)。所谓检验效能低就是本身有差异,却没有能力发现其差异。② 如果是两组以上样本的数据时,不能采用t检验(会导致假阳性错误概率增加),应该采用方差分析。若方差分析的P<,需再进一步两两比较,常用的方法为LSD法或SNK法(注意依旧不能采用t检验)。在上两讲内容中我们已经学过t检验(医学科研课堂丨统计说说(二):你的t检验做对了吗?)和方差分析(医学科研课堂丨统计说说(四):统计学方法之灵魂—方差分析)了,至于秩和检验,我们以后会逐步介绍滴。多因素分析一般采用回归分析,主要是线性回归分析,以后会给大家介绍此方法。2.计数资料特点:无序分类,同类别中各观察单位之间没有量的差别,但各类别间有质的不同,各类别互不相容。其中二分类一定是计数资料(例如性别只有男/女之分,是否继发某种疾病只有继发/未继发之分),而多分类满足分类在性质上没有程度等级上的差别,即为计数资料(例如婚姻状况包括未婚、已婚、离异、丧偶,就属于多分类,但各分类没有程度等级差别,因此为计数资料,尿糖定性检测结果包括-、+、++、+++、++++,属于具有程度等级差别的多分类资料,就不属于计数资料,属于等级资料了)。描述形式:最常见采用“例数(%)”(一般文献中经常见到),主要要分清构成比(结构相对数)和率(强度相对数)的差别(表3)。而且在应用时,分母(就是样本量啦)一般不宜过小,分母太小不足以反映数据的客观事实,也不稳定。表3 计数资料常用统计指标的特点及其应用场合比如说:1.某地肺癌患者中男性A例,女性B例,则当地肺癌患者的性别比为A/B就是“比”。2.某次研究共检出了致病菌3种,总株数为A+B+C,其中一种致病菌检出株数为A,那么A/(A+B+C)就是构成比,即该种致病菌占总致病菌的比重或分布。3.某研究对患者(总例数为B)进行治疗,结果治愈的患者例数为A,则A/B即为率(可以理解为治愈率)。统计推断方法:一般分为单因素和多因素两种。单因素分析方法分析要点:一是划清数据类型(计数资料);二是明确试验设计类型(完全随机设计?几组样本?);三是注意所用方法的应用条件;四是多样本率比较,若卡方检验的P<,需再进一步两两比较,并进行Bonferroni校正,以控制假阳性(图3)。图3 计数资料统计方法的正确选择提醒两点:① 构成比是以100作为基数,各构成部分所占的比重之和必须为100%,故某组成部分所占比重的增减必影响其它组成部分的比重;② 构成比和率在实际应用时容易混淆,主要区别在分母上,所以应正确选择分母。多因素分析一般采用回归分析,主要是Logistic回归分析,以后会给大家介绍此方法。3.等级资料特点:属于多分类资料,满足多分类在性质上有程度等级上的差别,各分类属性按一定顺序排列(有序),即为等级资料。描述形式:最常见采用“例数(%)”(一般文献中经常见到),这和计数资料的描述大体相同,主要区别在于多个分类排列时一定要按照顺序进行(从小到大或从弱到强)。统计推断方法:等级资料的统计分析方法在单因素分析中采用非参数检验(秩和检验),当然对于双向有序R×C资料,也就说分组变量和结局变量都是有序(等级)的情况,构成比的比较采用卡方检验,程度的比较采用秩和检验,趋势关联性的比较用秩相关(也称等级相关)。多因素分析中采用有序Logistic回归。注意:分类变量(计数资料和等级资料)在软件分析操作时,要适当数量化处理(赋值),赋值情况会直接影响统计分析结果的解释。最后用下面这张图来总结基本统计学方法的选择(图4)。图4 常用基本统计学方法的正确选择今天的内容就到这里,同学们多多复习,有什么问题和不懂的可以在下面留言,我们会请刘岭教授一一解答。好了,让我们期待下一期吧!撰稿:刘岭 约稿编辑:刘芹排版:毕丽 审核:王东专家简介刘岭:陆军军医大学卫生统计学教研室副教授,主要从事卫生统计学教学、科研工作。担任中华卫生信息学会第八届统计理论与方法专业委员会委员,重庆市预防医学卫生统计专业委员会副主任委员,并担任《第三军医大学学报》等多家杂志的编委、统计审稿专家。历史推荐医学科研课堂丨统计说说(四):统计学方法之灵魂—方差分析 医学科研课堂丨统计说说(三):你所应该了解的正态、方差齐性检验 医学科研课堂丨统计说说(二):你的t检验做对了吗? 医学科研课堂丨统计说说(一):样本量估算是个什么东东?

刚在那个什么 创新医学网 上看见过 医学论文 写作辅导的文章 这个知道是不是 你要的答案 统计资料的显著性检验(significant test)方法的选择是医学论文中常常遇见的问题,退稿原因中常有显著性检验方法选择不当。如t检验、u检验、χ2检验等,虽然各有其应用范围和要求,但也其共同之处。作者可根据统计资料的类型,选择一种或几种检验方法。但当作者在获得一组、两组或两组以上的数据资料时,选择何种显著性检验,是至关重要的问题。不同的资料类型其统计指标、统计检验的方法是不同的,见表1。 医学生物研究中,许多指标都是服从正态分布(u分布)的,而随着样本含量加大或自由度增大,t分布、χ2分布、F分布都趋向于正态分布见图1、图2。 在《中华创伤杂志》第12卷1~6期和增刊中文章所涉及的统计方法(表2),表明了正态分布的广泛性、常见性。 故当作者获得数据资料后,首先应进行正态性检眩�范ㄊ欠为标准正态分布(或近似正态分布)或不属于正态分布。笔者首先推荐概率单位法。 当统计资料属于正态分布或近似正态分布时,差异显著性检验方法的选裕�诜合其应用条件下,一般可按表3进行选择。 显著性检验应用时的主要注意事项:(1)率值或均值在进行显著性检验前,应注意样本的代表性和可比性。(2)检验结果接近显著性界限时:要多方面考虑,是否确实不存在差异;或是观察例数不够,而需加大样本例剩换是检验公式运用不当,可用其他检验印证。(3)多个样本比例数的χ2检验,差异显著性,只能说明多组比例数不同或不完全相同,而不能确定哪个比例数不同,要进一步进行显著性检验才能了解两个样本比例数是否构成相同。表1 一般情况下不同资料的统计指标与检验方法的关系资料类型 统计指标 统计检验方法 计量资料 均数、标准差 t检验、F检验等 计数资料 率、构成比 χ2检验等 半定量资料 率、构成比 秩和检验、Ridit分析表2 《中华创伤杂志》第12卷1~6期、 增刊显著性检验方法使用频数检验方法 应用次数 检验方法 应用次数 t检验 27 直线相关与回归分析 5 χ2检验 16 拟合线性回归 1 F检验 24 相关分析 6 Q检验 2 非参数统计 4 u检验 1 未注明方法 6表3 常用显著性检验方法的选择统计资料比较类型 显著性检验 小样本均数与总体均数相比较 t检验 小样本均数相比较 t检验、F检验 两个或多个大样本均数与 总体均数相比较 u检验、t检验 大样本均数相比较 u检验、t检验 配对计量资料 配对t检验 两个率的比较 u检验、χ2检验 多个样本率的的比较 χ2检验 配对计数资料两种属性的 相关分析及其差别的比较 χ2检验

缺失值的处理:缺失值是人群研究中不可避免的问题,其处理方式的差异可能在不同程度上引入偏倚,因此,详细报告数据清理过程中缺失值的处理方法有助于读者对潜在偏倚风险进行评价。例如,瑞舒伐他汀试验在统计分析部分详细说明了缺失值的填补策略,包括:将二分类结局中的缺失值视为未发生事件;将生物标志物和心电图测量中的缺失值进行多重填补(multiple imputation);为了证明缺失值处理的合理性和填补结果的稳定性,研究还比较了多重填补与完整数据(complete-case)分析的结果。2、数据的预处理:实施统计分析之前往往需要将原始数据进行预处理,如:对连续变量进行函数转换使其更接近正态分布,基于原始数据构建衍生变量,将连续变量拆分为分类变量或将分类变量的不同类别进行合并等。医学论文应报告处理原始数据的方法及依据,瑞舒伐他汀试验即在统计分析部分描述了对血液生物标志物的对数转换。3、变量分布特征描述:确定统计分析使用的变量,并针对每一个变量的分布特征进行描述,是决定研究选用何种统计分析方法的基础。医学期刊虽然普遍对此提出要求,但作者往往套用常用方法,如:连续变量符合正态分布时,采用均数(标准差)描述,否则采用中位数(四分位间距)描述;分类变量采用频数(百分比)描述等。事实上,应根据研究设计类型、统计分析目的和数据特征选择恰当的描述方法。例如,CKB选择采用年龄、性别和地区校正的均值和率来描述人群分布特征,而非简单的报告连续变量的均数和分类变量的构成比。4、主要分析(primary analysis):指针对研究结局的统计分析,是研究论文的核心证据。因此,医学论文应详细描述主要分析的实施过程和适用性。在试验性研究中,应明确统计分析数据集、试验效应指标、相对或绝对风险及其置信区间的计算方法、以及假设检验的方法。

一般常用的统计检验方法有:t 检验、卡方检验、方差分析和相关回归分析。统计检验方法的选择主要依据数据的类型(计量、计数) 、组数的多少(两组、多组) 、样本量的大小以及对比的方式(相互比较、配对比较) ,此外计量数据还要考虑分布形态和方差齐性等问题。

医学论文中统计图的选择

统计图在医学论文中常见的格式统计表是用表格的形式,通过分析指标来表达研究对象的特征、内部构成及各项目分组之间的相互关系。在科技报告或论文中除一些简单的数据必需用文字说明外,其余大部分的统计数据都要用统计表的形式表示。因此,统计表制作的合理与否,直接关系到统计分析的质量与效果。1、统计表的基本格式一张完整的统计表由4部分组成,即标题、标目、线条、数字,必要时可加备注。其制表的原则是重点突出、简单明了、层次清楚。重点突出是指突出所要表示研究事物的主要特征及相互关系;简单明了是指统计表的结构要简单,使人一目了然,不能包罗万象;层次清楚是指内容及标目要安排合理、数据准确。若表格编排不合理将不能充分揭示事物之间的内在规律及联系,也不便于理解和阅读。2、标题应简明扼要地说明表的主要内容,一般放在表的正上方。当某一统计表在同一研究报告中出现时,标题可不包括时间和地点;如果引用在其他文章中,则应包括时间和地点。如论文中只有一张表时,可写成附表,否则要注明表序。3、标目用以说明表内数字含义部分称为标目,分为横标目和纵标目。横标目位于表的左侧,代表被研究事物的主要标志,即主语部分,用以说明同一横行数字的意义;纵标目位于表的右上方,用来说明事物的统计指标,即谓语部分,说明同一列数字的意义。标目的正确安排可使读者自左向右顺利阅读,即从表的左侧横标目开始阅读到纵标目结束,可以读出一个完整的句子。

科学研究很早就已经从简单的定性分析深入到细致的定量分析,科研工作者要面对大量的数据分析问题,科研数据的统计分析结果直接影响着论文的结果分析。在医学科研写作中,实验设计的方法直接决定了数据采取何种统计学方法,因为每种统计方法都要求数据满足一定的前提和假定,所以论文在实验设计的时候,就要考虑到以后将采取哪种数据统计方法更可靠。医学统计方法的错误千差万别,其中最主要的就是统计方法和实验设计不符,造成数据统计结果不可靠。下面,医刊汇编译列举一些常见的可以避免的问题和错误:打开百度APP,查看更多高清图片一、数据统计分析方法使用错误或不当。医学论文中,最常见的此类错误就是实验设计是多组研究,需要对数据使用方差分析的时候,而作者都采用了两样本的均数检验。二、统计方法阐述不清楚。在同一篇医学论文中,不同数据要采取不同统计处理方法,这就需要作者清楚地描述出每个统计值采用的是何种统计学方法,但在许多使用一种以上数据统计分析方法的医学论文中,作者往往只是简单地把论文采用的数据统计方法进行了整体罗列,并没有对每个数据结果分析分别交代具体的统计方法,这就很难让读者确认某一具体结果作者到底采用的是何种数据分析方法。三、统计表和统计图缺失或者重复。统计表或者统计图可以直观地让读者了解统计结果。一个好的统计表或统计图应该具有独立性,即作者即使不看文章内容,也可从统计表或统计图中推断出正确的实验结果。而一些医学论文只是简单地堆砌了大量的统计数字,缺乏直观的统计图或表;或者虽然也列出了统计表或统计图,但表或图内缺项很多,让读者难以从中提取太多有用的信息。另外,也有作者为了增加文章篇幅,同时列出统计表和统计图,造成不必要的浪费和重复。统计表的优点是详细,便于分析研究各类问题。统计图(尤其是条形统计图)的优点是能够直观反映变量的数量差异。医学论文中对数据统计结果的解释,最常见的两个错误就是过度信赖P值(结果可信程度的一个递减指标)和回避阴性结果。前一个错误的原因是因为一些作者对P值含义理解有误,把数据的统计学意义和研究的临床意义混淆。所以医学研究人员一定要注意不能单纯依靠统计值武断地得出一些结论,一定要把统计结果和临床实践结合在一起,这样才会避免出现类似的错误。至于回避阴性结果,只提供阳性结果,是因为不少作者在研究设计时,难以摆脱的一种单向的思维定式就是主观地先认定自己所预想的某种结果结论。在归纳某种结果原因时,从一个方向的实验就下完美的结论,尤其是如果这个结论可能对实际情形非常有意义时。这样的思维定势过于强调统计差异的显著性,有时会刻意回避报道差异的不显著结果,不思考和探究差异不显著的原因和意义,反而会因此忽视一些重大的科学发现。

论文中插入统计图的方法:1、打开需要编辑的文档。2、点击图表。3、选择相应的图表类型。4、接下来会弹出对应图表的excel文档,再编辑相关的参数。5、以柱状图为例,点击上方设计,可以编辑文字、颜色等。

1. 全文的中心思想是什么2. figure legend:基本上能把图表的中心思想,各个panel是什么描述清楚3. 正文result中哪些地方应用了这个图,如(Figure1a blablabla):这个就是作者从这些数据里得到了什么结论,支持哪个假设神马的;偷懒的话看result里的小标题4. 具体到每个图表的话,x axis,y axis是神马(注意某些作者会通过改变y axis的来达到视觉上dramatic,striking的效果,在比较前后panel的时候要注意),sample和control分别是神马,有没有significant之类的;偷懒的话就看下那些和control有significant difference

医学论文中统计数据的选择

绝大多数的论文撰写,均需通过一定数量临床病例(或资料)的观察,研究事物间的相互关系,以探讨客观存在的新规律。如确定新诊断、新治疗等措施是否优于原沿用的方法,就需进行两种方法比较,这就涉及统计处理;统计设计又是整个课题研究设计中一个重要的组成部分。显然,经正确统计处理的结果可信度高,论文的质量也高。楼主信不信由你,这篇文章就是在、创新医学网那摘录下来的。别的太多的我也复制不下来....

刚在那个什么 创新医学网 上看见过 医学论文 写作辅导的文章 这个知道是不是 你要的答案 统计资料的显著性检验(significant test)方法的选择是医学论文中常常遇见的问题,退稿原因中常有显著性检验方法选择不当。如t检验、u检验、χ2检验等,虽然各有其应用范围和要求,但也其共同之处。作者可根据统计资料的类型,选择一种或几种检验方法。但当作者在获得一组、两组或两组以上的数据资料时,选择何种显著性检验,是至关重要的问题。不同的资料类型其统计指标、统计检验的方法是不同的,见表1。 医学生物研究中,许多指标都是服从正态分布(u分布)的,而随着样本含量加大或自由度增大,t分布、χ2分布、F分布都趋向于正态分布见图1、图2。 在《中华创伤杂志》第12卷1~6期和增刊中文章所涉及的统计方法(表2),表明了正态分布的广泛性、常见性。 故当作者获得数据资料后,首先应进行正态性检眩�范ㄊ欠为标准正态分布(或近似正态分布)或不属于正态分布。笔者首先推荐概率单位法。 当统计资料属于正态分布或近似正态分布时,差异显著性检验方法的选裕�诜合其应用条件下,一般可按表3进行选择。 显著性检验应用时的主要注意事项:(1)率值或均值在进行显著性检验前,应注意样本的代表性和可比性。(2)检验结果接近显著性界限时:要多方面考虑,是否确实不存在差异;或是观察例数不够,而需加大样本例剩换是检验公式运用不当,可用其他检验印证。(3)多个样本比例数的χ2检验,差异显著性,只能说明多组比例数不同或不完全相同,而不能确定哪个比例数不同,要进一步进行显著性检验才能了解两个样本比例数是否构成相同。表1 一般情况下不同资料的统计指标与检验方法的关系资料类型 统计指标 统计检验方法 计量资料 均数、标准差 t检验、F检验等 计数资料 率、构成比 χ2检验等 半定量资料 率、构成比 秩和检验、Ridit分析表2 《中华创伤杂志》第12卷1~6期、 增刊显著性检验方法使用频数检验方法 应用次数 检验方法 应用次数 t检验 27 直线相关与回归分析 5 χ2检验 16 拟合线性回归 1 F检验 24 相关分析 6 Q检验 2 非参数统计 4 u检验 1 未注明方法 6表3 常用显著性检验方法的选择统计资料比较类型 显著性检验 小样本均数与总体均数相比较 t检验 小样本均数相比较 t检验、F检验 两个或多个大样本均数与 总体均数相比较 u检验、t检验 大样本均数相比较 u检验、t检验 配对计量资料 配对t检验 两个率的比较 u检验、χ2检验 多个样本率的的比较 χ2检验 配对计数资料两种属性的 相关分析及其差别的比较 χ2检验

一般常用的统计检验方法有:t 检验、卡方检验、方差分析和相关回归分析。统计检验方法的选择主要依据数据的类型(计量、计数) 、组数的多少(两组、多组) 、样本量的大小以及对比的方式(相互比较、配对比较) ,此外计量数据还要考虑分布形态和方差齐性等问题。

医学论文中常用统计分析方法的合理选择目前,不少医学论文中的统计分析存在较多的问题。有报道,经两位专家审稿认为可以发表的稿件中,其统计学误用率为90%-95%。为帮助广大医务工作者提高统计分析水平,本文将介绍医学论文中常用统计分析方法的选择原则及应用过程中的注意事项。 检验t检验是英国统计学家 1908年根据t分布原理建立起来的一种假设检验方法,常用于计量资料中两个小样本均数的比较。理论上,t检验的应用条件是要求样本来自正态分布的总体,两样本均数比较时,还要求两总体方差相等。但在实际工作中,与上述条件略有偏离,只要其分布为单峰且近似正态分布,也可应用[2]。常用的t检验有如下三类:①单个样本t检验:用于推断样本均数代表的总体均数和已知总体均数有无显著性差别。当样本例数较少(n<60)且总体标准差未知时,选用t检验;反之当样本例数较多或样本例数较少、总体标准差已知时,则可选用u检验 [3]。②配对样本t检验:适用于配对设计的两样本均数的比较,在选用时应注意两样本是否为配对设计资料。常用的配对设计资料主要有如下三种情况:两种同质受试对象分别接受两种不同的处理;同一受试对象或同一样本的两个部分,分别接受不同的处理;同一受试对象处理前后的结果比较。③两独立样本t检验:又称成组t检验,适用于完全随机设计的两样本均数的比较。与配对t检验不同的是,在进行两独立样本t检验之前,还必须对两组资料进行方差齐性检验。若为小样本且方差齐,则选用t检验;反之若方差不齐,则选用校正t检验(t’检验),或采用数据变换的方法(如取对数、开方、倒数等)使两组资料具有方差齐性后再进行t检验,或采用非参数检验[4]。此外,当两组样本例数较多(n1、n2均>50)时,这时应用t检验的计算比较繁琐,可选用u检验[5]。 2.方差分析方差分析适用于两组以上计量资料均数的比较,其应用条件是各组资料取自正态分布的总体且各组资料具有方差齐性。因此,在应用方差分析之前,同样和成组t检验一样需要对各组资料进行正态性检验、方差齐性检验。常用的方差分析有如下几类:①完全随机设计的方差分析:主要用于推断完全随机设计的多个样本均数所代表的总体均数之间有无显著性差别。完全随机设计是将观察对象随机分为两组或多组,每组接受一种处理,形成两个或多个样本。②随机区组设计的方差分析:随机区组设计首先是将全部受试对象按某种或某些特性分为若干区组,然后区组内的每个研究对象接受不同的处理,通过这种设计,既可以推断处理因素又可以推断区组因素是否对试验效应产生作用。此外,由于这种设计还使每个区组内研究对象的水平尽可能地相近,减少了个体间差异对研究结果的影响,比成组设计更容易检验出处理因素间的差别。③析因设计的方差分析:将两个或两个以上处理因素的各种浓度水平进行排列组合、交叉分组的试验设计。它不仅可以检验每个因素各水平之间是否有差异,还可以检验各因素之间是否有交互作用,同时还可以找到处理因素的各种浓度水平之间的最佳组合。此外,还有正交设计、拉丁方设计等多种方差分析法,实验者在应用时可以参考相关的统计学著作。目前,某些医学论文中有这样的情况,就是用t 检验代替方差分析对实验数据进行统计学处理,这是不可取的。t 检验只适用于推断两个小样本均数之间有无显著性差别,而采用t 检验对多组均数进行两两比较,会增加犯I 型错误的概率,即可能把本来无差别的两个总体均数判为有差别,使结论的可信度降低[6]。对多个样本均数进行比较时,正确的方法是先进行方差分析,若检验统计量有显著性意义时,再进行多个样本均数的两两(多重)比较。3.卡方检验(χ2检验)χ2检验是一种用途比较广泛的假设检验方法,但是在医学论文中常用于分类计数资料的假设检验,即用于两个样本率、多个样本率、样本内部构成情况的比较,样本率与总体率的比较,某现象的实际分布与其理论分布的比较。但是当样本满足正态近似条件时,如样本例数n与样本率p满足条件np与n(1— p)均大于5,则可以计算假设检验统计量u值来进行判断。常用的χ2检验分为如下几类:①2×2表χ2检验:适用于两个样本率或构成比的比较,在应用时,当整个试验的样本例数n≥40且某个理论频数1≤T<5时,需对χ2值进行连续性校正。因为T值太小,会导致χ2值增大,易出现假阳性结论。此外,若样本例数n<40,或有某个T值<1,此时即使采用校正公式计算的χ2值也有偏差,需要用2×2表χ2检验的确切概率检验法(Fisher确切检验法)。②配对资料χ2检验:适用于配对设计的两个样本率或构成比的比较,即通过单一样本的数据推断两种处理结果有无显著性差别。在应用时,如果甲处理结果为阳性而乙处理结果为阴性的样本例数n1与甲处理结果为阴性而乙处理结果为阳性的样本例数n2之和<40,需要对计算的χ2值进行校正。③R×C表χ2检验:适用于多个样本率或构成比的比较。在R×C表χ2检验中,若检验统计量有显著性意义时,还需要对多个样本率或构成比进行两两比较,即分割R×C表,使之成为非独立的四格表,并对每两个率之间有无显著性差别作出结论。 2×2表资料在应用时可分为如下几种类型:横断面研究设计的2×2表资料、队列研究设计的2×2表资料、病例-对照研究设计的2×2表资料、配对研究设计的2×2表资料。研究者应注意不同类型的2×2表资料的统计分析方法略有差别,比如在分析队列研究设计的2×2表资料时,如果用χ2公式计算得到P<,研究者则应再计算相对危险度(RR)并检验总体RR与1之间的差异是否具有统计学意义。此外,在进行R×C表χ2检验时,还有如下两个主要的注意事项:首先,T值最好不要<5,若有1/5的T值<5,χ2检验结论是不可靠的,解决的办法有三种:增大样本量;删去T值太小的行和列;将T值太小的行或列与性质相近的邻行或邻列的实际频数合并。其次,不同类型的R×C表资料选择的统计分析方法是不一样。①双向无序的R×C表资料:可以选用一般的χ2公式计算。②单向有序的R×C表资料:如果是原因变量为有序变量的单向有序R×C表资料,可以将其视为双向无序的R×C表资料而选用一般的χ2检验公式计算,但如果是结果变量为有序变量的单向有序R×C表资料,选用的统计分析方法有秩和检验、Radit分析和有序变量的logistic回归分析等。③双向有序且属性不同的R×C表资料:对于这类资料采用的统计分析方法不能一概而论,应根据研究者的分析目而合理选择。如果研究者只关心原因变量与结果变量之间的差异是否具有统计学意义时,此时,原因变量的有序性就显得无关紧要了,可将其视为结果变量为有序变量的单向有序R×C表资料进行分析。如果研究者希望考察原因变量与结果变量之间是否存在线性相关关系,此时需要选用处理定性资料的相关分析方法如Spearman秩相关分析方法等。如果两个有序变量之间的相关关系具有统计学意义,研究者希望进一步了解这两个有序变量之间的线性关系,此时宜选用线性趋势检验。如果研究者希望考察列联表中各行上的频数分布是否相同,此时宜选用一般的χ因此,对于适用参数检验的资料,最好还是用参数检验。秩和检验是最常用的非参数检验,它包括如下几类:①配对资料的符号秩和检验(Wilcoxon配对法):是配对设计的非参数检验。当n≤25时,可通过秩和检验对实验资料进行分析;当n>25时,样本例数超出T界值表的范围,可按近似正态分布用u检验对实验资料进行分析。②两样本比较的秩和检验(Wilcoxon Mann-Whitney检验):适用于比较两样本分别代表的总体分布位置有无差异。如果样本甲的例数为n1,样本乙的例数为n2,且n1<n2;当n1≤10、n2—n1≤10时,可通过两样本比较的秩和检验对实验资料进行分析;当n1、n2超出T界值表的范围时,同样可按近似正态分布用u检验对实验资料进行分析。③多个样本比较的秩和检验(Wilcoxon Kruskal-Wallis检验):适用于比较各样本分别代表的总体的位置有无差别,它相当于单因素方差分析的非参数检验,计算方法主要有直接法和频数表法等。此外,在进行上述3类秩和检验(前两类秩和检验实际上已经被u检验替代)时,如果相同秩次较多,则需要对计算的检验统计量进行校正。公式计算。④双向有序且属性相同的R×C表资料:这类资料实际上就是配对设计2×2表资料的延伸,在分析这类资料时,实验者的目的主要是研究两种处理方法检测结果之间是否具有一致性,因此常用的统计分析方法为一致性检验或Kappa检验。4. 非参数检验非参数检验可不考虑总体的参数、分布而对总体的分布或分布位置进行检验。它通常适用于下述资料[2]:①总体分布为偏态或分布形式未知的计量资料(尤其样本例数n<30时);②等级资料;③个别数据偏大或数据的某一端无确定的数值;④各组离散程度相差悬殊,即各总体方差不齐。该方法具有适应性强等优点,但同时也损失了部分信息,使得检验效率降低。即当资料服从正态分布时,选用非参数检验法代替参数检验法会增大犯Ⅱ类错误的概率。

医学论文统计软件选择

侧重记事的论文,以叙述事情的 发生、发展、经过和结果为重点,如《一面》。 侧重状物的论文,以状物为主, 借象征抒怀,如《白杨礼赞》《石榴》《海燕》。

公式和图表如果是图片格式的就测不出来了 这个系统主要检测关键词、段落长度、段落数量、最大段长,首段字数、末段字数等文档特征,一般都会查到抄袭内容,你只要把文字多用同义词替换就可以避过

我们有本科专业,也有专科。 从就业的角度出发,也可以考虑学一门实用的技术,其实计算机专业就是很好的, 比如ui设计、4G移动开发、互联网编程、大数据、云计算、VR等等就业前景都挺好。 看自己的兴趣和未来的发展方向, 然后选择就行... 我们的很多学生都是学有所成,祝你一切顺利

不知道你所说的统计是什么方面的,如果是科学计算方面的要用专业的科学计算软件,如Matlab、Origin等等,但是如果是简单的统计用Excel就OK

我所知,现在不同杂志社的发表价格差很多,尤其是核心期刊,光版面费就好几千。 至于普刊,价格也差的比较多,一般专业类期刊就贵些,综合类期刊稍微便宜些,我以前在百姓论文网发表过几篇论文,感觉价格还可以,你也可以去问问。 如果想要分辨期刊的价格,建议你从以下几个方面来区分 1、上网搜一下期刊,在都是正规期刊的前提下,一般影响因子越高的期刊网上发表越贵 2、相对而言,知网收录的期刊,比其它网站收录的能贵些 3、这个是最简单的,直接询问杂志社 纯手打,望选个满意。。

排版,文字排版Word、数学公式Mathtype、文献管理Endnote 画图,看你那个学科、画什么图了。统计图,理科一般用Origin,社科类一般是SPSS

用excel软件,专用处理表格的!

编辑数学公式肯定是要用公式编辑器啦,你可以选择使用word中自带的公式编辑器,也可以下载一个mathtype公式编辑器,一般来说写论文的话用mathtype比较多,因为功能比较全面一些,比word自带的公式编辑器要好用一些。你直接下载一个,:mathtype./xiazai.直接进行安装就可以,一般在word里面就会自动加载mathtype选项,如果没有可以进行手动加载,也可以使用“插入”——“对象”——“mathtype equation ”这样来打开编辑公式

文章中英文书名不用书名号,将书名变成斜体的即可。学术论文中的英文一般采用Times New Roman font或者是Times Roman。

一般而言,我们拟合ELISA标准曲线选用比较经典的Curve Expert 或者Curve Expert 软件。

这要看你的数据量,如果巨大,可能是要用SPSS。如果数据量不是很大,EXCEL也是可以的,只是要自己运用函数额处理。

我也在用spss,开始在百度上搜索下载,但是很多广告不好用,后来我自己整理了spss软件安装包,是中文破解版含安装流程,需要的朋友可以点击链接下载,希望我的回答能够帮到你!

含教程安装比较简单,可以永久使用的

《SPSS永久版安装包》高清资源下载地址:

链接:

提取码:jry2

复制这段内容后打开百度网盘手机App,操作更方便哦

链接:

提取码:jry2

复制这段内容后打开百度网盘手机App,操作更方便哦

链接:

提取码:jry2

复制这段内容后打开百度网盘手机App,操作更方便哦

spss是“统计产品与服务解决方案”软件,为IBM公司推出的一系列用于统计学分析运算、数据挖掘、预测分析和决策支持任务的软件产品及相关服务的总称。

作品相关介绍:

SPSS为IBM公司推出的一系列用于统计学分析运算、数据挖掘、预测分析和决策支持任务的软件产品及相关服务的总称,有Windows和Mac OS X等版本。包含各版本SPSS软件及相关基础和进阶视频教程及资料,涉及统计,医学,机器学习等方向。

一、 SAS统计软件 SAS 是英文Statistical Analysis System的缩写,翻译成汉语是统计分析系统,最初由美国北卡罗来纳州立大学两名研究生开始研制,1976 年创立SAS公司, 2003年全球员工总数近万人,统计软件采用按年租用制,年租金收入近12亿美元。SAS系统具有十分完备的数据访问、数据管理、数据分析功能。 在国际上, SAS被誉为数据统计分析的标准软件。SAS系统是一个模块组合式结构的软件系统,共有三十多个功能模块。SAS是用汇编语言编写而成的,通常使用SAS 需要编写程序, 比较适合统计专业人员使,而对于非统计专业人员学习SAS比较困难。SAS最新版为版。网址:。 SAS是美国SAS(赛仕)软件研究所研制的一套大型集成应用软件系统,具有比较完备的数据存取、数据管理、数据分析和数据展现的系列功能。尤其是它的创业产品—统计分析系统部分,由于具有强大的数据分析能力,一直是业界中比较著名的应用软件,在数据处理方法和统计分析领域,被誉为国际上的标准软件和最具权威的优秀统计软件包,SAS系统中提供的主要分析功能包括统计分析、经济计量分析、时间序列分析、决策分析、财务分析和全面质量管理工具等。 SAS系统是一个组合的软件系统,它由多个功能模块配合而成,其基本部分是BASE SAS模块。BASE SAS模块是SAS系统的核心,承担着主要的数据管理任务,并管理着用户使用环境,进行用户语言的处理,调用其他SAS模块和产品。也就是说,SAS系统的运行,首先必须启动BASE SAS模块,它除了本身所具有数据管理、程序设计及描述统计计算功能以外,还是SAS系统的中央调度室。它除了可单独存在外,也可与其他产品或模块共同构成一个完整的系统。各模块的安装及更新都可通过其安装程序比较方便地进行。 SAS系统具有比较灵活的功能扩展接口和强大的功能模块,在BASE SAS的基础上,还可以增加如下不同的模块而增加不同的功能:SAS/STAT(统计分析模块)、SAS/GRAPH(绘图模块)、SAS/QC(质量控制模块)、SAS/ETS(经济计量学和时间序列分析模块)、SAS/OR(运筹学模块)、SAS/IML(交互式矩阵程序设计语言模块)、SAS /FSP(快速数据处理的交互式菜单系统模块)、SAS/AF(交互式全屏幕软件应用系统模块)等等。 SAS提供的绘图系统,不仅能绘各种统计图,还能绘出地图。SAS提供多个统计过程,每个过程均含有极丰富的任选项。用户还可以通过对数据集的一连串加工,实现更为复杂的统计分析。此外,SAS还提供了各类概率分析函数、分位数函数、样本统计函数和随机数生成函数,使用户能方便地实现特殊统计要求。 目前SAS软件对Windows和Unix两种平台都提供支持,最新版本分别为和。与以往的版本比较,版的SAS系统除了在功能和性能方面得到增加和提高外,GUI界面也进一步加强。在版中,SAS系统增加了一个PC平台和三个新的UNIX平台,使SAS系统这一支持多硬件厂商,跨平台的大家族又增加了新成员。SAS 的另一个显著特征是通过对ODBC、OLE和MailAPIs等业界标准的支持,大大加强了SAS系统和其它软件厂商的应用系统之间相互操作的能力,为各应用系统之间的信息共享和交流奠定了坚实的基础。 虽然在我国SAS的逐步应用还是近几年的事,但是随着计算机应用的普及和信息事业的不断发展,越来越多的单位采用了SAS软件。尤其在教育、科研领域等大型机构,SAS软件已成为专业研究人员实用的进行统计分析的标准软件。 然而,由于SAS系统是从大型机上的系统发展而来,其操作至今仍以编程为主,人机对话界面不太友好,系统地学习和掌握SAS,需要花费一定的精力。而对大多数实际部门工作者而言,需要掌握的仅是如何利用统计分析软件来解决自己的实际问题,因此往往会与大型SAS软件系统失之交臂。但不管怎样,SAS作为专业统计分析软件中的巨无霸,现在鲜有软件在规模系列上与之抗衡。 二、 SPSS统计软件 SPSS是英文Statistical package for the social science 的缩写,翻译成汉语是社会学统计程序包,20世纪60年代末由美国斯坦福大学的三位研究生研制,1975年在芝加哥组建SPSS总部。SPSS系统特点是操作比较方便,统计方法比较齐全,绘制图形、表格较有方便,输出结果比较直观。SPSS是用FORTRAN语言编写而成。适合进行从事社会学调查中的数据分析处理。最新版为版。网址:。 SPSS原名社会科学统计软件包,现已改名为统计解决方案服务软件。是世界著名的统计分析软件之一。 20世纪60年代末,美国斯坦福大学的三位研究生研制开发了最早的统计分析软件SPSS,同时成立了SPSS公司,并于1975年在芝加哥组建了 SPSS总部。20世纪80年代以前,SPSS统计软件主要应用于企事业单位。1984年SPSS总部首先推出了世界第一套统计分析软件微机版本 SPSS/PC+,开创了SPSS微机系列产品的先河,从而确立了个人用户市场第一的地位。 同时SPSS公司推行本土化策略,目前已推出9个语种版本。SPSS/PC+的推出,极大地扩充了它的应用范围,使其能很快地应用于自然科学、技术科学、社会科学的各个领域,世界上许多有影响的报刊杂志纷纷就SPSS的自动统计绘图、数据深入分析、使用灵活方便、功能设计齐全等方面给予了高度的评价与称赞。目前已经在国内广泛流行起来。它使用Windows的窗口方式展示各种管理和分析数据方法的功能,使用对话框展示出各种功能选择项,只要是掌握一定的 Windows操作技能,粗通统计分析原理,就可以使用该软件进行各种数据分析,为实际工作服务。 SPSS for Windows是一个组合式软件包,目前已经开发出SPSS12版本,它集数据整理、分析功能于一身。用户可以根据实际需要和计算机的功能选择模块,以降低对系统硬盘容量的要求,有利于该软件的推广应用。SPSS的基本功能包括数据管理、统计分析、图表分析、输出管理等等。SPSS统计分析过程包括描述性统计、均值比较、一般线性模型、相关分析、回归分析、对数线性模型、聚类分析、数据简化、生存分析、时间序列分析、多重响应等几大类,每类中又分好几个统计过程,比如回归分析中又分线性回归分析、曲线估计、Logistic回归、Probit回归、加权估计、两阶段最小二乘法、非线性回归等多个统计过程,而且每个过程中又允许用户选择不同的方法及参数。SPSS也有专门的绘图系统,可以根据数据绘制各种统计图形和地图。 SPSS for Windows的分析结果清晰、直观、易学易用,而且可以直接读取EXCEL及DBF数据文件,现已推广到多种操作系统的计算机上,最新的版采用 DAA(Distributed Analysis Architecture,分布式分析系统),全面适应互联网,支持动态收集、分析数据和HTML格式报告,领先于诸多竞争对手。 方便易用是SPSS for Windows的主要优点,同时也是SPSS不够全面的原因所在。 三、 BMDP统计软件 BMDP是英文Biomedical computer programs 的缩写,翻译成汉语是生物医学计算程序,美国加州大学于1961年研制,是世界上最早的统计分析软件。特点是统计方法齐全,功能强大。但1991年的 版后没有新的版本推出,使用不太普及,最后被SPSS公司收购。 四、 Stata统计软件 Stata统计软件由美国计算机资源中心(Computer Resource Center)1985年研制。 特点是采用命令操作,程序容量较小,统计分析方法较齐全,计算结果的输出形式简洁,绘出的图形精美。不足之处是数据的兼容性差,占内存空间较大,数据管理功能需要加强。最新版为版。网址:。 五、 EPINFO软件 EPINFO是英文Statistics program for epidemiology on microcomputer 的缩写,翻译成汉语是流行病学统计程序。美国疾病控制中心CDC和WHO共同研制,为完全免费软件。特点是数据录入非常直观,操作方便,并有一定的统计功能,但方法比较简单,主要应用于流行病学领域中的数据录入和管理工作。最新版为Epidata 版及EPINFO2000版。 六、 Minitab Minitab由美国宾州大学研制。其特点是简单易懂,很方便进行试验设计及质量控制功能。在国外大学统计学系开设的统计软件课程中,Minitab与SAS、BMDP并列,根据没有SPSS的份。最新版本为版,网址:。 七、 Statistica Statistica为一套完整的统计资料分析、图表、资料管理、应用程式发展系统;美国StatSoft公司开发。能提供使用者所有需要的统计及制图程序,制图功能强大,能够在图表视窗中显示各种统计分析和作图技术。 八、 SPLM统计软件 SPLM是英文Statistical program for linear modeling 的缩写,翻译成汉语是线性模型拟合统计软件程序。1988年由解放军第四医学大学统计教研室研制。系统特点是采用线性模型的方法,实现各种统计方法的计算。统计方法比较齐全,功能比较强大。SPLM采用FORTRAN语言编写完成。但1999年推出版后无新的产品推出。 九、 CHISS统计软件 CHISS 是英文Chinese High Intellectualized Statistical Software的缩写,翻译成汉语是中华高智统计软件, 由北京元义堂科技公司研制,解放军总医院、首都医科大学、中国中医研究院等参加协作完成。1997年开始研发,2001年推出第一版。CHISS是一套具有数据信息管理、图形制作和数据分析的强大功能,并具有一定智能化的中文统计分析软件。CHISS的主要特点是操作简单直观,输出结果简洁。既可以采用光标点菜单式也可采用编写程序来完成各种任务。CHISS用C++语言、 FORTRAN语言和delphi 开发集成,采用模块组合式结构,已开发十个模块。 CHISS可以用于各类学校、科研所等从事统计学的教学和科研工作。最新版为CHISS2004版。网址:。 十、 SASD统计软件 SASD是英文package for Statistical analysis of stochastic data 的缩写,翻译成汉语是随机数据统计分析程序包。它是由中国科学院计算中心研制。系统特点是以FORTRAN源程序形式向用户提供大量的子程序可供用户进行二次开发,统计方法比较齐全,功能比较强大。SASD采用FORTRAN语言编写完成,比较适合从事统计专业人员使用。但无新版推出。 十一、 PEMS统计软件 PEMS是英文package for encyclopaedia of medical statistics汉语是中国医学百科全书-医学统计学软件包。它以<中国医学百科全书>一书为蓝本,开发的一套统计软件。系统特点是实现各种统计方法的计算。统计方法比较齐全,功能比较强大。PEMS采用TURBOC和TURBOBASIC语言编写完成,比较适合从事医学工作的非统计专业人员使用。最新版为版。网址:。 十二、 EXCEL电子表格与统计功能 EXCEL电子表格是Microsoft公司推出的Office系列产品之一,是一个功能强大的电子表格软件。特点是对表格的管理和统计图制作功能强大,容易操作。Excel的数据分析插件XLSTAT,也能进行数据统计分析,但不足的是运算速度慢,统计方法不全。 十三、 DAS统计软件 DAS是英文Drug and Statistics的缩写,翻译成汉语是药理学计算软件,由孙瑞元等开发。特点是内容涵盖基础药理学、临床药理学,药学,医学统计学。能多种处理结果同时显现。EXCEL平台使用方便,智能化,图表直接插入文档。网址:。 十四、 SDAS统计软件 DAS是英文Statisticaldesign and analysis system的缩写,翻译成汉语是统计设计和分析系统。1992年由解放军总医院医学统计教研室开发。特点是窗口操作,操作方便,图表简明,与国内医学统计学教材一致。但只有DOS版,1995年后没新的版本。 十五、 Nosa统计软件 Nosa是非典型数据分析系统,1999年由解放军四军医大学医学统计教研室夏结来教授开发。特点是采用广义线性模型建模,从数据录入与管理、统计分析、绘图,到结果管理嵌入了当代数据处理技术。但只有DOS系统下使用。 十六 S-PLUS(此部分摘自厂家的软件宣传资料) Insightful公司是世界著名的商务智能软件提供商,产品涵盖分析统计、数据挖掘、知识获取、决策支持等多个领域。公司总部设在美国西雅图。 S-PLUS作为一个工业数据分析工具与数据分析应用开发平台,在各行各业已经有较长的使用历史。并曾获得著名的“美国计算机协会优秀软件奖。 S-PLUS提供了方便、灵活、交互、可视化的操作环境,帮助您找出数据之间的关系和趋势,让您做出更好地决策。在科学研究、市场营销、产品研发、质量保证、财务分析、金融证券、资料统计等各个方面,S-PLUS都有广泛的应用。 S-PLUS有流畅、直观的操作界面,广泛的输入输出功能,不论您的数据在何处、数据的格式如何,都可以轻松地存取,生成的结果可以以任意格式进行输出 (图形、文档、表格、网页)。特别是:S-PLUS的操作界面与Microsoft Office完全一致,用鼠标轻松点击,就可以把S-PLUS 的分析结果嵌入到Word文档和PowerPoint文档中;S-PLUS与Excel无缝集成,您可以在S-PLUS 环境中随意操作Excel数据,也可以在Excel环境中使用S-PLUS功能,无需花时间在Excel及S-PLUS之间,将数据来回转换;S- PLUS可以在Internet环境中进行数据分析和结果发布。 S-PLUS领先于业界的探索式图形技术,使得您可以直观地展现隐藏在数据中的关系和趋势,不致迷失在简单的统计数值及文字报表中。S-PLUS提供超过80种的二维和三维图形库,您可以轻松修改每一层图形的细节,包括线条、颜色、字体等,产生您想要的图形。 S-PLUS提供超过4200种统计分析函数,包含了传统和现代的统计分析、数据挖掘、预测分析的算法。软件所有的分析功能都是向导式的,使您轻松完成数据的分析任务。S-PLUS的开放性,允许您自己开发新的算法,集成到S-PLUS软件中。您也可以从S-PLUS网站或者其它统计网站上免费下载算法,集成到S-PLUS软件中。 通过S-PLUS的脚本语言,可以记录和存储分析过程;或者,用鼠标拖拉对象(如按钮、菜单等等)到命令窗口,会立即产生相应的执行指令;反之,拖拉指令到工具列上,会产生相应的功能按钮。使得您的分析过程可以进行存储、共享和重复执行,大大减少您的重复工作量。 S-PLUS还提供强大的编程语言——S语言,您可以使用它来开发专门适合于您的个性化系统,也可以建立企业级的应用系统。而且,S-PLUS几乎可以集成到其它任何系统中,如:在Unix系统上,S-PLUS的CONNECT/Java接口,可以让S-PLUS集成到Java程序中。在Windows系统上,S-PLUS的CONNECT/C++接口,可以在您开发的C++程序内使用全部的S-PLUS分析方法。另外S-PLUS的DDE及OLE接口,可以让您集成S-PLUS到其他Windows应用程序中,允许您从Excel或Visual Basic应用程序中执行S-PLUS功能。

医学论文统计方法选择

缺失值的处理:缺失值是人群研究中不可避免的问题,其处理方式的差异可能在不同程度上引入偏倚,因此,详细报告数据清理过程中缺失值的处理方法有助于读者对潜在偏倚风险进行评价。例如,瑞舒伐他汀试验在统计分析部分详细说明了缺失值的填补策略,包括:将二分类结局中的缺失值视为未发生事件;将生物标志物和心电图测量中的缺失值进行多重填补(multiple imputation);为了证明缺失值处理的合理性和填补结果的稳定性,研究还比较了多重填补与完整数据(complete-case)分析的结果。2、数据的预处理:实施统计分析之前往往需要将原始数据进行预处理,如:对连续变量进行函数转换使其更接近正态分布,基于原始数据构建衍生变量,将连续变量拆分为分类变量或将分类变量的不同类别进行合并等。医学论文应报告处理原始数据的方法及依据,瑞舒伐他汀试验即在统计分析部分描述了对血液生物标志物的对数转换。3、变量分布特征描述:确定统计分析使用的变量,并针对每一个变量的分布特征进行描述,是决定研究选用何种统计分析方法的基础。医学期刊虽然普遍对此提出要求,但作者往往套用常用方法,如:连续变量符合正态分布时,采用均数(标准差)描述,否则采用中位数(四分位间距)描述;分类变量采用频数(百分比)描述等。事实上,应根据研究设计类型、统计分析目的和数据特征选择恰当的描述方法。例如,CKB选择采用年龄、性别和地区校正的均值和率来描述人群分布特征,而非简单的报告连续变量的均数和分类变量的构成比。4、主要分析(primary analysis):指针对研究结局的统计分析,是研究论文的核心证据。因此,医学论文应详细描述主要分析的实施过程和适用性。在试验性研究中,应明确统计分析数据集、试验效应指标、相对或绝对风险及其置信区间的计算方法、以及假设检验的方法。

医学统计方法该如何选择

基本的医学统计方法有很多,如样本均数与已知样本均数比较、两样本均数比较、多个样本均数的比较、两个样本率的比较、多个样本率的比较、两组或多组构成比的比较、非参数检验、多因素资料的方差分析等。如果对于统计方法没有一个整体的把握和认识,可能就会出现误用滥用统计方法的情况。下面是我为大家带来的.关于医学统计方法该如何选择的知识,欢迎阅读。

统计学的基本概念

1、小概率事件

如果事先假定发生概率最多为的事件为小概率事件,那么根据小概率事件原理,即“小概率事件在一次随机试验中几乎不可能发生”。假设检验就是根据小概率事件原理对该假设进行推断。

2、非参数统计

统计学上,对总体的分布不做假设或仅作非常一般性假设条件下的统计推断方法称为“非参数统计”。非参数统计方法很多,应用较多的包括

配对设计资料的Wilcoxon符号秩和检验、单样本的Wilcoxon符号秩和检验、完全随机设计两独立样本的Wilcoxon符号秩和检验、完全随机设计多个独立样本的Kruskal-Wallis秩和检验和随机化区组设计资料的Friedman秩和检验。

3、实验研究三要素

实验研究三要素包括:处理因素、实验对象、实验效应。处理因素有单因素、多因素;实验对象的设计方式有完全随机、配对或随机区组;实验效应通过观察指标来表达,而观察指标又可分为计量、计数或等级资料。这三者的不同组合决定了选用不同的统计方法。

单变量统计方法选择的一般原则

1.影响因素是单因素还是多因素

2.判断拟分析的资料属于哪种类型:计量、计数还是等级资料

3.资料是单一样本、两组样本还是多组样本

4.判断资料所属的设计方式,是完全随机、配对还是随机区组

5.判断资料是否符合拟采用的统计分析方法的应用条件,必要时可考虑变量变换

多变量统计方法的选择

在医学研究中,特别是在临床研究中,每个观察对象记录的观察指标往往不止1个,即有多个反应变量。分析变量间的相互关系是探索疾病病因的重要途径,多参数统计方法常用于这类研究问题的分析。

在医学科研中,常用的多参数统计方法有3种:多元线性回归、Logistic回归分析和生存分析。

多元线性回归要求应变量是连续型变量,但是在医学研究中经常遇到的应变量为非连续的分类变量,如某种疾病的患病与否,器官移植之后是生存还是死亡。

研究分类应变量与诸多自变量间的相互关系,进行疾病的病因分析常选用Logistic回归分析。

在医学随访研究中,不仅要看是否出现了某种结局(如器官移植后是否死亡),还要考虑出现这些结局所经历的时间长短。生存分析就是将观察结局和出现这一结局所经历的时间结合起来分析的一种统计分析方法。

秋风送爽,也给我们送来了刘岭教授的统计说说第五期。这一期的统计学方法之选择大家一定要认真学起来,说不定马上你就会用到了。编者语针对常用的基本统计学方法,一般而言说的就是t检验、单因素方差分析和卡方检验,这也是大家在写论文、阅读论文时经常遇到的统计学方法(几乎每篇文章都会涉及这一种或几种方法),那到底该采用何种统计学方法呢?今天我们就此来聊聊。一、拿到数据开始分析之前,一定要进行数据类型的划分(图1),因为不同数据类型资料,描述的方式不一样,统计学方法也不一样。图1 统计资料的类型举个例子(表1):表1 某地2002年735例65岁以上老年人健康检查记录二、各种类型资料的统计分析(描述与统计推断)1.计量资料特点:每个观察单位的观察值之间有量的区别,有单位;描述形式:最常见采用“X±S”(一般文献中经常见到),用算数均数描述其平均水平,用标准差描述其离散程度。如果遇到数据“特别变态”(特别是标准差大于算数均数),就采用Md(P25,P75)(Md为中位数,P25和P75为四分位数)(表2)。正态分布检验请大家复习:医学科研课堂丨统计说说(三):你所应该了解的正态、方差齐性检验表2 计量资料常用统计指标的特点及其应用场合统计推断方法:一般分为单因素和多因素两种。单因素分析方法分析要点:一是划清数据类型(计量资料);二是明确试验设计类型(完全随机设计?几组样本?);三是注意所用方法的应用条件;四是满足正态方差齐性时采用t检验(注意t检验有三种形式哦!)或单因素方差分析,不满足时采用秩和检验(图2)。图2 计量资料统计方法的正确选择提醒两点:① 如果样本数据不服从正态分布的话,那就只能用非参数检验(秩和检验),但其检验效能低于参数检验(t检验或方差分析)。所谓检验效能低就是本身有差异,却没有能力发现其差异。② 如果是两组以上样本的数据时,不能采用t检验(会导致假阳性错误概率增加),应该采用方差分析。若方差分析的P<,需再进一步两两比较,常用的方法为LSD法或SNK法(注意依旧不能采用t检验)。在上两讲内容中我们已经学过t检验(医学科研课堂丨统计说说(二):你的t检验做对了吗?)和方差分析(医学科研课堂丨统计说说(四):统计学方法之灵魂—方差分析)了,至于秩和检验,我们以后会逐步介绍滴。多因素分析一般采用回归分析,主要是线性回归分析,以后会给大家介绍此方法。2.计数资料特点:无序分类,同类别中各观察单位之间没有量的差别,但各类别间有质的不同,各类别互不相容。其中二分类一定是计数资料(例如性别只有男/女之分,是否继发某种疾病只有继发/未继发之分),而多分类满足分类在性质上没有程度等级上的差别,即为计数资料(例如婚姻状况包括未婚、已婚、离异、丧偶,就属于多分类,但各分类没有程度等级差别,因此为计数资料,尿糖定性检测结果包括-、+、++、+++、++++,属于具有程度等级差别的多分类资料,就不属于计数资料,属于等级资料了)。描述形式:最常见采用“例数(%)”(一般文献中经常见到),主要要分清构成比(结构相对数)和率(强度相对数)的差别(表3)。而且在应用时,分母(就是样本量啦)一般不宜过小,分母太小不足以反映数据的客观事实,也不稳定。表3 计数资料常用统计指标的特点及其应用场合比如说:1.某地肺癌患者中男性A例,女性B例,则当地肺癌患者的性别比为A/B就是“比”。2.某次研究共检出了致病菌3种,总株数为A+B+C,其中一种致病菌检出株数为A,那么A/(A+B+C)就是构成比,即该种致病菌占总致病菌的比重或分布。3.某研究对患者(总例数为B)进行治疗,结果治愈的患者例数为A,则A/B即为率(可以理解为治愈率)。统计推断方法:一般分为单因素和多因素两种。单因素分析方法分析要点:一是划清数据类型(计数资料);二是明确试验设计类型(完全随机设计?几组样本?);三是注意所用方法的应用条件;四是多样本率比较,若卡方检验的P<,需再进一步两两比较,并进行Bonferroni校正,以控制假阳性(图3)。图3 计数资料统计方法的正确选择提醒两点:① 构成比是以100作为基数,各构成部分所占的比重之和必须为100%,故某组成部分所占比重的增减必影响其它组成部分的比重;② 构成比和率在实际应用时容易混淆,主要区别在分母上,所以应正确选择分母。多因素分析一般采用回归分析,主要是Logistic回归分析,以后会给大家介绍此方法。3.等级资料特点:属于多分类资料,满足多分类在性质上有程度等级上的差别,各分类属性按一定顺序排列(有序),即为等级资料。描述形式:最常见采用“例数(%)”(一般文献中经常见到),这和计数资料的描述大体相同,主要区别在于多个分类排列时一定要按照顺序进行(从小到大或从弱到强)。统计推断方法:等级资料的统计分析方法在单因素分析中采用非参数检验(秩和检验),当然对于双向有序R×C资料,也就说分组变量和结局变量都是有序(等级)的情况,构成比的比较采用卡方检验,程度的比较采用秩和检验,趋势关联性的比较用秩相关(也称等级相关)。多因素分析中采用有序Logistic回归。注意:分类变量(计数资料和等级资料)在软件分析操作时,要适当数量化处理(赋值),赋值情况会直接影响统计分析结果的解释。最后用下面这张图来总结基本统计学方法的选择(图4)。图4 常用基本统计学方法的正确选择今天的内容就到这里,同学们多多复习,有什么问题和不懂的可以在下面留言,我们会请刘岭教授一一解答。好了,让我们期待下一期吧!撰稿:刘岭 约稿编辑:刘芹排版:毕丽 审核:王东专家简介刘岭:陆军军医大学卫生统计学教研室副教授,主要从事卫生统计学教学、科研工作。担任中华卫生信息学会第八届统计理论与方法专业委员会委员,重庆市预防医学卫生统计专业委员会副主任委员,并担任《第三军医大学学报》等多家杂志的编委、统计审稿专家。历史推荐医学科研课堂丨统计说说(四):统计学方法之灵魂—方差分析 医学科研课堂丨统计说说(三):你所应该了解的正态、方差齐性检验 医学科研课堂丨统计说说(二):你的t检验做对了吗? 医学科研课堂丨统计说说(一):样本量估算是个什么东东?

正确的统计学分析一定要建立在明确的研究目的和研究设计的基础之上,那些事先没有研究目的和研究设计,事后找来一堆数据进行统计分析都是不可取的。 在医学论文的撰、编、审、读过程中经常遇到的问题是研究的题目与课题设计、论文内容不符,包括文章的方法解决不了论文的目的、文章的结果说明不了论文的题目、文章的讨论偏离了论文的主题;还有是目的不明确、设计不合理。如题目过小,论文不够字数,而一些无关紧要的变量指标或结果被分析被讨论;又如题目过大,论文的全部内容不足以说明研究的目的,使论文的论点难以立足。 所以,合理明确的论文题目或目的以及研究设计方案是撰、编、审、读者应当关注的首要问题。此外,样本含量是否满足,抽样是否随机,偏倚是否控制等,也是不可忽视的问题。2、建好分析用的数据库建好数据库是正确统计分析的前提和基础,甚至决定了论文分析结果的成败。对于编、审、读者来讲,一般由于篇幅的限制,往往得不到数据库数据,而只有作者在数据库数据基础上经统计描述计算后给出的诸如各指标均数 x、标准差 s 或中位数 M、百分位数 Px 的“二手”数据,或将研究对象小或特征属性分组,清点各组观察单位出现的个数或频数的频数表数据等。 无论是否能够得到数据库数据,作者在统计分析过程中一定依据数据库数据进行计算,得出结果。如果对“二手”数据或频数表数据的结果等存在疑惑,编辑、审稿专家或读者有权要求作者提供数据库数据以检查其完整性、准确性和真实性,确保研究数据的质量。假若在投稿须知中对数据库数据作出必要的要求,无疑对于保证刊物的发表质量有着积极的意义

  • 索引序列
  • 医学论文写作中统计学选择
  • 医学论文中统计图的选择
  • 医学论文中统计数据的选择
  • 医学论文统计软件选择
  • 医学论文统计方法选择
  • 返回顶部